隐含异位联合编码的密文图像可逆信息隐藏
Reversible data hiding in encrypted images based on combined encoding method containing the opposite bit
- 2024年 页码:1-16
网络出版日期: 2024-08-15
DOI: 10.11834/jig.240287
移动端阅览
浏览全部资源
扫码关注微信
网络出版日期: 2024-08-15 ,
移动端阅览
陈振宇,殷赵霞,占鸿渐等.隐含异位联合编码的密文图像可逆信息隐藏[J].中国图象图形学报,
CHEN Zhenyu,YIN Zhaoxia,ZHAN Hongjian,et al.Reversible data hiding in encrypted images based on combined encoding method containing the opposite bit[J].Journal of Image and Graphics,
目的
2
密文图像可逆信息隐藏技术旨在将信息嵌入至加密图像,以确保信息和原始图像能够准确提取和无损恢复。针对密文图像可逆信息隐藏嵌入率不高的问题,通过增加编码的信息运载效率与利用相邻像素相关性,提出了一种位平面隐含异位联合编码的密文图像可逆信息隐藏方案。
方法
2
首先,图像所有者将原始图像分成大小相等的块,并计算出原始图像像素的预测误差。然后,对预测误差的八个位平面进行重排。在位平面压缩阶段,运用隐含异位的联合编码方法进行压缩。压缩后,各类辅助信息被放置到多个高位平面并加密,在多个低位平面上预留空间,结束后进行图像混洗。信息隐藏者将信息嵌入到混洗图像的预留空间中。最后,图像接收者使用密钥提取嵌入的信息或无损恢复原始图像。
结果
2
实验结果表明,所提算法在两个常用数据集BOSSBase和BOWS2上的平均嵌入率分别为3.818 3bpp和3.694 3bpp,在同类算法中表现优异。
结论
2
所提算法更好地利用原始图像相邻像素间的相关性解决了实际应用中连续比特流串长度较短、数量较多带来的压缩率损失问题,从而提升了嵌入率。
Objective
2
The technology of reversible data hiding in encrypted images (RDHEI) aims to embed secret information into encrypted images, ensuring that both the secret information and the original image can be extracted and restored without loss. This technology is gaining increasing attention from researchers and is widely applied in cloud services to protect users’ privacy. Currently, RDHEI can be mainly divided into two categories: the VRAE (vacating room after encryption) algorithm and the RRBE (reserving room before encryption) algorithm, based on the order of image encryption and room operation. The VRAE algorithm vacates room by compressing the pixels of the encrypted image. Due to the high information entropy of the encrypted image, the compression of the image only yields a limited amount of room. The RRBE algorithm primarily compresses the image utilizing pixel correlation, and then encrypts the image. Since there is a smaller information entropy of the original image, more room is reserved before encryption. To improve the performance of the reversible data hiding in encrypted images algorithm, a new RDHEI scheme based on bit-plane compression containing opposite bits, leveraging the correlation between the encoding information delivery efficiency and adjacent pixels, is proposed in this paper.
Method
2
Firstly, to ensure the utilization of the correlation between adjacent pixels, bit-plane rearrangement and pixel prediction methods are adopted. First, the image owner divides the original image into several equally sized blocks and calculates the prediction errors of the original image pixels. Then, the eight bit-planes of the processed image are rearranged. In the phase of bit-plane compression, we present a combined encoding method containing the opposite bit. Specifically, the image bitstream is divided into continuous and discontinuous streams for compression, based on the length threshold. After compressing a continuous bitstream string, the next opposite digit at the end of the string is included, meaning each long compressed bitstream adds an opposite digit. According to this rule, the rearranged images are compressed and sequentially placed in each high-level plane with additional information. Encryption and scrambling operations occur at this point. Then, the room in the low-level plane is vacated and the information hider embeds the data into the reserved room of the encrypted image. Finally, the image receiver extracts the original image or secret information without loss based on the different keys used.
Result
2
To evaluate the effectiveness of this algorithm, we provide experimental comparisons with six advanced methods on six standard test images and two common datasets, namely, BOSSBase and BOWS2. The embedding rate is used to measure algorithm performance, while PSNR and SSIM indicators serve as quantitative evaluation metrics for lossless reversible recovery. The experimental results show that the average embedding rates of the proposed algorithm on the BOSSBase and BOWS2 datasets are 3.818 3bpp and 3.694 3bpp, respectively, demonstrating superior performance compared to similar algorithms. PSNR and SSIM are constant values equal to +∞ and 1, which indicates that the algorithm is reversible.
Conclusion
2
The proposed algorithm utilizes the image correlation of the original image and effectively explores the potential of the encoded and compressed information during the encoding and compression process. It addresses the issue of compression loss caused by the short and large number of continuous bitstream strings in practical applications, thereby improving compression efficiency and enhancing the embedding rate.
密文图像可逆信息隐藏隐含异位压缩联合编码预测误差位平面嵌入率
reversible data hiding in encrypted imagecontaining opposite bit compressioncombined encodingprediction errorbit-planeembedding rate
Alattar A M. 2004. Reversible watermark using the difference expansion of a generalized integer transform[J]. IEEE Transactions on Image Processing, 13(8): 1147–1156 [DOI: 10.1109/tip.2004.828418http://dx.doi.org/10.1109/tip.2004.828418]
Ankur, R. Kumar and A. K. Sharma. 2024. Bit-Plane based reversible data hiding in encrypted images using Multi-Level blocking with Quad-Tree. IEEE Transactions on Multimedia, 26: 4722-4735 [DOI: 10.1109/TMM.2023.3325993http://dx.doi.org/10.1109/TMM.2023.3325993]
Bas P, Filler T and Pevny T. 2011. “Break our steganographic system”: the ins and outs of organizing BOSS//Proceedings of the 13th International Workshop on Information Hiding. Prague, Czech Republic: Springer: 59-70 [DOI: 10.1007/978-3-642-24178-9_5http://dx.doi.org/10.1007/978-3-642-24178-9_5]
Bas P and Furon T. 2017. Image database of bows-2[EB/OL]. [2024-04-27] http://bows2.ec-lille.fr/http://bows2.ec-lille.fr/
Cao X, Du L, Wei X, et al. 2015. High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Transactions on Cybernetics, 46(5): 1132-1143 [DOI: 10.1109/ tcyb.2015.2423678http://dx.doi.org/10.1109/tcyb.2015.2423678]
Celik M U, Sharma G, Tekalp A M, et al. 2005. Lossless generalized-LSB data embedding. IEEE Transactions on Image Processing, 14(2): 253-266 [DOI: 10.1109/tip.2004.840686http://dx.doi.org/10.1109/tip.2004.840686]
Celik M U, Sharma G, Tekalp A M. 2006. Lossless watermarking for image authentication: a new framework and an implementation. IEEE Transactions on Image Processing, 15(4) : 1042–1049 [DOI: 10.1109/tip.2005.863053http://dx.doi.org/10.1109/tip.2005.863053]
Chen F, Yuan Y, He H, Tian M, and Tai H M. 2021. Multi-MSB compression based reversible data hiding scheme in encrypted images. IEEE Transactions Circuits Systems for Video Technology, 30(3): 905–916 [DOI: 10.1109/tcsvt.2020.2992817http://dx.doi.org/10.1109/tcsvt.2020.2992817]
Chen K, Guan Q, Zhang W and Yu N. 2023. Reversible Data Hiding in Encrypted Images Based on Binary Symmetric Channel Model and Polar Code. IEEE Transactions on Dependable and Secure Computing, 20(6): 4519-4535 [DOI: 10.1109/TDSC.2022. 3228385http://dx.doi.org/10.1109/TDSC.2022.3228385]
Fridrich J, Goljan M, Du R. 2002. Lossless data embedding—new paradigm in digital watermarking. EURASIP Journal on Advances in Signal Processing, 986842(2002): 1-12 [DOI: 10.1155/ s1110865702000537http://dx.doi.org/10.1155/s1110865702000537]
Gao G, Zhang L, Lin Y, Tong S and Yuan C. 2023a. High-performance reversible data hiding in encrypted images with adaptive Huffman code. Digital Signal Processing, 133: 103870 [DOI: 10.1016/j.dsp. 2022.103870http://dx.doi.org/10.1016/j.dsp.2022.103870]
Gao H, Zhang X, and Gao T. 2023b. Hierarchical reversible data hiding in encrypted images based on multiple linear regressions and multiple bits predictio. Multimedia Tools and Applications, 83(3): 8757–8783. [DOI: 10.1007/s11042-023-15939-0http://dx.doi.org/10.1007/s11042-023-15939-0]
Gao X, Pan Z, Gao E, et al. 2020. Reversible data hiding for high dynamic range images using two-dimensional prediction-error histogram of the second time prediction. Signal Processing, 173 : 107579 [DOI: 10.1016/j.sigpro.2020.107579http://dx.doi.org/10.1016/j.sigpro.2020.107579]
Hong W, Chen T S, Wu H Y. 2012. An improved reversible data hiding in encrypted images using side match. IEEE Signal Processing Letters, 19(4): 199-202 [DOI: 10.1109/lsp.2012.2187334http://dx.doi.org/10.1109/lsp.2012.2187334]
Jia Y, Yin Z, Zhang X, et al. 2019. Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Processing, 163: 238-246 [DOI: 10.1016/j.sigpro.2019.05.020http://dx.doi.org/10.1016/j.sigpro.2019.05.020]
Kim H J, Sachnev V, Shi Y Q, et al. 2008. A novel difference expansion transform for reversible data embedding. IEEE Transactions on Information Forensics and Security, 3(3): 456–465 [DOI: 10.3724/ sp.j.1087.2008.00455http://dx.doi.org/10.3724/sp.j.1087.2008.00455]
Ma K, Zhang W, Zhao X, et al. 2013. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Transactions on Information Forensics and Security, 8(3): 553-562 [DOI: 10.1109/tifs.2013.2248725http://dx.doi.org/10.1109/tifs.2013.2248725]
Mohammadi A., Nakhkash M., and Akhaee M. A. 2020. A high-capacity reversible data hiding in encrypted images employing local difference predictor. IEEE Transactions Circuits Systems for Video Technology, 30(8): 2366–2376 [DOI: 10.1109/ tcsvt.2020http://dx.doi.org/10.1109/tcsvt.2020]
Mukesh D, Mamta J. 2021. A survey on information hiding using video steganography. Artificial Intelligence Review, 54(8): 5831-5895 [DOI: 10.1007/s10462-021-09968-0http://dx.doi.org/10.1007/s10462-021-09968-0]
Ni Z, Shi Y Q, Ansari N, et al. 2006. Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3): 354-362 [DOI: 10.1109/tcsvt.2006.869964http://dx.doi.org/10.1109/tcsvt.2006.869964]
Ou B, Zhao Y. 2019. High capacity reversible data hiding based on multiple histograms modification. IEEE Transactions on Circuits and Systems for Video Technology, 30(8): 2329–2342 [DOI: 10.1109/tcsvt.2019.2921812http://dx.doi.org/10.1109/tcsvt.2019.2921812]
Ou B, Yin Z X and Xiang S J. 2022. Overview of reversible data hiding in plaintext image. Journal of Image and Graphics, 27(01): 0111-0124
欧博,殷赵霞,项世军. 2022. 明文图像可逆信息隐藏综述. 中国图象图形学报, 27(01):0111-0124 [DOI: 10.11834/jig. 210384http://dx.doi.org/10.11834/jig.210384]
Puech W, Chaumont M, Strauss O. 2008. A reversible data hiding method for encrypted images. Security, Forensics, Steganography, and Watermarking of Multimedia Contents X. SPIE, 6819: 534-542 [DOI: 10.1117/12.766754http://dx.doi.org/10.1117/12.766754]
Puteaux P, Puech W. 2018. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images. IEEE Transactions on Information Forensics and Security, 13(7): 1670-1681[DOI: 10.1109/tifs.2018.2799381http://dx.doi.org/10.1109/tifs.2018.2799381]
Puyang Y, Yin Z X, and Qian Z X, 2018. Reversible data hiding in encrypted images with two-MSB prediction. IEEE International Workshop on Information Forensics and Security, 1–7 [DOI: 10.1109/wifs.2018.8630785http://dx.doi.org/10.1109/wifs.2018.8630785]
Qian Z, Zhou H, Zhang X, et al. 2016. Separable reversible data hiding in encrypted JPEG bitstreams. IEEE Transactions on Dependable and Secure Computing, 15(6): 1055-1067 [DOI: 10.1109/tdsc. 2016.2634161http://dx.doi.org/10.1109/tdsc.2016.2634161]
She X, Du Y, Ma W, et al. 2022. Reversible data hiding in encrypted images based on pixel prediction and block labeling. Journal of Computer Research and Development, 59(9): 2089-2100
佘晓萌, 杜洋, 马文静, 等. 2022. 基于像素预测和块标记的图像密文可逆信息隐藏. 计算机研究与发展, 59(9): 2089-2100 [DOI: 10. 7544/issn1000-1239.20210495http://dx.doi.org/10.7544/issn1000-1239.20210495]
Shi Y Q, Li X, Zhang X, et al. 2016. Reversible data hiding: advances in the past two decades. IEEE Access, 4: 3210-3237 [DOI: 10. 1109/access.2016.2573308http://dx.doi.org/10.1109/access.2016.2573308]
Tian J. 2003. Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 13(8): 890-896 [DOI: 10.1109/tcsvt.2003.815962http://dx.doi.org/10.1109/tcsvt.2003.815962]
Weinberger J. , Seroussi G. and Sapiro G. 2000. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Transactions on Image Processing, 9(8): 1309-1324 [DOI: 10.1109/83.855427http://dx.doi.org/10.1109/83.855427]
Wu Y, Xiang Y, Guo Y, et al. 2019. An improved reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Transactions on Multimedia, 22(8): 1929-1938 [DOI: 10.1109/ tmm.2019.2952979http://dx.doi.org/10.1109/tmm.2019.2952979]
Wu Y Q, Guo Y T, Tang J, et al. 2021. Reversible data hiding in encrypted images using adaptive Huffman encoding strategy. Chinese Journal of Computers, 44(4): 846-858
吴友情, 郭玉堂, 汤进, 等. 2021. 基于自适应哈夫曼编码的密文图像可逆信息隐藏算法. 计算机学报, 44(4): 846-858 [DOI: 10.11897/SP.J. 1016.2021.00846http://dx.doi.org/10.11897/SP.J.1016.2021.00846]
Wu Y Q, Ma W J, Yin Z X, et al. 2022. Reversible data hiding in encrypted image based on bit-plane compression of prediction error. Journal on Communications, 43(8): 219-230
吴友情, 马文静, 殷赵霞, 等. 2022. 基于预测误差位平面压缩的密文图像可逆信息隐藏. 通信学报, 43(8): 219-230 [DOI: 10.11959/j.issn. 1000-436x.2022149http://dx.doi.org/10.11959/j.issn.1000-436x.2022149]
Wu Y Q, Zhang R, L Tang J, et al. 2022. Reversible data hiding in encrypted images based on joint fixed-length coding and Huffman coding. Journal of Image and Graphics, 27(1): 277-288
吴友情, 张睿灵, 汤进, 等. 2022. 定长编码和哈夫曼编码的密文域可逆信息隐藏. 中国图象图形学报, 27(1): 277-288 [DOI: 10.11834/ jig.200363http://dx.doi.org/10.11834/jig.200363]
Xiang S, Li Z. 2017. Reversible audio data hiding algorithm using noncausal prediction of alterable orders. EURASIP Journal on Audio, Speech, and Music Processing, 2017(1): 1-16 [DOI: 10. 1186/s13636-017-0101-9http://dx.doi.org/10.1186/s13636-017-0101-9]
Xu S, Horng J H, Chang C C, and Chang C C. 2023. Reversible data hiding with hierarchical block variable length coding for cloud security. IEEE Transactions on Dependable and Secure Computing, 20(5): 4199–4213 [DOI: 10.1109/tdsc.2022.3219843http://dx.doi.org/10.1109/tdsc.2022.3219843]
Yao Y, Wang K, Chang Q, and Weng S. 2024. Reversible data hiding in encrypted images using global compression of zero-valued high bit-planes and block rearrangement. IEEE Transactions on Multimedia, 26: 3701–3714 [DOI: 10.1109/tmm.2023.3314975http://dx.doi.org/10.1109/tmm.2023.3314975]
Yi S and Zhou Y. 2017. Binary-block embedding for reversible data hiding in encrypted images. Signal Process, vol. 133, pp. 40–51 [DOI: 10.1016/j.sigpro.2016.10.017http://dx.doi.org/10.1016/j.sigpro.2016.10.017]
Yin Z X, Guo H N, Du Y, et al. 2022. Multi-Domain reversible data hiding in JPEG images and payload distribution algorithm. Journal of Computer Research and Development, 59(8): 1831-1840
殷赵霞, 郭红念, 杜洋, 等. 2022. JPEG 图像多域可逆信息隐藏及载荷分配算法. 计算机研究与发展, 59(08): 1831–1840 [DOI: 10.7544/issn1000-1239.20210411http://dx.doi.org/10.7544/issn1000-1239.20210411]
Yin Z X, Peng Y Y, Xiang Y Z. 2022. Reversible data hiding in encrypted images based on pixel prediction and bit-plane compression. IEEE Transactions on Dependable and Secure Computing, 19(2): 992-1002 [DOI: 10.1109/tdsc.2020.3019490http://dx.doi.org/10.1109/tdsc.2020.3019490]
Yin Z, Xiang Y, Zhang X. 2019. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding. IEEE Transactions on Multimedia, 22(4): 874-884 [DOI: 10.1109/ tmm.2019.2936314http://dx.doi.org/10.1109/tmm.2019.2936314]
Yu C, Zhang X, Zhang X, et al. 2021. Reversible data hiding with hierarchical embedding for encrypted images. IEEE Transactions on Circuits and Systems for Video Technology, 32(2): 451-466 [DOI: 10.1109/tcsvt.2021.3062947http://dx.doi.org/10.1109/tcsvt.2021.3062947]
Zhang R, Lu C, Liu J. 2019. A high capacity reversible data hiding scheme for encrypted covers based on histogram shifting. Journal of Information Security and Applications, 47: 199-207 [DOI: 10. 1016/j.jisa.2019.05.005http://dx.doi.org/10.1016/j.jisa.2019.05.005]
Zhang W, Hu X, Li X, et al. 2013. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Transactions on Image Processing, 22(7): 2775-2785 [DOI: 10.1109/tip.2013.2257814http://dx.doi.org/10.1109/tip.2013.2257814]
Zhang X P, Yin Z X. 2017. Data hiding in multimedia. Chinese Journal of Nature, 39(2): 87-95
张新鹏, 殷赵霞. 2017. 多媒体信息隐藏技术. 自然杂志, 39(2): 87-95 [DOI: 10.3969/j.issn.0253-9608. 2017.02.002http://dx.doi.org/10.3969/j.issn.0253-9608.2017.02.002]
Zhang X. 2011a. Reversible data hiding in encrypted image. IEEE Signal Processing Letters, 18(4): 255-258 [DOI: 10.1109/lsp.2011. 2114651http://dx.doi.org/10.1109/lsp.2011.2114651]
Zhang X. 2011b. Separable reversible data hiding in encrypted image. IEEE Transactions on Information Forensics and Security, 7(2): 826-832 [DOI: 10.1109/tifs.2011.2176120http://dx.doi.org/10.1109/tifs.2011.2176120]
Zhang X. 2012. Reversible data hiding with optimal value transfer. IEEE Transactions on Multimedia, 15(2): 316-325 [DOI: 10.1109/ tmm.2012.2229262http://dx.doi.org/10.1109/tmm.2012.2229262]
Zhou H, Chen K J, Zhang W M, et al. 2022. 3D mesh steganography and steganalysis: review and prospect. Journal of Image and Graphics, 27(1): 150-162
周航, 陈可江, 张卫明, 等. 2022. 3D网格隐写与隐写分析回顾与展望. 中国图象图形学报, 27(1): 150-162 [DOI: 10.11834/jig.210371http://dx.doi.org/10.11834/jig.210371]
Zhou X, Wu H F, Chen Z L, et al. 2021. All bit planes reversible data hiding for images with high-embedding-rate in ciphertext field. Journal of Image and Graphics, 26(5): 1147-1156
周旭, 吴福虎, 陈志立, 等. 2021. 密文域高嵌入率图像全位面可逆数据隐藏. 中国图象图形学报, 26(05): 1147-1156 [DOI: 10.11834/jig. 200365http://dx.doi.org/10.11834/jig.200365]
相关作者
相关机构