胎儿脑磁共振图像分割研究进展
Research progress on fetal brain magnetic resonance image segmentation
- 2024年29卷第3期 页码:561-585
纸质出版日期: 2024-03-16
DOI: 10.11834/jig.230321
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-16 ,
移动端阅览
陈健, 广梦婷, 陆冉林, 罗琴, 魏丽芳, 沈定刚. 2024. 胎儿脑磁共振图像分割研究进展. 中国图象图形学报, 29(03):0561-0585
Chen Jian, Guang Mengting, Lu Ranlin, Luo Qin, Wei Lifang, Shen Dinggang. 2024. Research progress on fetal brain magnetic resonance image segmentation. Journal of Image and Graphics, 29(03):0561-0585
医学影像是产前筛查、诊断、治疗引导和评估的重要工具,能有效避免胎儿脑的发育异常。近年来,磁共振成像在产前诊断中愈加重要,而实现自动、定量、精确地分析胎儿脑磁共振图像依赖于可靠的图像分割。因此,胎儿脑磁共振图像分割具有十分重要的临床意义与研究价值。由于胎儿图像中存在组织器官多、图像质量差及结构变化快等问题,胎儿脑磁共振图像的分割面临着巨大的困难与挑战。目前,尚未有文献对该领域的方法进行系统性的总结和分析,尤其是基于深度学习的方法。本文针对胎儿脑磁共振图像分割方法进行综述,首先,对胎儿脑磁共振图像的主要公开图谱/数据集进行详细说明;接着,对脑实质提取、组织分割和病灶分割方法进行全面的分类与分析;最后,对胎儿脑磁共振图像分割面临的挑战及未来的研究方向进行总结与展望。
Medical imaging is an important tool for prenatal screening, diagnosis, treatment guidance, and evaluation, which can effectively avoid abnormal development of the fetal central nervous system, especially for the fetal brain. Medical imaging is mainly operated through X-ray, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and other technologies. MRI is a typical non-invasive imaging technology and has become increasingly important for prenatal diagnosis in recent years. MR images are able to produce high tissue contrast, spatial resolution and comprehensive information to facilitate the diagnosis and treatment of the diseases. The automatic measurement of fetal brain MR images can realize the quantitative evaluation of fetal brain development, resulting in improved efficiency and accuracy of diagnoses. The realization of automatic, quantitative, and accurate analysis of fetal brain MR images depends on reliable image segmentation. Therefore, fetal brain MR image segmentation is of vital clinical significance and research value. Owing to the multiple tissues and organs around the fetal brain, poor image quality, and rapid brain structure changes, fetal brain MR image segmentation encounters numerous challenges. This paper summarizes fetal brain MR image segmentation methods. First, the main public atlases and data sets of fetal brain MR images are introduced in detail, including seven publicly available fetal brain MR atlases/data sets. The segmentation labels, acquisition parameters, and some other information of atlases/data sets are described. The links for the atlases/data sets are provided. Second, image segmentation methods, such as brain extraction and tissue/lesion segmentation, are classified and analyzed. Brain extraction methods are categorized into thresholding, region growing, atlas fusion, and classification techniques. Classification techniques are subdivided into traditional machine learning- and deep learning-based methods. Deep learning can automatically learn deep and discriminative features from data, and the performance is significantly improved compared with other methods. Most deep learning-based methods are based on U-Net. And the multi-stage extraction framework is commonly used. Therefore, we further subdivide the deep learning-based methods into single- and multi-stage strategies with U-Net and other convolutional neural networks. Tissue/lesion segmentation methods are categorized into atlas fusion and classification techniques. For the tissue segmentation methods, classification techniques are subdivided into traditional machine learning- and deep learning-based methods. Similarly, we further subdivide the deep learning-based methods with U-Net, other convolutional neural networks, and Transformer-based neural networks. In each subsection, we compare the performance of different methods. Lastly, by analyzing the methods, the challenges and future research directions of fetal brain MR image segmentation are summarized and prospected. The conclusions are as follows. 1) One main issue of fetal brain image analysis is that there are only a few publicly available data sets, and the sample size of the available data sets is small. Accordingly, evaluating performance uniformly with private data sets is common. At present, there are only three publicly available data sets, and images for fetal brain lesions are limited. Moreover, some data sets were not annotated. Therefore, lack of annotated data is an issue that seriously restricts the extensive and in-depth application of deep learning-based methods. 2) Data in the existing data sets are insufficient to support clinical application. At present, most existing fetal brain atlases or datasets are collected from 1.5 T devices. These data have undergone numerous preprocessing operations to derive high-resolution MR images. However, in clinical applications, most images are still the original ones from 1.5 T devices. In addition, image quality and resolution are significantly different among public atlases/data sets. Consequently, the segmentation models trained via available atlases/data sets cannot be directly applied to clinical images obtained from MRI devices. 3) Although existing deep learning-based methods have been leveraged to fetal brain image segmentation, most references only apply existing deep learning-based methods without sufficient innovation and consideration of the anatomy and image characteristics of fetal brains. 4) The current performance of deep learning-based methods is still unsatisfactory, while the low accuracy of fetal brain extraction and tissue/lesion segmentation will affect the final diagnosis. 5) Most methods do not consider image degradation issues, such as motion artifacts and blurred boundary. 6) Variability in clinical imaging equipment, parameters, and other factors leads to significant differences in fetal brain magnetic resonance images, resulting in limited generalization ability of current segmentation methods. Several possible research directions are presented. 1) Extensive research on automatic annotation is highly required, especially for deep learning-based methods. 2) Additional information on fetal brain, such as anatomical structure and image characteristics, can be further studied. 3) Deep learning-based methods, such as weak supervised, transfer, and self-supervised learning, can be used to compensate for data sets with minimal ground truth or without ground truth. 4) Researchers could combine segmentation methods with super-resolution, motion correction, or design deep networks based on low-quality images to address practical problems of fetal brain MR images. 5) Researchers could enhance the generalization ability of models by combining transfer learning, data augmentation, and training with multimodal data.
胎儿脑磁共振成像(MRI)数据集图像分割深度学习
fetal brainmagnetic resonance imaging(MRI)datasetimage segmentationdeep learning
Adams R and Bischof L. 1994. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6): 641-647 [DOI: 10.1109/34.295913http://dx.doi.org/10.1109/34.295913]
Akhondi-Asl A and Warfield S K. 2013. Simultaneous truth and performance level estimation through fusion of probabilistic segmentations. IEEE Transactions on Medical Imaging, 32(10): 1840-1852 [DOI: 10.1109/TMI.2013.2266258http://dx.doi.org/10.1109/TMI.2013.2266258]
Al-Attas R and El-Zaart A. 2007. Thresholding of medical images using minimum cross entropy//Proceedings of the 3rd Kuala Lumpur International Conference on Biomedical Engineering. Kuala Lumpur, Malaysia: Springer: 296-299 [DOI: 10.1007/978-3-540-68017-8_76http://dx.doi.org/10.1007/978-3-540-68017-8_76]
Alvarez L, Deriche R, Snchez J and Weickert J. 2002. Dense disparity map estimation respecting image discontinuities: a PDE and scale-space based approach. Journal of Visual Communication and Image Representation, 13(1/2): 3-21 [DOI: 10.1006/jvci.2001.0482http://dx.doi.org/10.1006/jvci.2001.0482]
Anquez J, Angelini E D and Bloch I. 2009. Automatic segmentation of head structures on fetal MRI//Proceedings of 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston, USA: IEEE: 109-112 [DOI: 10.1109/ISBI.2009.5192995http://dx.doi.org/10.1109/ISBI.2009.5192995]
Avants B B, Epstein C L, Grossman M and Gee J C. 2008. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1): 26-41 [DOI: 10.1016/j.media.2007.06.004http://dx.doi.org/10.1016/j.media.2007.06.004]
Bach Cuadra M, Schaer M, Andre A, Guibaud L, Eliez S and Thiran J. 2009. Brain tissue segmentation of fetal MR images//Workshop on Image Analysis for Developing Brain, in the 12th International Conference on Medical Image Computing and Computer Assisted Intervention. London, UK: [s.n.]
Barzilay E, Bar-Yosef O, Dorembus S, Achiron R and Katorza E. 2017. Fetal brain anomalies associated with ventriculomegaly or asymmetry: an MRI-based study. American Journal of Neuroradiology, 38(2): 371-375 [DOI: 10.3174/ajnr.A5009http://dx.doi.org/10.3174/ajnr.A5009]
Benkarim O, Piella G, Rekik I, Hahner N, Eixarch E, Shen D G, Li G, Ballester M A G and Sanroma G. 2020. A novel approach to multiple anatomical shape analysis: application to fetal ventriculomegaly. Medical Image Analysis, 64: #101750 [DOI: 10.1016/j.media.2020.101750http://dx.doi.org/10.1016/j.media.2020.101750]
Chen J, Fang Z H, Zhang G F, Ling L, Li G, Zhang H and Wang L. 2021a. Automatic brain extraction from 3D fetal MR image with deep learning-based multi-step framework. Computerized Medical Imaging and Graphics, 88: #101848 [DOI: 10.1016/j.compmedimag.2020.101848http://dx.doi.org/10.1016/j.compmedimag.2020.101848]
Chen J N, Lu Y Y, Yu Q H, Luo X D, Adeli E, Wang Y, Lu L, Yuille A L and Zhou Y Y. 2021b. TransUNet: Transformers make strong encoders for medical image segmentation [EB/OL]. [2023-08-25]. https://arxiv.org/pdf/2102.04306.pdfhttps://arxiv.org/pdf/2102.04306.pdf
Chen L C, Papandreou G, Kokkinos I, Murphy K and Yuille A L. 2018. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848 [DOI: 10.1109/TPAMI.2017.2699184http://dx.doi.org/10.1109/TPAMI.2017.2699184]
Cordero-Grande L, Hughes E J, Hutter J, Price A N and Hajnal J V. 2018. Three-dimensional motion corrected sensitivity encoding reconstruction for multi-shot multi-slice MRI: application to neonatal brain imaging. Magnetic Resonance in Medicine, 79(3): 1365-1376 [DOI: 10.1002/mrm.26796http://dx.doi.org/10.1002/mrm.26796]
Coupé P, Manjón J V, Fonov V, Pruessner J, Robles M and Collins D L. 2011. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage, 54(2): 940-954 [DOI: 10.1016/j.neuroimage.2010.09.018http://dx.doi.org/10.1016/j.neuroimage.2010.09.018]
Csurka G, Dance C, Fan L, Willamowski J and Bray C. 2004. Visual categorization with bags of keypoints//Proceedings of 2004 ECCV International Workshop on Statistical Learning in Computer Vision. Prague, Czech Republic: [s.n.]: 59-74
de Asis-Cruz J, Krishnamurthy D, Jose C, Cook K M and Limperopoulos C. 2022. FetalGAN: automated segmentation of fetal functional brain MRI using deep generative adversarial learning and multi-scale 3D U-Net. Frontiers in Neuroscience, 16: #887634 [DOI: 10.3389/fnins.2022.887634http://dx.doi.org/10.3389/fnins.2022.887634]
de Dumast P, Kebiri H, Payette K, Jakab A, Lajous H and Cuadra M B. 2022. Synthetic magnetic resonance images for domain adaptation: application to fetal brain tissue segmentation//Proceedings of the 19th International Symposium on Biomedical Imaging (ISBI). Kolkata, India: IEEE: 1-5 [DOI: 10.1109/ISBI52829.2022.9761451http://dx.doi.org/10.1109/ISBI52829.2022.9761451]
Deman P, Tourbier S, Meuli R and Cuadra M B. 2020. Meribach/mevislabFetalMRI: MEVISLAB MIAL super-resolution reconstruction of fetal brain MRI v1.0 [EB/OL]. [2023-06-05]. https://github.com/meribach/mevislabFetalMRI/tree/masterhttps://github.com/meribach/mevislabFetalMRI/tree/master
Devi C N, Chandrasekharan A, Sundararaman V K and Alex Z C. 2015. Neonatal brain MRI segmentation: a review. Computers in Biology and Medicine, 64: 163-178 [DOI: 10.1016/j.compbiomed.2015.06.016http://dx.doi.org/10.1016/j.compbiomed.2015.06.016]
Dittrich E, Raviv T R, Kasprian G, Donner R, Brugger P C, Prayer D and Langs G. 2014. A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation. Medical Image Analysis, 18(1): 9-21 [DOI: 10.1016/j.media.2013.08.004http://dx.doi.org/10.1016/j.media.2013.08.004]
Dittrich E, Riklin-Raviv T, Kasprian G, Brugger P C, Prayer D and Langs G. 2011. Learning a spatio-temporal latent atlas for fetal brain segmentation//Proceedings of 2011 MICCAI 2011 Workshop on Image Analysis of Human Brain Development. Toronto, Canada: [s.n.]
Dou H R, Karimi D, Rollins C K, Ortinau C M, Vasung L, Velasco-Annis C, Ouaalam A, Yang X, Ni D and Gholipour A. 2021. A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI. IEEE Transactions on Medical Imaging, 40(4): 1123-1133 [DOI: 10.1109/TMI.2020.3046579http://dx.doi.org/10.1109/TMI.2020.3046579]
Dudovitch G, Link-Sourani D, Ben Sira L, Miller E, Ben Bashat D and Joskowicz L. 2020. Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets//Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima, Peru: Springer: 365-374 [DOI: 10.1007/978-3-030-59725-2_35http://dx.doi.org/10.1007/978-3-030-59725-2_35]
Durgadevi P and Vijayalakshmi S. 2021. Image characterization based fetal brain MRI localization and extraction. Annals of the Romanian Society for Cell Biology: 1935-1946
Ebner M, Wang G T, Li W Q, Aertsen M, Patel P A, Aughwane R, Melbourne A, Doel T, Dymarkowski S, De Coppi P, David A L, Deprest J, Ourselin S and Vercauteren T. 2020. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage, 206: #116324 [DOI: 10.1016/j.neuroimage.2019.116324http://dx.doi.org/10.1016/j.neuroimage.2019.116324]
Eskildsen S F, Coupé P, Fonov V, Manjón J V, Leung K K, Guizard N, Wassef S N, Østergaard L R, Collins D L and The Alzheimer’s Disease Neuroimaging Initiative. 2012. BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage, 59(3): 2362-2373 [DOI: 10.1016/j.neuroimage.2011.09.012http://dx.doi.org/10.1016/j.neuroimage.2011.09.012]
Faghihpirayesh R, Karimi D, Erdoğmuş D and Gholipour A. 2022. Deep learning framework for real-time fetal brain segmentation in MRI//Proceedings of the 7th International Workshop on Preterm, Perinatal and Paediatric Image Analysis. Singapore, Singapore: Springer: 60-70 [DOI: 10.1007/978-3-031-17117-8_6http://dx.doi.org/10.1007/978-3-031-17117-8_6]
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J V, Pieper S and Kikinis R. 2012. 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9): 1323-1341 [DOI: 10.1016/j.mri.2012.05.001http://dx.doi.org/10.1016/j.mri.2012.05.001]
Fidon L, Aertsen M, Emam D, Mufti N, Guffens F, Deprest T, Demaerel P, David A L, Melbourne A, Ourselin S, Deprest J and Vercauteren T. 2021a. Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer: 647-657 [DOI: 10.1007/978-3-030-87196-3_60http://dx.doi.org/10.1007/978-3-030-87196-3_60]
Fidon L, Aertsen M, Mufti N, Deprest T, Emam D, Guffens F, Schwartz E, Ebner M, Prayer D, Kasprian G, David A L, Melbourne A, Ourselin S, Deprest J, Langs G and Vercauteren T. 2021b. Distributionally robust segmentation of abnormal fetal brain 3D MRI//Proceedings of the 3rd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. Strasbourg, France: Springer: 263-273 [DOI: 10.1007/978-3-030-87735-4_25http://dx.doi.org/10.1007/978-3-030-87735-4_25]
Fidon L, Viola E, Mufti N, David A L, Melbourne A, Demaerel P, Ourselin S, Vercauteren T, Deprest J and Aertsen M. 2022. A spatio-temporal atlas of the developing fetal brain with spina bifida aperta. Open Research Europe, 1: #123 [DOI: 10.12688/openreseurope.13914.2http://dx.doi.org/10.12688/openreseurope.13914.2]
Fischl B, Sereno M I and Dale A M. 1999. Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2): 195-207 [DOI: 10.1006/nimg.1998.0396http://dx.doi.org/10.1006/nimg.1998.0396]
Gangopadhyay T, Halder S, Dasgupta P, Chatterjee K, Ganguly D, Sarkar S and Roy S. 2022. MTSE U-Net: an architecture for segmentation, and prediction of fetal brain and gestational age from MRI of brain. Network Modeling Analysis in Health Informatics and Bioinformatics, 11(1): #50 [DOI: 10.1007/s13721-022-00394-yhttp://dx.doi.org/10.1007/s13721-022-00394-y]
Gayathri S P, Shankar R S and Somasundaram K. 2020. Fetal brain segmentation using improved maximum entropy threshold. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(3): 1805-1812 [DOI: 10.35940/ijitee.B7706.019320http://dx.doi.org/10.35940/ijitee.B7706.019320]
Gholipour A, Akhondi-Asl A, Estroff J A and Warfield S K. 2012. Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage, 60(3): 1819-1831 [DOI: 10.1016/j.neuroimage.2012.01.128http://dx.doi.org/10.1016/j.neuroimage.2012.01.128]
Gholipour A, Estroff J A and Warfield S K. 2010. Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Transactions on Medical Imaging, 29(10): 1739-1758 [DOI: 10.1109/TMI.2010.2051680http://dx.doi.org/10.1109/TMI.2010.2051680]
Gholipour A, Rollins C K, Velasco-Annis C, Ouaalam A, Akhondi-Asl A, Afacan O, Ortinau C M, Clancy S, Limperopoulos C, Yang E, Estroff J A and Warfield S K. 2017. A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Scientific Reports, 7(1): #476 [DOI: 10.1038/s41598-017-00525-whttp://dx.doi.org/10.1038/s41598-017-00525-w]
Glasser M F, Sotiropoulos S N, Wilson J A, Coalson T S, Fischl B, Andersson J L, Xu J Q, Jbabdi S, Webster M, Polimeni J R, Van Essen D C and Jenkinson M. 2013. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80: 105-124 [DOI: 10.1016/j.neuroimage.2013.04.127http://dx.doi.org/10.1016/j.neuroimage.2013.04.127]
Gower J C. 1975. Generalized procrustes analysis. Psychometrika, 40(1): 33-51 [DOI: 10.1007/BF02291478http://dx.doi.org/10.1007/BF02291478]
Gu J Q, Li Z J, Wang Y Y, Yang H W, Qiao Z W and Yu J H. 2019. Deep generative adversarial networks for thin-section infant MR image reconstruction. IEEE Access, 7: 68290-68304 [DOI: 10.1109/ACCESS.2019.2918926http://dx.doi.org/10.1109/ACCESS.2019.2918926]
Gu R, Wang G T, Song T, Huang R, Aertsen M, Deprest J, Ourselin S, Vercauteren T and Zhang S T. 2021. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Transactions on Medical Imaging, 40(2): 699-711 [DOI: 10.1109/TMI.2020.3035253http://dx.doi.org/10.1109/TMI.2020.3035253]
Habas P A, Kim K, Chandramohan D, Rousseau F, Glenn O A and Studholme C. 2009. Statistical model of laminar structure for atlas-based segmentation of the fetal brain from in utero MR images//Proceedings of the SPIE 7259, Medical Imaging 2009: Image Processing. Lake Buena Vista, USA: SPIE: #725917 [DOI: 10.1117/12.812425http://dx.doi.org/10.1117/12.812425]
Habas P A, Kim K, Corbett-Detig J M, Rousseau F, Glenn O A, Barkovich A J and Studholme C. 2010a. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. NeuroImage, 53(2): 460-470 [DOI: 10.1016/j.neuroimage.2010.06.054http://dx.doi.org/10.1016/j.neuroimage.2010.06.054]
Habas P A, Kim K, Rousseau F, Glenn O A, Barkovich A J and Studholme C. 2008. Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain//Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, USA: Springer: 351-358 [DOI: 10.1007/978-3-540-85988-8_42http://dx.doi.org/10.1007/978-3-540-85988-8_42]
Habas P A, Kim K, Rousseau F, Glenn O A, Barkovich A J and Studholme C. 2010b. Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Human Brain Mapping, 31(9): 1348-1358 [DOI: 10.1002/hbm.20935http://dx.doi.org/10.1002/hbm.20935]
Hennig J, Weigel M and Scheffler K. 2004. Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to hyperecho and TRAPS sequences. Magnetic Resonance in Medicine, 51(1): 68-80 [DOI: 10.1002/mrm.10658http://dx.doi.org/10.1002/mrm.10658]
HNN Team. 2021. World birth defects day 2021-healthy newborn network [EB/OL]. [2023-01-11] https://www.healthynewbornnetwork.org/event/world-birth-defects-day-2021/https://www.healthynewbornnetwork.org/event/world-birth-defects-day-2021/
Hua F M, Ren L, Zeng Q X, Cheng L, Wu M D and Ye J. 2017. Prenatal ultrasonographic diagnosis of fetal central nervous system abnormalities during the first trimester. Chinese Journal of Ultrasonography, 26(5): 410-413
华方明, 任苓, 曾庆新, 程玲, 吴牡丹, 叶军. 2017. 早孕期胎儿中枢神经系统畸形的超声影像诊断. 中华超声影像学杂志, 26(5): 410-413 [DOI: 10.3760/cma.j.issn.1004-4477.2017.05.009http://dx.doi.org/10.3760/cma.j.issn.1004-4477.2017.05.009]
Huang X N, Liu Y, Li Y H, Qi K Y, Gao A, Zheng B W, Liang D and Long X J. 2023. Deep learning-based multiclass brain tissue segmentation in fetal MRIs. Sensors, 23(2): #655 [DOI: 10.3390/s23020655http://dx.doi.org/10.3390/s23020655]
Hughes E J, Winchman T, Padormo F, Teixeira R, Wurie J, Sharma M, Fox M, Hutter J, Cordero-Grande L, Price A N, Allsop J, Bueno-Conde J, Tusor N, Arichi T, Edwards A D, Rutherford M A, Counsell S J and Hajnal J V. 2017. A dedicated neonatal brain imaging system. Magnetic Resonance in Medicine, 78(2): 794-804 [DOI: 10.1002/mrm.26462http://dx.doi.org/10.1002/mrm.26462]
Ison M, Dittrich E, Donner R, Kasprian G, Prayer D and Langs G. 2012. Fully automated brain extraction and orientation in raw fetal MRI//Proceedings of the MICCAI Workshop on Paediatric and Perinatal Imaging. Nice, France: [s.n.]: 17-24 [DOI: 10.13140/2.1.2312.8966http://dx.doi.org/10.13140/2.1.2312.8966]
Jiang S Z, Xue H, Glover A, Rutherford M, Rueckert D and Hajnal J V. 2007. MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Transactions on Medical Imaging, 26(7): 967-980 [DOI: 10.1109/TMI.2007.895456http://dx.doi.org/10.1109/TMI.2007.895456]
Karimi D, Rollins C K, Velasco-Annis C, Ouaalam A and Gholipour A. 2023. Learning to segment fetal brain tissue from noisy annotations. Medical Image Analysis, 85: #102731 [DOI: 10.1016/j.media.2022.102731http://dx.doi.org/10.1016/j.media.2022.102731]
Keraudren K, Kuklisova-Murgasova M, Kyriakopoulou V, Malamateniou C, Rutherford M A, Kainz B, Hajnal J V and Rueckert D. 2014. Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage, 101: 633-643 [DOI: 10.1016/j.neuroimage.2014.07.023http://dx.doi.org/10.1016/j.neuroimage.2014.07.023]
Khalili N, Lessmann N, Turk E, Claessens N, de Heus R, Kolk T, Viergever M A, Benders M J N L and Išgum I. 2019. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magnetic Resonance Imaging, 64: 77-89 [DOI: 10.1016/j.mri.2019.05.020http://dx.doi.org/10.1016/j.mri.2019.05.020]
Khawam M, De Dumast P, Deman P, Kebiri H, Yu T, Tourbier S, Lajous H, Hagmann P, Maeder P, Thiran J P, Meuli R, Dunet V, Bach Cuadra M and Koob M. 2021. Fetal brain biometric measurements on 3D super-resolution reconstructed T2-weighted MRI: an intra- and inter-observer agreement study. Frontiers in Pediatrics, 9: #639746 [DOI: 10.3389/fped.2021.639746http://dx.doi.org/10.3389/fped.2021.639746]
Kikinis R, Pieper S D and Vosburgh K G. 2014. 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support//Jolesz F A, ed. Intraoperative Imaging and Image-Guided Therapy. New York, USA: Springer: 277-289 [DOI: 10.1007/978-1-4614-7657-3_19http://dx.doi.org/10.1007/978-1-4614-7657-3_19]
Kim K, Habas P A, Rousseau F, Glenn O A, Barkovich A J and Studholme C. 2010. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Transactions on Medical Imaging, 29(1): 146-158 [DOI: 10.1109/TMI.2009.2030679http://dx.doi.org/10.1109/TMI.2009.2030679]
Kuklisova-Murgasova M, Quaghebeur G, Rutherford M A, Hajnal J V and Schnabel J A. 2012. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Medical Image Analysis, 16(8): 1550-1564 [DOI: 10.1016/j.media.2012.07.004http://dx.doi.org/10.1016/j.media.2012.07.004]
Lajous H, Roy C W, Hilbert T, de Dumast P, Tourbier S, Alemn-Gómez Y, Yerly J, Yu T, Kebiri H, Payette K, Ledoux J B, Meuli R, Hagmann P, Jakab A, Dunet V, Koob M, Kober T, Stuber M and Bach Cuadra M. 2022. A fetal brain magnetic resonance acquisition numerical phantom (FaBiAN). Scientific Reports, 12(1): #8682 [DOI: 10.1038/s41598-022-10335-4http://dx.doi.org/10.1038/s41598-022-10335-4]
Ledig C, Wright R, Serag A, Aljabar P and Rueckert D. 2012. Neonatal brain segmentation using second order neighborhood information//Proceedings of 2012 MICCAI Workshop: Perinatal and Paediatric Imaging. Nice, France: [s.n.]: 33-40
Lee H H, Bao S X, Huo Y K and Landman B A. 2022. 3D UX-Net: a large kernel volumetric ConvNet modernizing hierarchical transformer for medical image segmentation///Proceedings of the 11th International Conference on Learning Representations. Kigali, Rwanda: [s.n.]
Li G, Wang L, Yap P T, Wang F, Wu Z W, Meng Y, Dong P, Kim J, Shi F, Rekik I, Lin W L and Shen D G. 2019. Computational neuroanatomy of baby brains: a review. NeuroImage, 185: 906-925 [DOI: 10.1016/j.neuroimage.2018.03.042http://dx.doi.org/10.1016/j.neuroimage.2018.03.042]
Li H T, Yan G H, Luo W R, Liu T T, Wang Y, Liu R B, Zheng W H, Zhang Y, Li K, Zhao L, Limperopoulos C, Zou Y and Wu D. 2021a. Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Structure and Function, 226(6): 1961-1972 [DOI: 10.1007/s00429-021-02303-xhttp://dx.doi.org/10.1007/s00429-021-02303-x]
Li J P, Luo Y S, Shi L, Zhang X, Li M, Zhang B and Wang D F. 2020. Automatic fetal brain extraction from 2D in utero fetal MRI slices using deep neural network. Neurocomputing, 378: 335-349 [DOI: 10.1016/j.neucom.2019.10.032http://dx.doi.org/10.1016/j.neucom.2019.10.032]
Li L, Sinclair M, Makropoulos A, Hajnal J V, David Edwards A, Kainz B, Rueckert D and Alansary A. 2021b. CAS-Net: conditional atlas generation and brain segmentation for fetal MRI//3rd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. Strasbourg, France: Springer: 221-230 [DOI: 10.1007/978-3-030-87735-4_21http://dx.doi.org/10.1007/978-3-030-87735-4_21]
Liang Z Q. 2012. Progress and prospect of prenatal diagnosis and intrauterine therapy. Journal of Third Military Medical University, 34(2): 93-95
梁志清. 2012. 产前诊断和宫内治疗的技术进展与展望. 第三军医大学学报, 34(2): 93-95 [DOI: 10.16016/j.1000-5404.2012.02.015http://dx.doi.org/10.16016/j.1000-5404.2012.02.015]
Liao L F, Zhang X, Zhao F Q, Zhong T, Pei Y C, Xu X M, Wang L, Zhang H, Shen D G and Li G. 2020. Joint image quality assessment and brain extraction of fetal MRI using deep learning//Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima, Peru: Springer: 415-424 [DOI: 10.1007/978-3-030-59725-2_40http://dx.doi.org/10.1007/978-3-030-59725-2_40]
Litjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F, Ghafoorian M, van der Laak J A W M, Van Ginneken B and Snchez C I. 2017. A survey on deep learning in medical image analysis. Medical Image Analysis, 42: 60-88 [DOI: 10.1016/j.media.2017.07.005http://dx.doi.org/10.1016/j.media.2017.07.005]
Lou J J, Li D W, Bui T D, Zhao F Q, Sun L, Li G and Shen D G. 2019. Automatic fetal brain extraction using multi-stage U-Net with deep supervision//Proceedings of the 10th International Workshop on Machine Learning in Medical Imaging. Shenzhen, China: Springer: 592-600 [DOI: 10.1007/978-3-030-32692-0_68http://dx.doi.org/10.1007/978-3-030-32692-0_68]
Makropoulos A, Counsell S J and Rueckert D. 2018a. A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage, 170: 231-248 [DOI: 10.1016/j.neuroimage.2017.06.074http://dx.doi.org/10.1016/j.neuroimage.2017.06.074]
Makropoulos A, Gousias I S, Ledig C, Aljabar P, Serag A, Hajnal J V, Edwards A D, Counsell S J and Rueckert D. 2014. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Transactions on Medical Imaging, 33(9): 1818-1831 [DOI: 10.1109/TMI.2014.2322280http://dx.doi.org/10.1109/TMI.2014.2322280]
Makropoulos A, Robinson E C, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell S J, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff E P, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier J D, Hutter J, Price A N, Teixeira R P A G, Murgasova M, Victor S, Kelly C, Rutherford M A, Smith S M, Edwards A D, Hajnal J V, Jenkinson M and Rueckert D. 2018b. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage, 173: 88-112 [DOI: 10.1016/j.neuroimage.2018.01.054http://dx.doi.org/10.1016/j.neuroimage.2018.01.054]
Mazher M, Qayyum A, Puig D and Abdel-Nasser M. 2022. Effective approaches to fetal brain segmentation in MRI and gestational age estimation by utilizing a multiview deep inception residual network and radiomics. Entropy, 24(12): #1708 [DOI: 10.3390/e24121708http://dx.doi.org/10.3390/e24121708]
Olshaker H, Ber R, Hoffman D, Derazne E, Achiron R and Katorza E. 2018. Volumetric brain MRI study in fetuses with congenital heart disease. American Journal of Neuroradiology, 39(6): 1164-1169 [DOI: 10.3174/ajnr.A5628http://dx.doi.org/10.3174/ajnr.A5628]
Payette K, Kottke R and Jakab A. 2020. Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels//Proceedings of the 1st International Workshop on Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. Lima, Peru: Springer: 295-304 [DOI: 10.1007/978-3-030-60334-2_29http://dx.doi.org/10.1007/978-3-030-60334-2_29]
Payette K, Li H B, de Dumast P, Licandro R, Ji H, Siddiquee M M R, Xu D G, Myronenko A, Liu H, Pei Y C, Wang L S, Peng Y, Xie J Y, Zhang H Q, Dong G M, Fu H, Wang G T, Rieu Z, Kim D, Kim H G, Karimi D, Gholipour A, Torres H R, Oliveira B, Vilaça J L, Lin Y, Avisdris N, Ben-Zvi O, Bashat D B, Fidon L, Aertsen M, Vercauteren T, Sobotka D, Langs G, Alenyà M, Villanueva M I, Camara O, Fadida B S, Joskowicz L, Weibin L, Yi L, Xuesong L, Mazher M, Qayyum A, Puig D, Kebiri H, Zhang Z L, Xu X Y, Wu D, Liao K L, Wu Y X, Chen J T, Xu Y Z, Zhao L, Vasung L, Menze B, Cuadra M B and Jakab A. 2023. Fetal brain tissue annotation and segmentation challenge results. Medical Image Analysis, 88: #102833 [DOI: 10.1016/j.media.2023.102833http://dx.doi.org/10.1016/j.media.2023.102833]
Peng Y, Xu Y D, Wang M Z, Zhang H Q and Xie J Y. 2023. The nnU-Net based method for automatic segmenting fetal brain tissues. Health Information Science and Systems, 11(1): #17 [DOI: 10.1007/s13755-023-00220-3http://dx.doi.org/10.1007/s13755-023-00220-3]
Pishghadam M, Kazemi K, Nekooei S, Seilanian-Toosi F, Hoseini-Ghahfarokhi M, Zabihzadeh M and Fatemi A. 2019. A new approach to automatic fetal brain extraction from MRI using a variational level set method. Medical Physics, 46(11): 4983-4991 [DOI: 10.1002/mp.13766http://dx.doi.org/10.1002/mp.13766]
Pishghadam M, Kazemi K, Zabihzadeh M, Birgani M J T, Nekooei S, Ghahfarokhi M H and Esmaeili S A. 2016. A review of brain extraction techniques in fetal MRI. International Journal of Advanced Biotechnology and Research (IJBR), 7(Special Issue 2): 317-321
Pu M M, Xu B and Tan T N. 2016. Brain science and brain-inspired intelligence technology——an overview. Bulletin of Chinese Academy of Sciences, 31(7): 725-736
蒲慕明, 徐波, 谭铁牛. 2016. 脑科学与类脑研究概述. 中国科学院院刊, 31(7): 725-736 [DOI: 10.16418/j.issn.1000-3045.2016.07.001http://dx.doi.org/10.16418/j.issn.1000-3045.2016.07.001]
Rajchl M, Lee M C H, Oktay O, Kamnitsas K, Passerat-Palmbach J, Bai W J, Damodaram M, Rutherford M A, Hajnal J V, Kainz B and Rueckert D. 2017. DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Transactions on Medical Imaging, 36(2): 674-683 [DOI: 10.1109/TMI.2016.2621185http://dx.doi.org/10.1109/TMI.2016.2621185]
Rampun A, Jarvis D, Griffiths P and Armitage P. 2020. Automated 2D fetal brain segmentation of mr images using a deep U-Net//Proceedings of the 5th Asian Conference on Pattern Recognition. Auckland, New Zealand: Springer: 373-386 [DOI: 10.1007/978-3-030-41299-9_29http://dx.doi.org/10.1007/978-3-030-41299-9_29]
Rampun A, Jarvis D, Griffiths P D, Zwiggelaar R, Scotney B W and Armitage P A. 2021. Single-input multi-output U-Net for automated 2D foetal brain segmentation of MR images. Journal of Imaging, 7(10): #200 [DOI: 10.3390/jimaging7100200http://dx.doi.org/10.3390/jimaging7100200]
Ranzini M B M, Fidon L, Ourselin S, Modat M and Vercauteren T. 2021. MONAIfbs: MONAI-based fetal brain MRI deep learning segmentation [EB/OL]. [2023-08-25]. https://arxiv.org/pdf/2103.13314.pdfhttps://arxiv.org/pdf/2103.13314.pdf
Ren J Y and Dong S Z. 2020. Quantitative assessment of the structure and function of fetal brain development with MRI. International Journal of Medical Radiology, 43(1): 30-34
任婧雅, 董素贞. 2020. MRI对胎儿脑发育的结构和功能定量评估. 国际医学放射学杂志, 43(1): 30-34 [DOI: 10.19300/j.2020.Z17309http://dx.doi.org/10.19300/j.2020.Z17309]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention. Munich, Germany: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Rother C, Kolmogorov V and Blake A. 2004. “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3): 309-314 [DOI: 10.1145/1015706.1015720http://dx.doi.org/10.1145/1015706.1015720]
Salehi S S M, Hashemi S R, Velasco-Annis C, Ouaalam A, Estroff J A, Erdogmus D, Warfield S K and Gholipour A. 2018. Real-time automatic fetal brain extraction in fetal MRI by deep learning//The 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, USA: IEEE: 720-724 [DOI: 10.1109/ISBI.2018.8363675http://dx.doi.org/10.1109/ISBI.2018.8363675]
Schuh A, Makropoulos A, Wright R, Robinson E C, Tusor N, Steinweg J, Hughes E, Grande L C, Price A, Hutter J, Hajnal J V and Rueckert D. 2017. A deformable model for the reconstruction of the neonatal cortex//Proceedings of the 14th IEEE International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia: IEEE: 800-803 [DOI: 10.1109/ISBI.2017.7950639http://dx.doi.org/10.1109/ISBI.2017.7950639]
Serag A, Aljabar P, Ball G, Counsell S J, Boardman J P, Rutherford M A, Edwards A D, Hajnal J V and Rueckert D. 2012a. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage, 59(3): 2255-2265 [DOI: 10.1016/j.neuroimage.2011.09.062http://dx.doi.org/10.1016/j.neuroimage.2011.09.062]
Serag A, Kyriakopoulou V, Rutherford M A, Edwards A D, Hajnal J V, Aljabar P, Counsell S J, Boardman J P and Rueckert D. 2012b. A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates. Annals of the British Machine Vision Association, 2012(3): 1-14
Shen D G, Wu G R and Suk H I. 2017. Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19: 221-248 [DOI: 10.1146/annurev-bioeng-071516-044442http://dx.doi.org/10.1146/annurev-bioeng-071516-044442]
Shi F, Wang L, Gilmore J H, Lin W L and Shen D G. 2011. Learning-based meta-algorithm for MRI brain extraction//Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention. Toronto, Canada: Springer: 313-321 [DOI: 10.1007/978-3-642-23626-6_39http://dx.doi.org/10.1007/978-3-642-23626-6_39]
Shi J, Wang L L, Wang S S, Chen Y X, Wang Q, Wei D M, Liang S J, Peng J L, Yi J J, Liu S F, Ni D, Wang M L, Zhang D Q and Shen D G. 2020. Applications of deep learning in medical imaging: a survey. Journal of Image and Graphics, 25(10): 1953-1981
施俊, 汪琳琳, 王珊珊, 陈艳霞, 王乾, 魏冬铭, 梁淑君, 彭佳林, 易佳锦, 刘盛锋, 倪东, 王明亮, 张道强, 沈定刚. 2020. 深度学习在医学影像中的应用综述. 中国图象图形学报, 25(10): 1953-1981 [DOI: 10.11834/jig.200255http://dx.doi.org/10.11834/jig.200255]
Smith S M. 2002. Fast robust automated brain extraction. Human Brain Mapping, 17(3): 143-155 [DOI: 10.1002/hbm.10062http://dx.doi.org/10.1002/hbm.10062]
Somasundaram K, Gayathri S P, Shankar R S and Rajeswaran R. 2016. Fetal head localization and fetal brain segmentation from MRI using the center of gravity//Proceedings of 2016 International Computer Science and Engineering Conference (ICSEC). Chiang Mai, Thailand: IEEE: 1-6 [DOI: 10.1109/ICSEC.2016.7859866http://dx.doi.org/10.1109/ICSEC.2016.7859866]
Sun L, Shao W, Zhu Q, Wang M L, Li G and Zhang D Q. 2023. Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction. Pattern Recognition, 133: #109029 [DOI: 10.1016/j.patcog.2022.109029http://dx.doi.org/10.1016/j.patcog.2022.109029]
Taleb Y, Schweitzer M, Studholme C, Koob M, Dietemann J L and Rousseau F. 2013. Automatic template-based brain extraction in fetal MR images//Proceedings of Organization for Human Brain Mapping Conference. [s.l.]: [s.n.]
Torres H R, Morais P, Oliveira B, Birdir C, Rüdiger M, Fonseca J C and Vilaça J L. 2022. A review of image processing methods for fetal head and brain analysis in ultrasound images. Computer Methods and Programs in Biomedicine, 215: #106629 [DOI: 10.1016/j.cmpb.2022.106629http://dx.doi.org/10.1016/j.cmpb.2022.106629]
Tourbier S, de Dumast P, Kebiri H, Sanchez T, Lajous H and Bach M. 2023. MIAL super-resolution toolkit v2.1.0 [EB/OL]. [2023-02-03]. https://github.com/Medical-Image-Analysis-Laboratory/mialsuperresolutiontoolkithttps://github.com/Medical-Image-Analysis-Laboratory/mialsuperresolutiontoolkit
Tourbier S, Hagmann P, Cagneaux M, Guibaud L, Gorthi S, Schaer M, Thiran J P, Meuli R and Cuadra M B. 2015. Automatic brain extraction in fetal MRI using multi-atlas-based segmentation//Proceedings of the SPIE 9413, Medical Imaging: Image Processing. Orlando, USA: SPIE: #94130Y [DOI: 10.1117/12.2081777http://dx.doi.org/10.1117/12.2081777]
Tustison N J, Avants B B, Cook P A, Zheng Y J, Egan A, Yushkevich P A and Gee J C. 2010. N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6): 1310-1320 [DOI: 10.1109/TMI.2010.2046908http://dx.doi.org/10.1109/TMI.2010.2046908]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin I. 2017. Attention is all you need//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.: 6000-6010
Wang G T, Aertsen M, Deprest J, Ourselin S, Vercauteren T and Zhang S T. 2020. Uncertainty-guided efficient interactive refinement of fetal brain segmentation from stacks of MRI slices//Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima, Peru: Springer: 279-288 [DOI: 10.1007/978-3-030-59719-1_28http://dx.doi.org/10.1007/978-3-030-59719-1_28]
Wang G T, Li W Q, Zuluaga M A, Pratt R, Patel P A, Aertsen M, Doel T, David A L, Deprest J, Ourselin S and Vercauteren T. 2018. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Transactions on Medical Imaging, 37(7): 1562-1573 [DOI: 10.1109/TMI.2018.2791721http://dx.doi.org/10.1109/TMI.2018.2791721]
Wen Y F, Liang C X, Lin J Y, Wu H S and Qin J. 2023. ExSwin-UNet: an unbalanced weighted unet with shifted window and external attentions for fetal brain MRI image segmentation//Proceedings of 2023 European Conference on Computer Vision. Tel Aviv, Israel: Springer: 340-354 [DOI: 10.1007/978-3-031-25066-8_18http://dx.doi.org/10.1007/978-3-031-25066-8_18]
Wright R, Kyriakopoulou V, Ledig C, Rutherford M A, Hajnal J V, Rueckert D and Aljabar P. 2014. Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage, 91: 21-32 [DOI: 10.1016/j.neuroimage.2014.01.034http://dx.doi.org/10.1016/j.neuroimage.2014.01.034]
Wu J J, Yu B L, Wang L H, Yang Q and Zhang Y Y. 2021. Longitudinal Chinese population structural fetal brain atlases construction: toward precise fetal brain segmentation//Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Guadalajara, Mexico: IEEE: 2745-2749 [DOI: 10.1109/EMBC46164.2021.9630514http://dx.doi.org/10.1109/EMBC46164.2021.9630514]
Xie S N and Tu Z W. 2015. Holistically-nested edge detection//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1395-1403 [DOI: 10.1109/ICCV.2015.164http://dx.doi.org/10.1109/ICCV.2015.164]
Yushkevich P A, Piven J, Hazlett H C, Smith R G, Ho S, Gee J C and Gerig G. 2006. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31(3): 1116-1128 [DOI: 10.1016/j.neuroimage.2006.01.015http://dx.doi.org/10.1016/j.neuroimage.2006.01.015]
Zhang H, Wang Y P, Geng X J and Fu P F. 2020. Review of deep learning methods for isointense infant brain MR image segmentation. Journal of Image and Graphics, 25(10): 2068-2078
张航, 王雅萍, 耿秀娟, 付鹏飞. 2020. 等强度婴儿脑MR图像分割的深度学习方法综述. 中国图象图形学报, 25(10): 2068-2078 [DOI: 10.11834/jig.200285http://dx.doi.org/10.11834/jig.200285]
Zhang X B, Ruan M H, Yuan T W, Wang H Y, Liu X, Han X, Fu L, Xiong Y and Zhang X. 2020. Neuroscience and brain-inspired artificial intelligence: new progress and trends. Chinese Bulletin of Life Sciences, 32(10): 993-1013
张学博, 阮梅花, 袁天蔚, 王慧媛, 刘晓, 韩雪, 傅璐, 熊燕, 张旭. 2020. 神经科学和类脑人工智能发展: 新进展、新趋势. 生命科学, 32(10): 993-1013 [DOI: 10.13376/j.cbls/2020121http://dx.doi.org/10.13376/j.cbls/2020121]
Zhang X K, Cui Z M, Chen C G, Wei J, Lou J J, Hu W X, Zhang H, Zhou T, Shi F and Shen D G. 2021. Confidence-aware cascaded network for fetal brain segmentation on MR images//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer: 584-593 [DOI: 10.1007/978-3-030-87199-4_55http://dx.doi.org/10.1007/978-3-030-87199-4_55]
Zhao L, Asis-Cruz J D, Feng X, Wu Y, Kapse K, Largent A, Quistorff J, Lopez C, Wu D, Qing K, Meyer C and Limperopoulos C. 2022. Automated 3D fetal brain segmentation using an optimized deep learning approach. American Journal of Neuroradiology, 43(3): 448-454 [DOI: 10.3174/ajnr.A7419http://dx.doi.org/10.3174/ajnr.A7419]
Zhou Y. 2016. Clinical significance of prenatal ultrasound screening for fetal malformations at different gestational weeks. Journal of Clinical Medical, 3(26): 5254-5255
周玉. 2016. 不同孕周产前超声筛查胎儿畸形的临床意义. 临床医药文献杂志, 3(26): 5254-5255 [DOI: 10.16281/j.cnki.jocml.2016.26.095http://dx.doi.org/10.16281/j.cnki.jocml.2016.26.095]
相关作者
相关机构