光学视觉传感器技术研究进展
Review on optical visual sensor technology
- 2023年28卷第6期 页码:1630-1661
纸质出版日期: 2023-06-16
DOI: 10.11834/jig.230039
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-16 ,
移动端阅览
徐江涛, 王欣洋, 王廷栋, 陈忻, 宋宗玺, 雷浩, 刘罡, 汶德胜. 2023. 光学视觉传感器技术研究进展. 中国图象图形学报, 28(06):1630-1661
Xu Jiangtao, Wang Xinyang, Wang Tingdong, Chen Xin, Song Zongxi, Lei Hao, Liu Gang, Wen Desheng. 2023. Review on optical visual sensor technology. Journal of Image and Graphics, 28(06):1630-1661
视觉传感是人类感知外界、认知世界的主要途径,研究表明人类获取的外界信息大约有80%来自于视觉。作为感知外界信息的“电子眼球”,视觉传感器是消费电子、机器视觉、安防监控、科学探测和军事侦察等领域的核心器件。近年来视觉传感器技术发展迅速,不同类型的传感器从不同维度提供丰富的视觉数据,不断增强人类感知与认知能力,视觉传感器研究工作具有重要的理论与应用需求。本报告以典型光学视觉传感器技术为主线,通过综合国内外文献和相关报道,从CCD图像传感器、CMOS图像传感器、智能视觉传感器以及红外图像传感器等研究方向,梳理论述近年来光学视觉传感器技术的发展现状、前沿动态、热点问题和趋势。
Visual sensing technique is essential for human to perceive and understand the world around them. An “electronic eyeball” can be melted into outdoor-related visual information,and visual sensors are equipped with such domains like consumer electronics,machine vision,surveillance,and academic researches. Visual sensor technology-based multiple sensors can be used to richer multi-dimension visual data,which can enhance human-related perceptive and cognitive ability. This literature review is focused on the growth of optical visual sensor technology,including such image sensors in relevance to CCD,CMOS,intelligent-visual,and infrared-context. The CMOS image sensor chip is produced in terms of CMOS technology,in which image acquisition unit and signal processing unit can be integrated into the same chip. It can be mass-produced to a certain extent. Cost-effective applications can be oriented to such aspects in related to small size,light weight,low cost and low power consumption. With the rapid development of autonomous driving, intelligent transportation, machine vision and other fields, multi-functional and intelligent CMOS image sensors with small size will become the focus of research. The emerging CCD sensor technology and its applications have been facilitating as well. The potentials of CCD image sensor can be applied for such domains in related to remote sensing,astronomy,low light detection. In the future, the multi-spectral TDI CCD architecture based on CCD and CMOS fusion technology will be widely used. Infrared image sensor is configured and set that infrared radiation detection can be converted into physical quantity. The high-performance digital signal processing function can be integrated on the infrared focal plane. The newly infrared image sensor can be focused on larger array,higher resolution,wider spectrums,more flexible sensitivity,multi-band,and system-level chip further.
光学视觉传感器CCD图像传感器CMOS图像传感器智能视觉传感器红外图像传感器
optical visual sensorCCD image sensorCMOS image sensorintelligent visual sensorinfrared image sensor
Akrarai M, Margotat N, Sicard G and Fesquet L. 2020. A novel event based image sensor with spacial and temporal redundancy suppression//Proceedings of the 18th IEEE International New Circuits and Systems Conference (NEWCAS). Montreal, Canada: IEEE: 238-241 [DOI: 10.1109/newcas49341.2020.9159847http://dx.doi.org/10.1109/newcas49341.2020.9159847]
Antoni T, Nedelcu A, Marcadet X, Facoetti H and Berger V. 2007. High contrast polarization sensitive quantum well infrared photodetectors. Applied Physics Letters, 90(20): #201107 [DOI: 10.1063/1.2739408http://dx.doi.org/10.1063/1.2739408]
Bai Y B, Farris M, Fischer L, Maiten J, Kopp R, Piquette E, Ellsworth J, Yulius A, Chen A, Tallarico S, Hernandez E, Holland E, Boehmer E, Carmody M, Beletic J W, Cho H, Holmes W, Seiffert M, Pravdo S, Jhabvala M and Waczynski A. 2018. Manufacturability and performance of 2.3-µm HgCdTe H2RG sensor chip assemblies for Euclid//Proceedings of SPIE 10709, High Energy, Optical, and Infrared Detectors for Astronomy VIII. Austin, USA: SPIE: #1070915 [DOI: 10.1117/12.2317733http://dx.doi.org/10.1117/12.2317733]
Bai Y B, Farris M C, Joshi A and Chuh T Y. 2004. Large-format hybrid visible silicon focal plane arrays for space- and ground-based astronomy//Proceedings of SPIE 5499, Optical and Infrared Detectors for Astronomy. Glasgow, UK: SPIE: 151-161 [DOI: 10.1117/12.553055http://dx.doi.org/10.1117/12.553055]
Bamji C S, Mehta S, Thompson B, Elkhatib T, Wurster S, Akkaya O, Payne A, Godbaz J, Fenton M, Rajasekaran V, Prather L, Nagaraja S, Mogallapu V, Snow D, McCauley R, Mukadam M, Agi I, McCarthy S, Xu Z P, Perry T, Qian W, Chan V H, Adepu P, Ali G, Ahmed M, Mukherjee A, Nayak S, Gampell D, Acharya S, Kordus L and O’connor P. 2018. IMpixel 65 nm BSI 320 MHz demodulated TOF image sensor with 3 μm global shutter pixels and analog binning//Proceedings of 2018 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 94-96 [DOI: 10.1109/isscc.2018.8310200http://dx.doi.org/10.1109/isscc.2018.8310200]
Beekman D W and van Anda J. 2001. Polarization sensitive QWIP thermal imager. Infrared Physics and Technology, 42(3/5): 323-328 [DOI: 10.1016/S1350-4495(01)00090-1http://dx.doi.org/10.1016/S1350-4495(01)00090-1]
Bello D S S, De Bock M, Boulenc P, Vandebriel R, Wu L K, Van Olmen J, Malandruccolo V, Craninckx J, Haspeslagh L, Guerrieri S, Rosmeulen M and Borremans J. 2017. A 7-band CCD-in-CMOS multispectral TDI imager//International Image Sensor Workshop. Hiroshima, Japan: [s.n.]: 129-132
Blank R, Beletic J W, Cooper D, Farris M, Hall D N B, Hodapp K, Luppino G, Piquette E and Xu M. 2012. Development and production of the H4RG-15 focal plane array//Proceedings of SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy V. Amsterdam, the Netherlands: SPIE: #84530 [DOI: 10.1117/12.926750http://dx.doi.org/10.1117/12.926750]
Boukhayma A, Caizzone A and Enz C. 2020. A CMOS image sensor pixel combining deep sub-electron noise with wide dynamic range. IEEE Electron Device Letters, 41(6): 880-883 [DOI: 10.1109/LED.2020.2988378http://dx.doi.org/10.1109/LED.2020.2988378]
Brandli C, Berner R, Yang M H, Liu S C and Delbruck T. 2014. A 240 × 180 130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 49(10): 2333-2341 [DOI: 10.1109/jssc.2014.2342715http://dx.doi.org/10.1109/jssc.2014.2342715]
Breiter R, Ihle T, Wendler J, Lutz H, Rutzinger S, Schallenberg T, Hofmann K and Ziegler J. 2010. MCT IR detection modules with 15 µm pitch for high-reliability applications//Proceedings of SPIE 7660, Infrared Technology and Applications XXXVI. Orlando, USA: SPIE: #766039 [DOI: 10.1117/12.852313http://dx.doi.org/10.1117/12.852313]
Burgett G. 2018. The latest high-speed Phantom camera takes slow-mo to the next level [EB/OL]. [2023-01-17]. https://www.digitaltrends.com/photography/vision-research-phantom-v2640https://www.digitaltrends.com/photography/vision-research-phantom-v2640
Chen J, Xi Z L, Qin Q, Deng G R, Luo Y and Zhao P. 2023. Advance in high operating temperature HgCdTe infrared detector. Infrared and Laser Engineering, 52(1): #20220462
陈军, 习中立, 秦强, 邓功荣, 罗云, 赵鹏. 2023. 碲镉汞高温红外探测器组件进展. 红外与激光工程, 52(1): #20220462 [DOI: 10.3788/IRLA20220462http://dx.doi.org/10.3788/IRLA20220462]
Chen S S and Guo M H. 2019. Live demonstration: celeX-V: a 1 M pixel multi-mode event-based sensor//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE: 1682-1683 [DOI: 10.1109/CVPRW.2019.00214http://dx.doi.org/10.1109/CVPRW.2019.00214]
Chen Y, Xu Y, Chae Y, Mierop A, Wang X Y and Theuwissen A. 2012. A 0.7e-rms-temporal-readout-noise CMOS image sensor for low-light-level imaging//Proceedings of 2012 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 384-386 [DOI: 10.1109/ISSCC.2012.6177059http://dx.doi.org/10.1109/ISSCC.2012.6177059]
Chen Y F, Tan C W, Wang Z, Miao J S, Ge X, Zhao T G, Liao K C, Ge H N, Wang Y, Wang F, Zhou Y, Wang P, Zhou X H, Shan C X, Peng H L and Hu W D. 2022. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Science Advances, 8(30): #1781 [DOI: 10.1126/sciadv.abq1781http://dx.doi.org/10.1126/sciadv.abq1781]
Cheng Q, Paradis S, Bui T and Almasri M. 2011. Design of dual-band uncooled infrared microbolometer. IEEE Sensors Journal, 11(1): 167-175 [DOI: 10.1109/jsen.2010.2056364http://dx.doi.org/10.1109/jsen.2010.2056364]
Cheriyan S, de la Torre J A S, Calvo J A V, Kurvits J, Nottingham J and McClure J. 2022. COSMOS large format 64 M pixel CMOS camera for ground-based astronomy//Proceedings of SPIE 12191, X-Ray, Optical, and Infrared Detectors for Astronomy X. Montréal, Canada: SPIE: #121910I [DOI: 10.1117/12.2634291http://dx.doi.org/10.1117/12.2634291]
Chuh T, Loose M, Gulbransen D J, Anglin S W, Beletic J, Piquette E C and Garnett J D. 2006. Astronomy FPA advancements at Rockwell Scientific//Proceedings of SPIE 6265, Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter. Orlando, USA: SPIE: #62652 [DOI: 10.1117/12.671813http://dx.doi.org/10.1117/12.671813]
Dehzangi A, Wu D H, McClintock R, Li J K and Razeghi M. 2020. Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Applied Physics Letters, 116(22): #221103 [DOI: 10.1063/5.0010273http://dx.doi.org/10.1063/5.0010273]
Dorland B N, Dudik R P, Veillette D, Swindle R, Waczynski A and Kan E. 2009. Initial laboratory and sky testing results for the second generation H4RG-10 4 k × 4 k, 10 micron visible CMOS-Hybrid detector//Proceedings of SPIE 7439, Astronomical and Space Optical Systems. San Diego, USA: SPIE: #74390 [DOI: 10.1117/12.827037http://dx.doi.org/10.1117/12.827037]
Feautrier P, Gach J L, Balard P, Guillaume C, Downing M, Hubin N, Stadler E, Magnard Y, Skegg M, Robbins M, Denney S, Suske W, Jorden P, Wheeler P, Pool P, Bell R, Burt D, Davies I, Reyes J, Meyer M, Baade D, Kasper M, Arsenault R, Fusco T and Diaz-Garcia J J. 2010. Characterization of OCam and CCD220: the fastest and most sensitive camera to date for AO wavefront sensing//Proceedings of SPIE 7736, Adaptive Optics Systems II. San Diego, USA: SPIE: #77360 [DOI: 10.1117/12.856401http://dx.doi.org/10.1117/12.856401]
Feautrier P, Gach J L, Owton D, Hicks M, Baker I, Barnes K and Boutolleau D. 2022. Sub-electron noise infrared camera development using Leonardo large format 2 K × 2 K SWIR LmAPD array//Proceedings of SPIE 12191, X-Ray, Optical, and Infrared Detectors for Astronomy X. Montréal, Canada: SPIE: #121911 [DOI: 10.1117/12.2630858http://dx.doi.org/10.1117/12.2630858]
Figer D F, Gallagher J, Buntic L, Getty J and Lauxtermann S. 2022. The SATIN infrared detector development program and the road to HELLSTAR//Proceedings of SPIE 12191, X-Ray, Optical, and Infrared Detectors for Astronomy X. Montréal, Canada: SPIE: #121910 [DOI: 10.1117/12.2627511http://dx.doi.org/10.1117/12.2627511]
Finateu T, Niwa A, Matolin D, Tsuchimoto K, Mascheroni A, Reynaud E, Mostafalu P, Brady F, Chotard L, Legoff F, Takahashi H, Wakabayashi H, Oike Y and Posch C. 2020. 5.10 a 1 280 × 720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86 µm pixels, 1.066 GEPS readout, programmable event-rate controller and compressive data-formatting pipeline//Proceedings of 2020 IEEE International Solid-State Circuits Conference-(ISSCC). San Francisco, USA: IEEE: 112-114 [DOI: 10.1109/isscc19947.2020.9063149http://dx.doi.org/10.1109/isscc19947.2020.9063149]
Gach J L, Carignan C, Hernandez O, Jorden P R, Jordan D, Balard P, Vallée P, Amram P, Marcelin M and Epinat B. 2014. Development of a 4 k × 4 k frame transfer electron multiplying CCD for scientific applications//Proceedings of SPIE 9154, High Energy, Optical, and Infrared Detectors for Astronomy VI. Montréal, Canada: SPIE: #91540 [DOI: 10.1117/12.2057021http://dx.doi.org/10.1117/12.2057021]
Gershon G, Albo A, Eylon M, Cohen O, Calahorra Z, Brumer M, Nitzani M, Avnon E, Aghion Y, Kogan I, Ilan E and Shkedy L. 2013. 3 mega-pixel InSb detector with 10 µm pitch//Proceedings of SPIE 8704, Infrared Technology and Applications XXXIX. Baltimore, USA: SPIE: #870438 [DOI: 10.1117/12.2015583http://dx.doi.org/10.1117/12.2015583]
Glozman A, Harush E, Jacobsohn E, Klin O, Klipstein P, Markovitz T, Nahum V, Saguy E, Oiknine-Schlesinger J, Shtrichman I, Yassen M, Yofis B and Weiss E. 2006. High performance InAlSb MWIR detectors operating at 100 K and beyond//Proceedings of SPIE 6206, Infrared Technology and Applications XXXII. Orlando, USA: SPIE: #62060 [DOI: 10.1117/12.667783http://dx.doi.org/10.1117/12.667783]
Gong X D, Li H F, Yang C W, Yuan S Z, Feng Y Q, Huang Y J, Hu X and Li L H. 2022. Study on large-area array SW HgCdTe infrared focal plane device. Infrared and Laser Engineering, 51(9): #20220079
龚晓丹, 李红福, 杨超伟, 袁绶章, 封远庆, 黄元晋, 胡旭, 李立华. 2022. 大面阵短波碲镉汞红外焦平面器件研究. 红外与激光工程, 51(9): #20220079 [DOI: 10.3788/IRLA20220079http://dx.doi.org/10.3788/IRLA20220079]
Greenen A, Bains S, Hipwood L, Lee M, Owton D and Mcewen K. 2022. Further developments of 12 µm pixel dual waveband MWIR-LWIR infrared detectors using MOVPE grown MCT//Proceedings of SPIE 12107, Infrared Technology and Applications XLVIII. Orlando, USA: SPIE: #121070 [DOI: 10.1117/12.2618765http://dx.doi.org/10.1117/12.2618765]
Gunapala S, Ting D, Rafol S, Soibel A, Khoshakhlagh A, Keo S, Pepper B, Fisher A, Hill C, Wenger T, Pagano T, Choi K K, Lucey P, Wright R, Nunes M, Flynn L, Babu S and Ghuman P. 2021. T2SL focal planes for compact remote sensing instruments//Proceedings of SPIE 11723, Image Sensing Technologies: Materials, Devices, Systems, and Applications VIII. USA: SPIE: #1172302 [DOI: 10.1117/12.2595798http://dx.doi.org/10.1117/12.2595798]
Hall D N B, Atkinson D, Blank R, Farris M, Goebel S B, Hodapp K W, Jacobson S M, Loose M and Zandian M. 2016. Performance of the first science grade λc = 2.5 µm HAWAII 4RG-15 array in the laboratory and at the telescope//Proceedings of SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII. Edinburgh, UK: SPIE: #99150 [DOI: 10.1117/12.2234369http://dx.doi.org/10.1117/12.2234369]
Hao F, Zhao S, Yang H Y and Hu Y L. 2022. Research progress of long wave p-on-n HgCdTe infrared focal plane devices. Infrared, 43(4): 1-8
郝斐, 赵硕, 杨海燕, 胡易林. 2022. 长波p-on-n碲镉汞红外焦平面器件研究进展. 红外, 43(4): 1-8 [DOI: 10.3969/j.issn.1672-8785.2022.04.001http://dx.doi.org/10.3969/j.issn.1672-8785.2022.04.001]
Helbert J, Maturilli A, Walter I, Säuberlich T, Pertenaïs M, Knollenberg J, Peter G and Grott M. 2022. TMAP: designing a thermal infrared multi-spectral imager for an Io mission//Proceedings of SPIE 12233, Infrared Remote Sensing and Instrumentation XXX. San Diego, USA: SPIE: #1223301 [DOI: 10.1117/12.2634262http://dx.doi.org/10.1117/12.2634262]
Hong T, Chamlagain B, Lin W Z, Chuang H J, Pan M H, Zhou Z X and Xu Y Q. 2014. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 6(15): 8978-8983 [DOI: 10.1039/C4NR02164Ahttp://dx.doi.org/10.1039/C4NR02164A]
Hwang A, Park M, Park Y, Shim Y, Youn S, Lee C H, Jeong H B, Jeong H Y, Chang J W N, Lee K, Yoo G and Heo J. 2021. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Science Advances, 7(51): #2521 [DOI: 10.1126/sciadv.abj2521http://dx.doi.org/10.1126/sciadv.abj2521]
Jhabvala M D, Choi K K, Gunapala S, Razeghi M and Sundaram M. 2020. QWIPs, SLS, landsat and the international space station//Proceedings of SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII. San Francisco, USA: SPIE: #1128802 [DOI: 10.1117/12.2539147http://dx.doi.org/10.1117/12.2539147]
Jiang D W, Xu Y Q, Wang G W and Niu Z C. 2020. Research progress in antimonide-based type-II superlattice multi-color infrared detectors. Journal of Synthetic Crystals, 49(12): 2211-2220
蒋洞微, 徐应强, 王国伟, 牛智川. 2020. 基于锑化物二类超晶格的多色红外探测器研究进展. 人工晶体学报, 49(12): 2211-2220 [DOI: 10.3969/j.issn.1000-985X.2020.12.001http://dx.doi.org/10.3969/j.issn.1000-985X.2020.12.001]
Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C. 2019. High quantum efficiency long-/long-wave dual-color type-II InAs/GaSb infrared detector. Chinese Physics B, 28(3): #038504 [DOI: 10.1088/1674-1056/28/3/038504http://dx.doi.org/10.1088/1674-1056/28/3/038504]
Katayama H, Hirose M, Sato S, Shinozaki K, Kimura T, Balasekaran S, Inada H, Iguchi Y and Kimata M. 2021. Development status of T2SL infrared detector in JAXA//Proceedings of SPIE 11741, Infrared Technology and Applications XLVII. Florida, USA: SPIE: #117410 [DOI: 10.1117/12.2591334http://dx.doi.org/10.1117/12.2591334]
Kawahito S, Suh S, Shirei T, Itoh S and Aoyama S. 2009. Noise reduction effects of column-parallel correlated multiple sampling and source-follower driving current switching for CMOS image sensors//Proceedings of 2009 International Image Sensor Workshop. Bergen, Norway: [s.n.]
Kawai N and Kawahito S. 2002. A low-noise oversampling signal detection technique for CMOS image sensors//Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276). Anchorage, USA: IEEE: 265-268 [DOI: 10.1109/IMTC.2002.1006851http://dx.doi.org/10.1109/IMTC.2002.1006851]
Keel M S, Kim D, Kim Y, Bae M, Ki M, Chung B, Son S, Lee H, Jo H, Shin S C, Hong S, An J, Kwon Y, Seo S, Cho S, Kim Y, Jin Y G, Oh Y, Kim Y, Ahn J, Koh K and Park Y. 2021a. 7.1 a 4-tap 3.5 μm 1.2 mpixel indirect time-of-flight CMOS image sensor with peak current mitigation and multi-user interference cancellation//Proceedings of 2021 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 106-108 [DOI: 10.1109/isscc42613.2021.9365854http://dx.doi.org/10.1109/isscc42613.2021.9365854]
Keel M S, Kim D, Kim Y, Bae M, Ki M, Chung B, Son S, Lee H, Shin S C, Kye M, An J, Kwon Y, Seo S, Cho S, Kim Y, Jin Y G, Oh Y, Kim Y, Ahn J and Lee J. 2021b. A 1.2-mpixel indirect time-of-flight image sensor with 4-Tap 3.5-μm pixels for peak current mitigation and multi-user interference cancellation. IEEE Journal of Solid-State Circuits, 56(11): 3209-3219 [DOI: 10.1109/JSSC.2021.3112405http://dx.doi.org/10.1109/JSSC.2021.3112405]
Kim D, Lee S, Park D, Piao C, Park J, Ahn Y, Cho K, Shin J, Song S M, Kim S J, Chun J H and Choi J. 2020. 5.4 a dynamic pseudo 4-tap CMOS time-of-flight image sensor with motion artifact suppression and background light cancelling over 120 klux//Proceedings of 2020 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 100-102 [DOI: 10.1109/isscc19947.2020.9063101http://dx.doi.org/10.1109/isscc19947.2020.9063101]
Klipstein P, Klin O, Grossman S, Snapi N, Lukomsky I, Yassen M, Aronov D, Berkowitz E, Glozman A, Magen O, Shtrichman I, Frenkel R and Weiss E. 2012. High operating temperature XBn-InAsSb bariode detectors//Proceedings of SPIE 8268, Quantum Sensing and Nanophotonic Devices IX. San Francisco, USA: SPIE: #82680 [DOI: 10.1117/12.910174http://dx.doi.org/10.1117/12.910174]
Klipstein P C, Armon E, Avnon E, Benny Y, Brumer M, Cohen Y, Fraenkel N, Gliksman S, Glozman A, Hadari N, Hirsch I, Katz M, Klin O, Langof L, Lukomsky I, Marderfeld I, Nahor H, Nitzani M, Rakhmilevich D, Schusterman S, Shafir I, Shtrichman I, Shkedy L, Sicron N, Snapi N and Yaron N. 2022. HOT MWIR technology at SCD//Proceedings of SPIE 12107, Infrared Technology and Applications XLVIII. Orlando, USA: SPIE: #121070 [DOI: 10.1117/12.2615622http://dx.doi.org/10.1117/12.2615622]
Ko S Y, Lee B W, Kim H J, Na S I, Kim J B, Bidenko P, Kim S and Kim Y H. 2022. Comparison of InGaAs and type-II superlattice based extended SWIR detectors//Proceedings of SPIE 12107, Infrared Technology and Applications XLVIII. Orlando, USA: SPIE: #1210703 [DOI: 10.1117/12.2607834http://dx.doi.org/10.1117/12.2607834]
Kong J C, Li Y H, Yang C Z, Yang J, Qin G, Chen W Y, Chen X X, Ren Y, Wang S L, Hu X, Wang X Q, Li X J and Zhao J. 2020. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics. Journal of Synthetic Crystals, 49(12): 2221-2229
孔金丞, 李艳辉, 杨春章, 杨晋, 覃钢, 陈卫业, 陈逍玄, 任洋, 王善力, 胡旭, 王向前, 李雄军, 赵俊. 2020. 分子束外延碲镉汞薄膜技术进展. 人工晶体学报, 49(12): 2221-2229 [DOI: 10.3969/j.issn.1000-985X.2020.12.002http://dx.doi.org/10.3969/j.issn.1000-985X.2020.12.002]
Kumagai O, Ohmachi J, Matsumura M, Yagi S, Tayu K, Amagawa K, Matsukawa T, Ozawa O, Hirono D, Shinozuka Y, Homma R, Mahara K, Ohyama T, Morita Y, Shimada S, Ueno T, Matsumoto A, Otake Y, Wakano T and Izawa T. 2021. 7.3 a 189 × 600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems//Proceeding sof 2021 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 110-112 [DOI: 10.1109/isscc42613.2021.9365961http://dx.doi.org/10.1109/isscc42613.2021.9365961]
Kwan D, Kesaria M, Anyebe E A and Huffaker D. 2021. Recent trends in 8-14 μm type-II superlattice infrared detectors. Infrared Physics and Technology, 116: #103756 [DOI: 10.1016/j.infrared.2021.103756http://dx.doi.org/10.1016/j.infrared.2021.103756]
Li C, Longinotti L, Corradi F and Delbruck T. 2019. A 132 by 104 10 μm-pixel 250 μw 1kefps dynamic vision sensor with pixel-parallel noise and spatial redundancy suppression. 2019 Symposium on VLSI Circuits.[s.l.]:[s.n.]: C216-C217[DOI: 10.23919/ vlsic. 2019.8778050http://dx.doi.org/10.23919/vlsic.2019.8778050]
Li D S. 2014. The Design of Pixel Circuits in Time-based AER Asynchronous Vision Sensor. Tianjin: Tianjin University
李东盛. 2014. 基于时间域的AER异步图像传感器像素电路设计. 天津: 天津大学
Li J W. 2020. Research on Key Technology of ToF Image Sensor Based on Continuous Wave. Tianjin: Tianjin University
李嘉文. 2020. 基于连续波的ToF图像传感器的关键技术研究. 天津: 天津大学 [DOI: 10.27356/d.cnki.gtjdu.2020.000900http://dx.doi.org/10.27356/d.cnki.gtjdu.2020.000900]
Li L, Gong P, Sheng D, Wang S and Zhai T. 2018. Highly in-plane anisotropic 2D GeAs2 for polarization-sensitive photodetection. Advanced Materials, 30(50): #1804541
Li X, Gong H M, Shao X M, Li T, Huang S L, Ma Y J, Yang B, Zhu X L, Gu Y and Fang J X. 2022. Recent advances in short wavelength infrared InGaAs focal plane arrays. Journal of Infrared and Millimeter Waves, 41(1): 129-138
李雪, 龚海梅, 邵秀梅, 李淘, 黄松垒, 马英杰, 杨波, 朱宪亮, 顾溢, 方家熊. 2022. 短波红外InGaAs焦平面研究进展. 红外与毫米波学报, 41(1): 129-138 [DOI: 10.11972/j.issn.1001-9014.2022.01.009http://dx.doi.org/10.11972/j.issn.1001-9014.2022.01.009]
Li Y L, Gao D, Li Z, Wang D, Wang C, Tan Z and Sun H. 2022. Status and development trends of large-area HgCdTe. Laser and Infrared, 52(8): 1204-1210
李燕兰, 高达, 李震, 王丹, 王丛, 谭振, 孙浩. 2022. 大尺寸碲镉汞材料研究现状与趋势. 激光与红外, 52(8): 1204-1210
Lichtsteiner P, Posch C and Delbruck T. 2008. A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2): 566-576 [DOI: 10.1109/JSSC.2007.914337http://dx.doi.org/10.1109/JSSC.2007.914337]
Liu F C, Zheng S J, He X X, Chaturvedi A, He J F, Chow W L, Mion T R, Wang X L, Zhou J D, Fu Q D, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M and Liu Z. 2016. Photoresponse: highly sensitive detection of polarized light using anisotropic 2D ReS2 (Adv. Funct. Mater. 8/2016). Advanced Functional Materials, 26(8): 1146-1146 [DOI: 10.1002/adfm.201670048http://dx.doi.org/10.1002/adfm.201670048]
Liu W, Niu Y F, Xiao L L and Wang Y B. 2021. Development of infrared focal plane array and spaceborne infrared imaging system. Infrared, 42(11): 15-24
刘炜, 牛誉霏, 肖龙龙, 王煜博. 2021. 红外焦平面阵列及星载红外成像系统的发展. 红外, 42(11): 15-24 [DOI: 10.3969/j.issn.1672-8785.2021.11.003http://dx.doi.org/10.3969/j.issn.1672-8785.2021.11.003]
Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lv Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y and Miao F. 2016. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 16(4): 2254-2259 [DOI: 10.1021/acs.nanolett.5b04538http://dx.doi.org/10.1021/acs.nanolett.5b04538]
Lu H H. 2016. The Pixel Design of Silicon Image Sensor by Imitation of Retinal Cells. Shenzhen: Shenzhen University
陆河辉. 2016. 仿视网膜细胞的硅图像传感器像素设计. 深圳: 深圳大学
Luo Y N, Zhang S, Tang X and Chen M L. 2022. Resonant cavity-enhanced colloidal quantum-dot dual-band infrared photodetectors. Journal of Materials Chemistry C, 10(21): 8218-8225 [DOI: 10.1039/d2tc01122khttp://dx.doi.org/10.1039/d2tc01122k]
Lutz H, Breiter R, Eich D, Figgemeier H and Hanna S. 2019. Improved high performance MCT MWIR and LWIR modules//Proceedings of SPIE 11002, Infrared Technology and Applications XLV. Baltimore, USA: SPIE: #1100216 [DOI: 10.1117/12.2519811http://dx.doi.org/10.1117/12.2519811]
Lutz H, Breiter R, Eich D, Figgemeier H and Hanna S. 2022. Towards high operating temperature and small pixel pitch MCT LWIR modules//Proceedings of SPIE 12107, Infrared Technology and Applications XLVIII. Orlando, USA: SPIE: #121070 [DOI: 10.1117/12.2618780http://dx.doi.org/10.1117/12.2618780]
Ma J J, Zhang D X, Omar A and Elgendy S M. 2021. A 0.19e- rms read noise 16.7 M pixel stacked quanta image sensor with 1.1 μm pitch backside illuminated pixels. IEEE Electron Devices Letters,42(6):#3072842[DOI: 10.1109/LED.2021.3072842http://dx.doi.org/10.1109/LED.2021.3072842]
Martyniuk P and Rogalski A. 2022. Van der Waals two-color infrared detection. Light: Science and Applications, 11(1): #27 [DOI: 10.1038/s41377-022-00721-yhttp://dx.doi.org/10.1038/s41377-022-00721-y]
Miyauchi K, Mori K, Otaka T, Isozaki T, Yasuda N, Tsai A, Sawai Y, Owada H, Takayanagi I and Nakamura J. 2020. A stacked back side-illuminated voltage domain global shutter CMOS image sensor with a 4.0 μm multiple gain readout pixel. Sensors, 20(2): #486 [DOI: 10.3390/s20020486http://dx.doi.org/10.3390/s20020486]
Mudge J and Virgen M. 2011. Near-infrared simultaneous stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation//Proceedings of SPIE 8160, Polarization Science and Remote Sensing V. San Diego, USA: SPIE: #81600 [DOI: 10.1117/12.892645http://dx.doi.org/10.1117/12.892645]
Münzberg M, Breiter R, Cabanski W, Hofmann K, Lutz H, Wendler J, Ziegler J, Rehm R and Walther M. 2007. Dual color IR detection modules, trends and applications//Proceedings of SPIE 6542, Infrared Technology and Applications XXXIII. Orlando, USA: SPIE: #654207 [DOI: 10.1117/12.718798http://dx.doi.org/10.1117/12.718798]
Murata M, Kuroda R, Fujihara Y, Otsuka Y, Shibata H, Shibaguchi T, Kamata Y, Miura N, Kuriyama N and Sugawa S. 2020. A high near-infrared sensitivity over 70-dB SNR CMOS image sensor with lateral overflow integration trench capacitor. IEEE Transactions on Electron Devices, 67(4): 1653-1659 [DOI: 10.1109/TED.2020.2975602http://dx.doi.org/10.1109/TED.2020.2975602]
Nedelcu A, Bonvalot C, Taalat R, Fantini J, Colin T, Muller P, Huet O, Dua L, Laurent T, Blin C, Le Priol A, Coussement J, Bettiati M and Garabédian P. 2018. III-V detector technologies at Sofradir: dealing with image quality. Infrared Physics and Technology, 94: 273-279 [DOI: 10.1016/j.infrared.2018.09.027http://dx.doi.org/10.1016/j.infrared.2018.09.027]
Nguyen J, Soibel A, Ting D Z Y, Hill C J, Lee M C and Gunapala S D. 2010. Low dark current long-wave infrared InAs/GaSb superlattice detectors. Applied Physics Letters, 97(5): #051108 [DOI: 10.1063/1.3476342http://dx.doi.org/10.1063/1.3476342]
Nie K M, Xu J T and Gao Z Y. 2016. A 128-stage CMOS TDI image sensor with on-chip digital accumulator. IEEE Sensors Journal, 16(5): 1319-1324 [DOI: 10.1109/JSEN.2015.2499743http://dx.doi.org/10.1109/JSEN.2015.2499743]
Okino T, Yamada S, Sakata Y, Kasuga S, Takemoto M, Nose Y, Koshida H, Tamaru M, Sugiura Y, Saito S, Koyama S, Mori M, Hirose Y, Sawada M, Odagawa A and Tanaka T. 2020. 5.2 a 1 200 × 900 6 μm 450 fps geiger-mode vertical avalanche photodiodes CMOS image sensor for a 250 m time-of-flight ranging system using direct-indirect-mixed frame synthesis with configurable-depth-resolution down to 10 cm//Proceedings of 2020 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 96-98 [DOI: 10.1109/isscc19947.2020.9063045http://dx.doi.org/10.1109/isscc19947.2020.9063045]
Onaka T, Matsuhara H, Wada T, Fujishiro N, Fujiwara H, Ishigaki M, Ishihara D, Ita Y, Kataza H, Kim W, Matsumoto T, Murakami H, Ohyama Y, Oyabu S, Sakon I, Tanabé T, Takagi T, Uemizu K, Ueno M, Usui F, Watarai H, Cohen M, Enya K, Ootsubo T, Pearson C P, Takeyama N, Yamamuro T and Ikeda Y. 2007. The infrared camera (IRC) for AKARI-design and imaging performance. Publications of the Astronomical Society of Japan, 59(sp2): S401-S410 [DOI: 10.1093/pasj/59.sp2.S401http://dx.doi.org/10.1093/pasj/59.sp2.S401]
Ota Y, Morimoto K, Sasago T, Shinohara M, Kuroda Y, Endo W, Maehashi Y, Maekawa S, Tsuchiya H, Abdelahafar A, Hikosaka S, Motoyama M, Tojima K, Uehira K, Iwata J, Inui F, Matsuno Y, Sakurai K and Ichikawa T. 2022. A 0.37 W 143 dB-dynamic-range 1 M pixel backside-illuminated charge-focusing SPAD image sensor with pixel-wise exposure control and adaptive clocked recharging//Proceedings of 2022 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 94-96 [DOI: 10.1109/isscc42614.2022.9731644http://dx.doi.org/10.1109/isscc42614.2022.9731644]
Park S, Kim B, Cho J, Chun J H, Choi J and Kim S J. 2022. An 80 × 60 flash LiDAR sensor with in-pixel histogramming TDC based on quaternary search and time-gated δ-intensity phase detection for 45 m detectable range and background light cancellation//Proceedings of 2022 IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE: 98-100 [DOI: 10.1109/isscc42614.2022.9731112http://dx.doi.org/10.1109/isscc42614.2022.9731112]
Payne A, Daniel A, Mehta A, Thompson B, Bamji C S, Snow D, Oshima H, Prather L, Fenton M, Kordus L, O’connor P, McCauley R, Nayak S, Acharya S, Mehta S, Elkhatib T, Meyer T, O’dwyer T, Perry T, Chan V H, Wong V, Mogallapu V, Qian W and Xu Z P. 2014. 7.6 a 512 × 424 CMOS 3D time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC//Proceedings of 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco, USA: IEEE: 134-135 [DOI: 10.1109/isscc.2014.6757370http://dx.doi.org/10.1109/isscc.2014.6757370]
Perera A, Ariyawansa G, Apalkov V, Matsik S, Su X, Chakrabarti S and Bhattacharya P. 2007. Wavelength and polarization selective multi-band tunnelling quantum dot detectors. Opto-Electronics Review, 15(4): 223-228 [DOI: 10.2478/s11772-007-0024-6http://dx.doi.org/10.2478/s11772-007-0024-6]
Perez J P, Durlin Q and Christol P. 2019. Ga-free InAs/InAsSb type-II superlattice (T2SL) photodetector for high operating temperature in the midwave infrared spectral domain//Proceedings of SPIE 11180, International Conference on Space Optics. Chania, Greece: SPIE: #111806 [DOI: 10.1117/12.2536149http://dx.doi.org/10.1117/12.2536149]
Perez J P, Evirgen A, Abautret J, Christol P, Cordat A and Nedelcu A. 2015. MWIR InSb detector with nBn architecture for high operating temperature//Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. San Francisco, USA: SPIE: #93700 [DOI: 10.1117/12.2076141http://dx.doi.org/10.1117/12.2076141]
Pezzaniti J L and Chenault D B. 2005. A division of aperture MWIR imaging polarimeter//Proceedings of SPIE 5888, Polarization Science and Remote Sensing II. San Francisco, USA: SPIE: #58880 [DOI: 10.1117/12.623543http://dx.doi.org/10.1117/12.623543]
Posch C, Matolin D and Wohlgenannt R. 2011. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE Journal of Solid-State Circuits, 46(1): 259-275 [DOI: 10.1109/jssc.2010.2085952http://dx.doi.org/10.1109/jssc.2010.2085952]
Qi J J, Feng X Y, Chen Y G, Ning T, Liu S G, Sun H and Kang J. 2022. Development of long-wavelength 1 280 × 1 024 HgCdTe detectors with 10 μm pitch. Infrared, 43(2): 1-6
祁娇娇, 冯晓宇, 陈彦冠, 宁提, 刘世光, 孙浩, 康键. 2022. 10 μm间距长波1 280 × 1 024碲镉汞探测器研制进展. 红外, 43(2): 1-6 [DOI: 10.3969/j.issn.1672-8785.2022.02.001http://dx.doi.org/10.3969/j.issn.1672-8785.2022.02.001]
Rao P, Zhang L, Zhao Y F, Lu F X, Xu J J and Wang F F. 2019. Research on high sensitivity type-Ⅱ superlattice long wavelength infrared detection system. Journal of Infrared and Millimeter Waves, 38(3): 338-344
饶鹏, 张磊, 赵云峰, 陆福星, 许佳佳, 王芳芳. 2019. 高灵敏度Ⅱ类超晶格长波红外探测系统研究. 红外与毫米波学报, 38(3): 338-344
Rehm R, Walther M, Rutz F, Schmitz J, Wörl A, Masur J M, Scheibner R, Wendler J and Ziegler J. 2011. Dual-color InAs/GaSb superlattice focal-plane array technology. Journal of Electronic Materials, 40(8): 1738-1743 [DOI: 10.1007/s11664-011-1674-1http://dx.doi.org/10.1007/s11664-011-1674-1]
Reisinger A, Dennis R, Patnaude K, Burrows D, Bundas J, Beech K, Faska R and Sundaram M. 2013. Broadband QWIP FPAs for hyperspectral applications. Infrared Physics and Technology, 59: 112-117 [DOI: 10.1016/j.infrared.2012.12.024http://dx.doi.org/10.1016/j.infrared.2012.12.024]
Sakakibara M, Kawahito S, Handoko D, Nakamura N, Satoh H, Higashi M, Mabuchi K and Sumi H. 2005. A high-sensitivity CMOS image sensor with gain-adaptive column amplifiers. IEEE Journal of Solid-State Circuits, 40(5): 1147-1156 [DOI: 10.1109/JSSC.2005.845969http://dx.doi.org/10.1109/JSSC.2005.845969]
Sakano Y, Sakai S, Tashiro Y, Kato Y, Akiyama K, Honda K, Sato M, Sakakibara M, Taura T, Azami K, Hirano T, Oike Y, Sogo Y, Ezaki T, Narabu T, Hirayama T and Sugawa S. 2017. 224-ke saturation signal global shutter CMOS image sensor with in-pixel pinned storage and lateral overflow integration capacitor//2017 Symposium on VLSI Circuits. Kyoto, Japan: IEEE: 250-251 [DOI: 10.23919/VLSIC.2017.8008498http://dx.doi.org/10.23919/VLSIC.2017.8008498]
Sampath P, Chapinal G, Singh G, Odharia M, Innocent M, Geurts T, Oberoi A, Mauritzson R, Parks C, McCarten J, Tivarus C, Doan H, Chouhan N, Gopalakrishna S, Pates D, Butinar I and Benjaram R. 2021. A 12 Mpixel 1.3’ optical format CMOS HDR image sensor achieving single-exposure flicker-free 90 dB dynamic range in GS shutter mode and over 110 dB dynamic range in 2-exposure ERS mode//Proceedings of the Program International Image Sensor Workshop. [s.l.]: [s.n.]
Semkin V, Mylnikov D, Titova E, Zhukov S and Svintsov D. 2022. Gate-controlled polarization-resolving mid-infrared detection at metal-graphene junctions. Applied Physics Letters, 120(19): #191107 [DOI: 10.1063/5.0088724http://dx.doi.org/10.1063/5.0088724]
Seo M W, Sawamoto T, Akahori T, Liu Z, Iida T, Takasawa T, Kosugi T, Watanabe T, Isobe K and Kawahito S. 2012. A low-noise high-dynamic-range 17-b 1.3-megapixel 30-fps CMOS image sensor with column-parallel two-stage folding-integration/cyclic ADC. IEEE Transactions on Electron Devices, 59(12): 3396-3400 [DOI: 10.1109/ted.2012.2215871http://dx.doi.org/10.1109/ted.2012.2215871]
Shang L T, Wang J, Xing W R, Liu M, Shen C, Zhou P and Zhao J Z. 2021. Advances in type Ⅱ superlattice infrared detector technology at home and abroad. Laser and Infrared, 51(6): 683-694
尚林涛, 王静, 邢伟荣, 刘铭, 申晨, 周朋, 赵建忠. 2021. Ⅱ类超晶格红外探测器技术国内外进展. 激光与红外, 51(6): 683-694 [DOI: 10.3969/j.issn.1001-5078.2021.06.001http://dx.doi.org/10.3969/j.issn.1001-5078.2021.06.001]
She L F, Jiang J K, Chen W Q, Cui S N, Jiang D W, Wang G W, Xu Y Q, Hao H Y, Wu D H, Ding Y and Niu Z C. 2022. Mid-wave infrared p+-B-n InAs/InAsSb type-II superlattice photodetector with an AlAsSb/InAsSb superlattice barrier. Infrared Physics and Technology, 121: #104015 [DOI: 10.1016/j.infrared.2021.104015http://dx.doi.org/10.1016/j.infrared.2021.104015]
Shi M L and Ling L. 2017. Status and development trends of the HgCdTe large infrared focal array technology, Journal of Ordnance Equipment Engineering, 38(6): 151-155
史漫丽, 凌龙. 2017. 大面阵碲镉汞红外焦平面阵列发展现状及趋势. 兵器装备工程学报, 38(6): 151-155 [DOI: 10.11809/scbgxb2017.06.033http://dx.doi.org/10.11809/scbgxb2017.06.033]
Shoushun C and Bermak A. 2007. Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(3): 346-357 [DOI: 10.1109/TVLSI.2007.893624http://dx.doi.org/10.1109/TVLSI.2007.893624]
Smith E P G, Gallagher A M, Venzor G M, Peterson J M, Reddy M, Lofgreen D D, Patten E A and Radford W A. 2010. Large format HgCdTe focal plane arrays for dual-band long-wavelength infrared detection//Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices. Canberra, Australia: IEEE: 15-16 [DOI: 10.1109/commad.2010.5699712http://dx.doi.org/10.1109/commad.2010.5699712]
Son B, Suh Y, Kim S, Jung H, Kim J S, Shin C, Park K, Lee K, Park J, Woo J, Roh Y, Lee H, Wang Y B, Ovsiannikov I and Ryu H. 2017. 4.1 a 640 × 480 dynamic vision sensor with a 9 µm pixel and 300 Meps address-event representation//Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, USA: IEEE: 66-67 [DOI: 10.1109/isscc.2017.7870263http://dx.doi.org/10.1109/isscc.2017.7870263]
Starr B, Mears L, Fulk C, Getty J, Beuville E, Boe R, Tracy C, Corrales E, Kilcoyne S, Vampola J, Drab J, Peralta R and Doyle C. 2016. RVS large format arrays for astronomy//Proceedings of SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII. Edinburgh, UK: SPIE: #99152 [DOI: 10.1117/12.2233033http://dx.doi.org/10.1117/12.2233033]
Stefanov K D, Dunford A and Holland A D. 2018. Electron multiplying low-voltage CCD with increased gain. IEEE Transactions on Electron Devices, 65(7): 2990-2996 [DOI: 10.1109/TED.2018.2839023http://dx.doi.org/10.1109/TED.2018.2839023]
Sugawa S, Akahane N, Adachi S, Mori K, Ishiuchi T and Mizobuchi K. 2005. A 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor//Proceedings of 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference. San Francisco, USA: IEEE: 352-603 [DOI: 10.1109/ISSCC.2005.1494014http://dx.doi.org/10.1109/ISSCC.2005.1494014]
Suh Y, Choi S, Ito M, Kim J, Lee Y, Seo J, Jung H, Yeo D H, Namgung S, Bong J, Yoo S, Shin S H, Kwon D, Kang P, Kim S, Na H, Hwang K, Shin C, Kim J S, Park P K J, Kim J, Ryu H and Park Y. 2020. A 1 280 × 960 dynamic vision sensor with a 4.95-μm pixel pitch and motion artifact minimization//2020 IEEE International Symposium on Circuits and Systems (ISCAS). Seville, Spain: IEEE: 1-5 [DOI: 10.1109/ISCAS45731.2020.9180436http://dx.doi.org/10.1109/ISCAS45731.2020.9180436]
Tan B S, Zhang C J, Zhou W H, Yang X J, Wang G W, Li Y T, Ding Y Y, Zhang Z, Lei H W, Liu W H, Du Y, Zhang L F, Liu B, Wang L B and Huang L. 2018. The 640 × 512 LWIR type-II superlattice detectors operating at 110 K. Infrared Physics and Technology, 89: 168-173 [DOI: 10.1016/j.infrared.2018.01.007http://dx.doi.org/10.1016/j.infrared.2018.01.007]
Wang X T, Li Y T, Huang L, Jiang X W, Jiang L, Dong H L, Wei Z M, Li J B and Hu W P. 2017. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. Journal of the American Chemical Society, 139(42): 14976-14982 [DOI: 10.1021/jacs.7b06314http://dx.doi.org/10.1021/jacs.7b06314]
Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P and Hu W D. 2022. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der waals on epitaxial HgCdTe. Advanced Materials, 34(6): #2107772 [DOI: 10.1002/adma.202107772http://dx.doi.org/10.1002/adma.202107772]
Wang Y L. 2018. Wide Dynamic Pseudo-Color ICMOS Imaging Technology Research. Nanjing: Nanjing University of Science and Technology
王逸伦. 2018. 宽动态伪彩色ICMOS成像技术研究. 南京: 南京理工大学
Wu D, Guo J W, Du J, Xia C X, Zeng L H, Tian Y Z, Shi Z F, Tian Y T, Li X J, Tsang Y H and Jie J S. 2019. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 13(9): 9907-9917 [DOI: 10.1021/acsnano.9b03994http://dx.doi.org/10.1021/acsnano.9b03994]
Xie B M, Zhang K, Li J W, Li L, Song Y, Cui N, Bai Y Q and Huang F. 2022. High-sensitivity visible-blind near-infrared narrowband organic photodetectors realized by controlling trap distribution. Acta Polymerica Sinica, 53(4): 414-423
解博名, 张凯, 李静雯, 李力, 宋煜, 崔楠, 白原青, 黄飞. 2022. 通过控制陷阱分布实现高灵敏度窄带近红外响应有机光探测器. 高分子学报, 53(4): 414-423 [DOI: 10.11777/j.issn1000-3304.2021.21339http://dx.doi.org/10.11777/j.issn1000-3304.2021.21339]
Xing Y L, Liu J W, Wang J W and Li Z H. 2020. Study on the performance of SW/MW double-color MCT detector. Infrared, 41(8): 9-14
邢艳蕾, 刘建伟, 王经纬, 李忠贺. 2020. 短/中波双色碲镉汞红外探测器性能分析研究. 红外, 41(8): 9-14 [DOI: 10.3969/j.issn.1672-8785.2020.08.002http://dx.doi.org/10.3969/j.issn.1672-8785.2020.08.002]
Xu J J, Chen J X, Zhou Y, Xu Q Q, Wang F F, Xu Z C, Bai Z Z, Jin C and Chen H L. 2014. 320 × 256 long wavelength infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice. Journal of Infrared and Millimeter Waves, 33(6): 598-601
许佳佳, 陈建新, 周易, 徐庆庆, 王芳芳, 徐志成, 白治中, 靳川, 陈洪雷. 2014. 320 × 256元InAs/GaSb Ⅱ类超晶格长波红外焦平面探测器. 红外与毫米波学报, 33(6): 598-601 [DOI: 10.3724/SP.J.1010.2014.00598http://dx.doi.org/10.3724/SP.J.1010.2014.00598]
Xu J T, Zhou J W, Gao Z Y, Gao J and Shi Z F. 2017. A Dynamic Vision Sensor with Enhanced Temporal Sensitivity, China, 107071314A
徐江涛, 邹佳伟, 高志远, 高静, 史再峰. 2017. 一种时域灵敏度增强型的动态视觉传感器. 中国, 107071314A
Yang M H, Liu S C and Delbruck T. 2015. A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding. IEEE Journal of Solid-State Circuits, 50(9): 2149-2160 [DOI: 10.1109/JSSC.2015.2425886http://dx.doi.org/10.1109/JSSC.2015.2425886]
Yin J B, Tan Z J, Hong H, Wu J X, Yuan H T, Liu Y J, Chen C, Tan C W, Yao F R, Li T R, Chen Y L, Liu Z F, Liu K H and Peng H L. 2018. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 9(1): #3311 [DOI: 10.1038/s41467-018-05874-2http://dx.doi.org/10.1038/s41467-018-05874-2]
Yu C L, Gong H M, Li X, Huang S L, Yang B, Zhu X L, Shao X M, Li T and Gu Y. 2022. 2 560 × 2 048 short-wave infrared InGaAs focal plane detector (Invited). Infrared and Laser Engineering, 51(3): #20210941
于春蕾, 龚海梅, 李雪, 黄松垒, 杨波, 朱宪亮, 邵秀梅, 李淘, 顾溢. 2022. 2 560 × 2 048元短波红外InGaAs焦平面探测器(特邀). 红外与激光工程, 51(3): #20210941 [DOI: 10.3788/IRLA20210941http://dx.doi.org/10.3788/IRLA20210941]
Yu L. 2012. A CMOS Vision Sensor Based on Address Event Representation. Tianjin: Tianjin University
于璐. 2012. 基于AER方式的CMOS视觉传感器研究. 天津: 天津大学
Zandian M, Farris M, McLevige W, Edwall D, Arkun E, Holland E, Gunn J E, Smee S, Hall D N B, Hodapp K W, Shimono A, Tamura N, Carmody M, Auyeung J and Beletic J W. 2016. Performance of science grade HgCdTe H4RG-15 image sensors//Proceedings of SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII. Edinburgh, UK: SPIE: #99150F [DOI: 10.1117/12.2233664http://dx.doi.org/10.1117/12.2233664]
Zhang J Y, Lyu J P and Ni Z H. 2021. Highly sensitive infrared detector based on a two-dimensional heterojunction. Chinese Optics, 14(1): 87-99
张金月, 吕俊鹏, 倪振华. 2021. 二维材料异质结高灵敏度红外探测器. 中国光学, 14(1): 87-99 [DOI: 10.37188/CO.2020-0139http://dx.doi.org/10.37188/CO.2020-0139]
Zhang Y, Mo D F, Fan C, Shi X M, Yu J, Gong H M and Li X. 2023. Research on the supporting structure of the cold platform of the large format infrared detector. Infrared and Laser Engineering, 52(2): #20220445
张阳, 莫德锋, 范崔, 石新民, 俞君, 龚海梅, 李雪. 2023. 超大面阵红外探测器冷平台支撑结构研究. 红外与激光工程, 52(2): #20220445 [DOI: 10.3788/IRLA20220445http://dx.doi.org/10.3788/IRLA20220445]
Zhang Y T. 2018. Research on Technologies of High Sensitivity and Large Dynamic Range Low Light Level Imaging in Space. Shanghai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences
张元涛. 2018. 空间高灵敏度大动态范围微光成像技术研究. 上海: 中国科学院大学(中国科学院上海技术物理研究所)
Zhao K, Wei Z M and Xia J B. 2022. Polarization-sensitive photodetectors based on main group layered low-dimensional semiconductors. Chinese Science Bulletin, 67(16): 1796-1805
赵凯, 魏钟鸣, 夏建白. 2022. 主族层状低维半导体的偏振光探测器. 科学通报, 67(16): 1796-1805 [DOI: 10.1360/TB-2022-0126http://dx.doi.org/10.1360/TB-2022-0126]
Zhao K, Yang J H, Zhong M Z, Gao Q, Wang Y, Wang X T, Shen W F, Hu C G, Wang K Y, Shen G Z, Li M, Wang J L, Hu W D and Wei Z M. 2021. Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire. Advanced Functional Materials, 31(6): #2006601 [DOI: 10.1002/adfm.202006601http://dx.doi.org/10.1002/adfm.202006601]
Zhou X H, Li N and Lu W. 2019. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chinese Physics B, 28(2): #027801 [DOI: 10.1088/1674-1056/28/2/027801http://dx.doi.org/10.1088/1674-1056/28/2/027801]
Zhou Y, Chai X L, Tian Y, Xu Z C, Huang M, Xu J J, Huang A B, Bai Z Z, Chen H L, Ding R J, Chen J X and He L. 2019. Studies on InAs/GaAsSb mid-wavelength interband cascade infrared focal plane arrays. Journal of Infrared and Millimeter Waves, 38(6): 745-750
周易, 柴旭良, 田源, 徐志成, 黄敏, 许佳佳, 黄爱波, 白治中, 陈红雷, 丁瑞军, 陈建新, 何力. 2019. InAs/GaAsSb带间级联中波红外焦平面研究. 红外与毫米波学报, 38(6): 745-750 [DOI: 10.11972/j.issn.1001-9014.2019.06.011http://dx.doi.org/10.11972/j.issn.1001-9014.2019.06.011]
Zizza R C. 2015. Jots to Pixels: Image Formation Options for the Quanta Image Sensor. Hanover, USA: Dartmouth College
相关文章
相关作者
相关机构