生物特征识别学科发展报告
Overview of biometrics research
- 2021年26卷第6期 页码:1254-1329
纸质出版日期: 2021-06-16 ,
录用日期: 2021-03-18
DOI: 10.11834/jig.210078
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-06-16 ,
录用日期: 2021-03-18
移动端阅览
孙哲南, 赫然, 王亮, 阚美娜, 冯建江, 郑方, 郑伟诗, 左旺孟, 康文雄, 邓伟洪, 张杰, 韩琥, 山世光, 王云龙, 茹一伟, 朱宇豪, 刘云帆, 何勇. 生物特征识别学科发展报告[J]. 中国图象图形学报, 2021,26(6):1254-1329.
Zhenan Sun, Ran He, Liang Wang, Meina Kan, Jianjiang Feng, Fang Zheng, Weishi Zheng, Wangmeng Zuo, Wenxiong Kang, Weihong Deng, Jie Zhang, Hu Han, Shiguang Shan, Yunlong Wang, Yiwei Ru, Yuhao Zhu, Yunfan Liu, Yong He. Overview of biometrics research[J]. Journal of Image and Graphics, 2021,26(6):1254-1329.
从手机解锁、小区门禁到餐厅吃饭、超市收银,再到高铁进站、机场安检以及医院看病,人脸、虹膜和指纹等生物特征已成为人们进入万物互联世界的数字身份证。生物特征识别赋予机器自动探测、捕获、处理、分析和识别数字化生理或行为信号的高级智能,是一个典型而又复杂的模式识别问题,一直处于人工智能技术发展前沿,在新一代人工智能规划、“互联网+”行动计划等国家战略中具有重要地位。由于生物特征识别涉及公众利益攸关的隐私、道德和法律等问题,近期也引起了广泛的社会关注。本文系统综述了生物特征识别学科发展现状、新兴方向、存在问题和可行思路,深入梳理了人脸、虹膜、指纹、掌纹、静脉、声纹、步态、行人重识别以及多模态融合识别的研究进展,以人脸为例重点介绍了生物特征识别领域近些年受到关注的新方向——对抗攻击和防御、深度伪造和反伪造,最后剖析总结了生物特征识别领域存在的3大挑战问题——“感知盲区”、“决策误区”和“安全红区”。本文认为必须变革和创新生物特征的传感、认知和安全机制,才有可能取得复杂场景生物识别学术研究和技术应用的根本性突破,破除现有生物识别技术的弊端,朝着“可感”、“可知”和“可信”的新一代生物特征识别总体目标发展。
Biometrics
such as face
iris
and fingerprint recognition
have become digital identity proof for people to enter the "Internet of Everything". For example
one may be asked to present the biometric identifier for unlocking mobile phones
passing access control at airports
rail stations
and paying at supermarkets or restaurants. Biometric recognition empowers a machine to automatically detect
capture
process
analyze
and recognize digital physiological or behavioral signals with advanced intelligence. Thus
biometrics requires interdisciplinary research of science and technology involving optical engineering
mechanical engineering
electronic engineering
machine learning
pattern recognition
computer vision
digital image processing
signal analysis
cognitive science
neuroscience
human-computer interaction
and information security. Biometrics is a typical and complex pattern recognition problem
which is a frontier research direction of artificial intelligence. In addition
biometric identification is a key development area of Chinese strategies
such as the Development Plan on the New Generation of Artificial Intelligence and the "Internet Plus" Action Plan. The development of biometric identification involves public interest
privacy
ethics
and law issues; thus
it has also attracted widespread attention from the society. This article systematically reviews the development status
emerging directions
existing problems
and feasible ideas of biometrics and comprehensively summarizes the research progress of face
iris
fingerprint
palm print
finger/palm vein
voiceprint
gait recognition
person reidentification
and multimodal biometric fusion. The overview of face recognition includes face detection
facial landmark localization
2D face feature extraction and recognition
3D face feature extraction and recognition
facial liveness detection
and face video based biological signal measurement. The overview of iris recognition includes iris image acquisition
iris segmentation and localization
iris liveness detection
iris image quality assessment
iris feature extraction
heterogeneous iris recognition
fusion of iris and other modalities
security problems of iris biometrics
and future trends of iris recognition. The overview of fingerprint recognition includes latent fingerprint recognition
fingerprint liveness detection
distorted fingerprint recognition
3D fingerprint capturing
and challenges and trends of fingerprint biometrics. The overview of palm print recognition mainly introduces databases
feature models
matching strategies
and open problems of palm print biometrics. The overview of vein biometrics introduces main datasets and algorithms for finger vein
dorsal hand vein
and palm vein
and then points out the remaining unsolved problems and development trend of vein recognition. The overview of gait recognition introduces model-based and model-free methods for gait feature extraction and matching. The overview of person reidentification introduces research progress of new methods under supervised
unsupervised and weakly supervised conditions
gait database virtualization
generative gait models
and new problems
such as clothes changing
black clothes
and partial occlusions. The overview of voiceprint recognition introduces the history of speaker recognition
robustness of voiceprint
spoofing attacks
and antispoofing methods. The overview of multibiometrics introduces image-level
feature-level
score-level
and decision-level information fusion methods and deep learning based fusion approaches. Taking face as the exemplar biometric modality
new research directions that have received great attentions in the field of biometric recognition in recent years
i.e.
adversarial attack and defense as well as Deepfake and anti-Deepfake
are also introduced. Finally
we analyze and summarize the three major challenges in the field of biometric recognition——"the blind spot of biometric sensors"
"the decision errors of biometric algorithms" and "the red zone of biometric security". Therefore
the sensing
cognition
and security mechanisms of biometrics are necessary to achieve a fundamental breakthrough in the academic research and technologies applications of biometrics in complex scenarios to address the shortcomings of the existing biometric technologies and to move towards the overall goal of developing a new generation of "perceptible"
"robust"
and "trustworthy" biometric identification technology.
生物特征识别人脸虹膜指纹掌纹静脉声纹步态行人重识别多模态
biometricsfaceirisfingerprintpalmprintveinvoiceprintgaitperson re-identificationmulti-modal
Aberni Y, Boubchir L and Daachi B. 2020. Palm vein recognition based on competitive coding scheme using multi-scale local binary pattern with ant colony optimization. Pattern Recognition Letters, 136: 101-110[DOI:10.1016/j.patrec.2020.05.030]
Abramovich G, Harding K G and Hu Q Y. 2013. Method and system for contactless fingerprint detection and verification[EB/OL]. [2021-02-03].https://patents.google.com/patent/US8406487B2/enhttps://patents.google.com/patent/US8406487B2/en
Afchar D, Nozick V, Yamagishi J and Echizen I. 2018. MesoNet: a compact facial video forgery detection network//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security. Hong Kong, China: IEEE: 1-7[DOI: 10.1109/WIFS.2018.8630761http://dx.doi.org/10.1109/WIFS.2018.8630761]
Agarwal A, Singh R, Vatsa M and Ratha N. 2018. Are image-agnostic universal adversarial perturbations for face recognition difficult to detect//Proceedings of the 9th IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS). Redondo Beach, USA: IEEE: 1-7[DOI: 10.1109/BTAS.2018.8698548http://dx.doi.org/10.1109/BTAS.2018.8698548]
Ahmad F, Cheng L M and Khan A. 2020. Lightweight and privacy-preserving template generation for palm-vein-based human recognition. IEEE Transactions on Information Forensics and Security, 15: 184-194[DOI:10.1109/TIFS.2019.2917156]
Ahmadi M and Soleimani H. 2019. Palmprint image registration using convolutional neural networks and Hough transform[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1904.00579.pdfhttps://arxiv.org/pdf/1904.00579.pdf
Ahonen T, Hadid A and Pietikainen M. 2006. Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12): 2037-2041[DOI:10.1109/TPAMI.2006.244]
Akhtar N and Mian A. 2018. Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 6: 14410-14430[DOI:10.1109/ACCESS.2018.2807385]
Anguera X, Bozonnet S, Evans N, Fredouille C, Friedland G and Vinyals O. 2012. Speaker diarization: a review of recent research. IEEE Transactions on Audio, Speech, and Language Processing, 20(2): 356-370[DOI:10.1109/TASL.2011.2125954]
Anjos A, Chakka M M and Marcel S. 2014. Motion-based counter-measures to photo attacks in face recognition. IET Biometrics, 3(3): 147-158[DOI:10.1049/iet-bmt.2012.0071]
Arjovsky M, Chintala S and Bottou L. 2017. Wasserstein generative adversarial networks//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR: 214-223
Arsalan M, Kim D S, Lee M B, Owais M and Park K R. 2019. FRED-Net: fully residual encoder-decoder network for accurate iris segmentation. Expert Systems with Applications, 122: 217-241[DOI:10.1016/j.eswa.2019.01.010]
Atoum Y, Liu Y J, Jourabloo A and Liu X M. 2017. Face anti-spoofing using patch and depth-based CNNs//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 319-328[DOI: 10.1109/BTAS.2017.8272713http://dx.doi.org/10.1109/BTAS.2017.8272713]
Auckenthaler R, Carey M and Lloyd-Thomas H. 2000. Score normalization for text-independent speaker verification systems. Digital Signal Processing, 10(1/3): 42-54[DOI:10.1006/dspr.1999.0360]
Auksorius E and Boccara A C. 2015. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography. Biomedical Optics Express, 6(11): 4465-4471[DOI:10.1364/boe.6.004465]
Badrinath G S and Gupta P. 2012. Palmprint based recognition system using phase-difference information. Future Generation Computer Systems, 28(1): 287-305[DOI:10.1016/j.future.2010.11.029]
Bai S, Bai X and Tian Q. 2017. Scalable person re-identification on supervised smoothed manifold//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3356-3365[DOI: 10.1109/CVPR.2017.358http://dx.doi.org/10.1109/CVPR.2017.358]
Bai S. 2017. Growing random forest on deep convolutional neural networks for scene categorization. Expert Systems with Applications, 71: 279-287[DOI:10.1016/j.eswa.2016.10.038]
Bak S and Carr P. 2017. One-shot metric learning for person re-identification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 1571-1580[DOI: 10.1109/CVPR.2017.171http://dx.doi.org/10.1109/CVPR.2017.171]
Bashir K, Xiang T and Gong S G. 2010. Gait recognition without subject cooperation. Pattern Recognition Letters, 31(13): 2052-2060[DOI:10.1016/j.patrec.2010.05.027]
Basri R and Jacobs D W. 2003. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2): 218-233[DOI:10.1109/TPAMI.2003.1177153]
Belhumeur P N, Hespanha J P and Kriegman D J. 1997. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7): 711-720[DOI:10.1109/34.598228]
BenAbdelkader C, Cutler R, Nanda H and Davis L. 2001. Eigengait: motion-based recognition of people using image self-similarity//Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication. Halmstad, Sweden: Springer: 284-294[DOI: 10.1007/3-540-45344-X_42http://dx.doi.org/10.1007/3-540-45344-X_42]
Bergmüller T, Christopoulos E, Fehrenbach K, Schnöll M and Uhl A. 2017. Recompression effects in iris recognition. Image and Vision Computing, 58: 142-157[DOI:10.1016/j.imavis.2016.08.003]
Besl P J and McKay N D. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256[DOI:10.1109/34.121791]
Bharathi S and Sudhakar R. 2019. Biometric recognition using finger and palm vein images. Soft Computing, 23(6): 1843-1855[DOI:10.1007/s00500-018-3295-6]
Bie F H, Wang D, Zheng T F, Tejedor J and Chen R X. 2013. Emotional adaptive training for speaker verification//Proceedings of 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Kaohsiung, China: IEEE: 1-4[DOI: 10.1109/APSIPA.2013.6694123http://dx.doi.org/10.1109/APSIPA.2013.6694123]
Blanz V and Vetter T. 2003. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9): 1063-1074[DOI:10.1109/TPAMI.2003.1227983]
Bloom B H. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7): 422-426[DOI:10.1145/362686.362692]
Bobick A F and Davis J W. 2001. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3): 257-267[DOI:10.1109/34.910878]
Bodor R, Drenner A, Fehr D, Masoud O and Papanikolopoulos N. 2009. View-independent human motion classification using image-based reconstruction. Image and Vision Computing, 27(8): 1194-1206[DOI:10.1109/34.910878]
Bose A J and Aarabi P. 2018. Adversarial attacks on face detectors using neural net based constrained optimization//Proceedings of the 20th IEEE International Workshop on Multimedia Signal Processing (MMSP). Vancouver, Canada: IEEE: 1-6[DOI: 10.1109/MMSP.2018.8547128http://dx.doi.org/10.1109/MMSP.2018.8547128]
Boulgouris N V and Chi Z X. 2007. Gait recognition using radon transform and linear discriminant analysis. IEEE Transactions on Image Processing, 16(3): 731-740[DOI:10.1109/TIP.2007.891157]
Boulkenafet Z, Komulainen J and Hadid A. 2016. Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 11(8): 1818-1830[DOI:10.1109/TIFS.2016.2555286]
Bourlard H and Kamp Y. 1988. Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59(4): 291-294[DOI:10.1007/BF00332918]
Bowyer K, Czajka A, Flynn P, Moreira D and Scheirer W. 2021. ND. Notre Dame CVRL[EB/OL]. [2021-02-03].https://cvrl.nd.edu/projects/data/https://cvrl.nd.edu/projects/data/
Bub G, Tecza M, Helmes M, Lee P and Kohl P. 2010. Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging. Nature Methods, 7(3): 209-211[DOI:10.1038/nmeth.1429]
Bunda S T. 2018. 3D point cloud reconstruction based on the finger vascular pattern[EB/OL]. [2021-02-03].http://essay.utwente.nl/75284/http://essay.utwente.nl/75284/
Burgos-Artizzu X P, Perona P and Dollár P. 2013. Robust face landmark estimation under occlusion//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 1513-1520[DOI: 10.1109/ICCV.2013.191http://dx.doi.org/10.1109/ICCV.2013.191]
Campbell J P. 1997. Speaker recognition: a tutorial. Proceedings of IEEE, 85(9): 1437-1462[DOI:10.1109/5.628714]
Cao K and Jain A K. 2015. Latent orientation field estimation via convolutional neural network//Proceedings of the 2015 International Conference on Biometrics (ICB). Phuket, Thailand: IEEE: 349-356[DOI: 10.1109/ICB.2015.7139060http://dx.doi.org/10.1109/ICB.2015.7139060]
Cao K and Jain A K. 2019. Automated latent fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4): 788-800[DOI:10.1109/TPAMI.2018.2818162]
Cao Q, Shen L, Xie W D, Parkhi O M and Zisserman A. 2018. VGGFace2: a dataset for recognising faces across pose and age//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an, China: IEEE: 67-74[DOI: 10.1109/FG.2018.00020http://dx.doi.org/10.1109/FG.2018.00020]
Cao X D, Wei Y C, Wen F and Sun J. 2014. Face alignment by explicit shape regression. International Journal of Computer Vision, 107(2): 177-190[DOI:10.1007/s11263-013-0667-3]
Cao Z, Simon T, Wei S E and Sheikh Y. 2017. Realtime multi-person 2D pose estimation using part affinity fields//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 1302-1310[DOI: 10.1109/CVPR.2017.143http://dx.doi.org/10.1109/CVPR.2017.143]
Chalidabhongse T, Kruger V and Chellappa R. 2001. The UMD database for human identification at a distance[EB/OL]. [2021-02-03]. Technical Report, University of Maryland, USA.http://www.umiacs.umd.edu/labs/pirl/hid/data.htmlhttp://www.umiacs.umd.edu/labs/pirl/hid/data.html
Chao H Q, He Y W, Zhang J P and Feng J F. 2019. GaitSet: regarding gait as a set for cross-view gait recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1): 8126-8133[DOI:10.1609/aaai.v33i01.33018126]
Chen C H, Liang J M and Zhu X C. 2011. Gait recognition based on improved dynamic Bayesian networks. Pattern Recognition, 44(4): 988-995[DOI:10.1016/j.patcog.2010.10.021]
Chen C H, Liang J M, Zhao H, Hu H H and Tian J. 2009. Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognition Letters, 30(11): 977-984[DOI:10.1016/j.patrec.2009.04.012]
Chen C J and Ross A. 2018. A multi-task convolutional neural network for joint iris detection and presentation attack detection//Proceedings of 2018 IEEE Winter Applications of Computer Vision Workshops (WACVW). Lake Tahoe, USA: IEEE: 44-51[DOI: 10.1109/WACVW.2018.00011http://dx.doi.org/10.1109/WACVW.2018.00011]
Chen D P, Li H S, Xiao T, Yi S and Wang X G. 2018a. Video person Re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1169-1178[DOI: 10.1109/CVPR.2018.00128http://dx.doi.org/10.1109/CVPR.2018.00128]
Chen D, Cao X D, Wen F and Sun J. 2013. Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification//Proceedings of 2013 IEEE Conference on Computer Vision and Patter Recognition. Portland, USA: IEEE: 3025-3032[DOI: 10.1109/CVPR.2013.389http://dx.doi.org/10.1109/CVPR.2013.389]
Chen G Y, Lin C Z, Ren L L, Lu J W and Zhou J. 2019. Self-critical attention learning for person re-identification//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 9636-9645[DOI: 10.1109/ICCV.2019.00973http://dx.doi.org/10.1109/ICCV.2019.00973]
Chen L W, Guo W and Dai L R. 2010. Speaker verification against synthetic speech//Proceedings of the 7th International Symposium on Chinese Spoken Language Processing. Tainan, China: IEEE: 309-312[DOI: 10.1109/ISCSLP.2010.5684887http://dx.doi.org/10.1109/ISCSLP.2010.5684887]
Chen M and Denoyer L. 2017. Multi-view generative adversarial networks//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Skopje, Macedonia: Springer: 175-188[DOI: 10.1007/978-3-319-71246-8_11http://dx.doi.org/10.1007/978-3-319-71246-8_11]
Chen S, Ren K, Piao S X, Wang C, Wang Q, Weng J, Su L and Mohaisen A. 2017. You can hear but you cannot steal: defending against voice impersonation attacks on smartphones//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems (ICDCS). Atlanta, USA: IEEE: 183-195[DOI: 10.1109/ICDCS.2017.133http://dx.doi.org/10.1109/ICDCS.2017.133]
Chen T, Yin W T, Zhou X S, Comaniciu D and Huang T S. 2006. Total variation models for variable lighting face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9): 1519-1524[DOI:10.1109/TPAMI.2006.195]
Chen W X and McDuff D. 2018. DeepPhys: video-based physiological measurement using convolutional attention networks//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 356-373[DOI: 10.1007/978-3-030-01216-8_22http://dx.doi.org/10.1007/978-3-030-01216-8_22]
Chen Y B, Zhu X T and Gong S G. 2018b. Deep association learning for unsupervised video person re-identification[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1808.07301.pdfhttps://arxiv.org/pdf/1808.07301.pdf
Chen Y C, Zhu X T, Zheng W S and Lai J H. 2018c. Person re-identification by camera correlation aware feature augmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2): 392-408[DOI:10.1109/TPAMI.2017.2666805]
Chen Y, Dass S C and Jain A K. 2005. Localized iris image quality using 2-D wavelets//Zhang D and Jain A, eds. Advances in Biometrics. vol. 3832. Berlin, Heidelberg: Springer: 373-381[DOI: 10.1007/11608288_50http://dx.doi.org/10.1007/11608288_50]
Cheng D, Gong Y H, Zhou S P, Wang J J and Zheng N N. 2016. Person re-identification by multi-channel parts-based CNN with improved triplet loss function//Proceedings of 2016 IEEE International Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1335-1344[DOI: 10.1109/CVPR.2016.149http://dx.doi.org/10.1109/CVPR.2016.149]
Cheng X L, Xu M X and Zheng T F. 2019. Replay detection using CQT-based modified group delay feature and ResNeWt network in ASVspoof 2019//Proceedings of 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Lanzhou, China: IEEE: 540-545[DOI: 10.1109/APSIPAASC47483.2019.9023158http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023158]
Chesney R and Citron D. 2019. Deepfakes and the new disinformation war: the coming age of post-truth geopolitics[EB/OL]. [2021-02-03]. .https://heinonline.org/HOL/LandingPage?handle=hein.journals/fora98&div=18https://heinonline.org/HOL/LandingPage?handle=hein.journals/fora98&div=18
Chingovska I, Anjos A and Marcel S. 2012. On the effectiveness of local binary patterns in face anti-spoofing//Proceedings of 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE: 1-7
Choi Y, Choi M, Kim M, Ha J W, Kim S and Choo J. 2018. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8789-8797[DOI: 10.1109/CVPR.2018.00916http://dx.doi.org/10.1109/CVPR.2018.00916]
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 1800-1807[DOI: 10.1109/CVPR.2017.195http://dx.doi.org/10.1109/CVPR.2017.195]
Chopra S, Hadsell R and LeCun Y. 2005. Learning a similarity metric discriminatively, with application to face verification//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE: 539-546[DOI: 10.1109/CVPR.2005.202http://dx.doi.org/10.1109/CVPR.2005.202]
Chugh T and Jain A K. 2021. Fingerprint spoof detector generalization. IEEE Transactions on Information Forensics and Security, 16: 42-55[DOI:10.1109/TIFS.2020.2990789]
Chugh T, Cao K and Jain A K. 2018. Fingerprint spoof buster: use of minutiae-centered patches. IEEE Transactions on Information Forensics and Security, 13(9): 2190-2202[DOI:10.1109/TIFS.2018.2812193]
Chung J S, Nagrani A and Zisserman A. 2018. VoxCeleb2: deep speaker recognition[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1806.05622.pdfhttps://arxiv.org/pdf/1806.05622.pdf
Connell J, Ratha N, Gentile J and Bolle R. 2013. Fake iris detection using structured light//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE: 8692-8696[DOI: 10.1109/ICASSP.2013.6639363http://dx.doi.org/10.1109/ICASSP.2013.6639363]
Cootes T F, Edwards G J and Taylor C J. 2001. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 681-685[DOI:10.1109/34.927467]
Cootes T F, Taylor C J, Cooper D H and Graham J. 1995. Active shape models-their training and application. Computer Vision and Image Understanding, 61(1): 38-59[DOI:10.1006/cviu.1995.1004]
Cui Z, Feng J J and Zhou J. 2020. Dense registration and mosaicking of fingerprints by training an end-to-end network. IEEE Transactions on Information Forensics and Security, 16: 627-642[DOI:10.1109/TIFS.2020.3017926]
Cui Z, Feng J J, Li S H, Lu J W and Zhou J. 2018. 2-D phase demodulation for deformable fingerprint registration. IEEE Transactions on Information Forensics and Security, 13(12): 3153-3165[DOI:10.1109/TIFS.2018.2841849]
Cunado D, Nixon M S and Carter J N. 1997. Using gait as a biometric, via phase-weighted magnitude spectra//Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication. Crans-Montana, Switzerland: Springer, 1206: 93-102[DOI: 10.1007/BFb0015984http://dx.doi.org/10.1007/BFb0015984]
Czajka A, Fang Z Y and Bowyer K. 2019. Iris presentation attack detection based on photometric stereo features//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE: 877-885[DOI: 10.1109/WACV.2019.00098http://dx.doi.org/10.1109/WACV.2019.00098]
Czajka A. 2015. Pupil dynamics for iris liveness detection. IEEE Transactions on Information Forensics and Security, 10(4): 726-735[DOI:10.1109/TIFS.2015.2398815]
Dabouei A, Soleymani S, Dawson J and Nasrabadi N. 2019. Fast geometrically-perturbed adversarial faces//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE: 1979-1988[DOI: 10.1109/WACV.2019.00215http://dx.doi.org/10.1109/WACV.2019.00215]
Dandawate Y H and Inamdar S R. 2015. Fusion based multimodal biometric cryptosystem//Proceedings of 2015 International Conference on Industrial Instrumentation and Control (ICIC). Pune, India: IEEE: 1484-1489[DOI: 10.1109/ⅡC.2015.7150984http://dx.doi.org/10.1109/ⅡC.2015.7150984]
Darwish S M. 2017. Design of adaptive biometric gait recognition algorithm with free walking directions. IET Biometrics, 6(2): 53-60[DOI:10.1049/iet-bmt.2015.0082]
Das P, McGrath J, Fang Z Y, Boyd A, Jang G, Mohammadi A, Purnapatra S, Yambay D, Marcel S, Trokielewicz M, Maciejewicz P, Bowyer K, Czajka A, Schuckers S, Tapia J, Gonzalez S, Fang M L, Damer N, Boutros F, Kuijper A, Sharma R, Chen C J and Ross A. 2020. Iris liveness detection competition (LivDet-Iris) - the 2020 edition//Proceedings of 2020 IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE: 1-9[DOI: 10.1109/IJCB48548.2020.9304941http://dx.doi.org/10.1109/IJCB48548.2020.9304941]
Daugman J G. 1993. High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11): 1148-1161[DOI:10.1109/34.244676]
Daugman J. 2004. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1): 21-30[DOI:10.1109/TCSVT.2003.818350]
Daugman J. 2007. New methods in iris recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(5): 1167-1175[DOI:10.1109/TSMCB.2007.903540]
de Haan G and Jeanne V. 2013. Robust pulse rate from chrominance-based rPPG. IEEE Transactions on Biomedical Engineering, 60(10): 2878-2886[DOI:10.1109/TBME.2013.2266196]
Deb D,Zhang J B and Jain A K. 2019. AdvFaces: adversarial face synthesis[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1908.05008.pdfhttps://arxiv.org/pdf/1908.05008.pdf
Dehak N, Dumouchel P and Kenny P. 2007. Modeling prosodic features with joint factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 15(7): 2095-2103[DOI:10.1109/TASL.2007.902758]
Dehak N, Kenny P J, Dehak R, Dumouchel P and Ouellet P. 2011. Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 19(4): 788-798[DOI:10.1109/TASL.2010.2064307]
Deng J K, Guo J, Ververas E, Kotsia I and Zafeiriou S. 2020. RetinaFace: single-shot multi-level face localisation in the wild//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 5202-5211[DOI: 10.1109/CVPR42600.2020.00525http://dx.doi.org/10.1109/CVPR42600.2020.00525]
Deng J K, Guo J, Xue N N and Zafeiriou S. 2019. ArcFace: additive angular margin loss for deep face recognition//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4685-4694[DOI: 10.1109/CVPR.2019.00482http://dx.doi.org/10.1109/CVPR.2019.00482]
Deng M Q, Wang C, Cheng F J and Zeng W. 2017. Fusion of spatial-temporal and kinematic features for gait recognition with deterministic learning. Pattern Recognition, 67: 186-200[DOI:10.1016/j.patcog.2017.02.014]
Deng W J, Zheng L, Ye Q X, Kang G L, Yang Y and Jiao J B. 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 994-1003[DOI: 10.1109/CVPR.2018.00110http://dx.doi.org/10.1109/CVPR.2018.00110]
Deshpande P D, Tavildar A S, Dandwate Y H and Shah E. 2016. Fusion of dorsal palm vein and palm print modalities for higher security applications//Proceedings of 2016 Conference on Advances in Signal Processing (CASP). Pune, India: IEEE: 201-206[DOI: 10.1109/CASP.2016.7746165http://dx.doi.org/10.1109/CASP.2016.7746165]
Devi M. 2015. Secure crypto multimodal biometric system for the privacy protection of user identification. International Journal of Innovative Research in Computer and Communication Engineering, 2015, 2
Dollár P, Tu Z W and Belongie S. 2006. Supervised learning of edges and object boundaries//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE: 1964-1971[DOI: 10.1109/CVPR.2006.298http://dx.doi.org/10.1109/CVPR.2006.298]
Dollár P, Welinder P and Perona P. 2010. Cascaded pose regression//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 1078-1085[DOI: 10.1109/CVPR.2010.5540094http://dx.doi.org/10.1109/CVPR.2010.5540094]
Donahue J, Hendricks L A, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T and Saenko K. 2015. Long-term recurrent convolutional networks for visual recognition and description//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 2625-2634[DOI: 10.1109/CVPR.2015.7298878http://dx.doi.org/10.1109/CVPR.2015.7298878]
Dong L Q, Du H Y, Liu M, Zhao Y J, Li X Y, Feng S J, Liu X H, Hui M, Kong L Q and Hao Q. 2019a. Extended-depth-of-field object detection with wavefront coding imaging system. Pattern Recognition Letters, 125: 597-603[DOI:10.1016/j.patrec.2019.06.011]
Dong W B, Sun Z N and Tan T N. 2011. Iris matching based on personalized weight map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9): 1744-1757[DOI:10.1109/TPAMI.2010.227]
Dong Y P, Su H, Wu B Y, Li Z F, Liu W, Zhang T and Zhu J. 2019b. Efficient decision-based black-box adversarial attacks on face recognition//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 7706-7714[DOI: 10.1109/CVPR.2019.00790http://dx.doi.org/10.1109/CVPR.2019.00790]
El-Din Y S, Moustafa M N and Mahdi H. 2020. Deep convolutional neural networks for face and iris presentation attack detection: survey and case study. IET Biometrics, 9(5): 179-193[DOI:10.1049/iet-bmt.2020.0004]
Engelsma J J and Jain A K. 2019. Generalizing fingerprint spoof detector: learning a one-class classifier//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-8[DOI: 10.1109/ICB45273.2019.8987319http://dx.doi.org/10.1109/ICB45273.2019.8987319]
Eom C and Ham B. 2019. Learning disentangled representation for robust person re-identification[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1910.12003.pdfhttps://arxiv.org/pdf/1910.12003.pdf
Fan C, Peng Y J, Cao C S, Liu X, Hou S H, Chi J N, Huang Y Z, Li Q and He Z Q. 2020a. GaitPart: temporal part-based model for gait recognition//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 14213-14221[DOI: 10.1109/CVPR42600.2020.01423http://dx.doi.org/10.1109/CVPR42600.2020.01423]
Fan L J, Li T H, Fang R Y, Hristov R, Yuan Y and Katabi D. 2020b. Learning longterm representations for person re-identification using radio signals//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 10696-10706[DOI: 10.1109/CVPR42600.2020.01071http://dx.doi.org/10.1109/CVPR42600.2020.01071]
Fan X, Jiang W, Luo H and Fei M J. 2019. SphereReID: deep hypersphere manifold embedding for person re-identification. Journal of Visual Communication and Image Representation, 60: 51-58[DOI:10.1016/j.jvcir.2019.01.010]
Fan Y, Kang J W, Li L T, Li K C, Chen H L, Cheng S T, Zhang P Y, Zhou Z Y, Cai Y Q and Wang D. 2020c. CN-Celeb: a challenging Chinese speaker recognition dataset//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 7604-7608[DOI: 10.1109/ICASSP40776.2020.9054017http://dx.doi.org/10.1109/ICASSP40776.2020.9054017]
Fang Y X, Wu Q X and Kang W X. 2018. A novel finger vein verification system based on two-stream convolutional network learning. Neurocomputing, 290: 100-107[DOI:10.1016/j.neucom.2018.02.042]
Fang Z Y, Czajka A and Bowyer K W. 2021. Robust iris presentation attack detection fusing 2D and 3D information. IEEE Transactions on Information Forensics and Security, 16: 510-520[DOI:10.1109/TIFS.2020.3015547]
Farid H. 2009. Image forgery detection. IEEE Signal Processing Magazine, 26(2): 16-25[DOI:10.1109/MSP.2008.931079]
Feng J J, Zhou J and Jain A K. 2013. Orientation field estimation for latent fingerprint enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4): 925-940[DOI:10.1109/TPAMI.2012.155]
Feng Z H, Kittler J, Awais M, Huber P and Wu X J. 2018. Wing loss for robust facial landmark localisation with convolutional neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2235-2245[DOI: 10.1109/CVPR.2018.00238http://dx.doi.org/10.1109/CVPR.2018.00238]
Ferrer M A, Morales A, Travieso C M and Alonso J B. 2009. Combining hand biometric traits for personal identification//Proceedings of the 43rd Annual 2009 International Carnahan Conference on Security Technology. Zurich, Switzerland: IEEE: 155-159[DOI: 10.1109/CCST.2009.5335547http://dx.doi.org/10.1109/CCST.2009.5335547]
Ferrer M A, Vargas F and Morales A. 2011. Bispectral contactless hand based biometric system//Proceedings of the CONATEL 2011. Arequipa, Peru: IEEE: 1-6[DOI: 10.1109/CONATEL.2011.5958660http://dx.doi.org/10.1109/CONATEL.2011.5958660]
Font R. 2019. A denoising autoencoder for speaker recognition. Results on the MCE 2018 challenge//Proceedings of 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Brighton, UK: IEEE: 6016-6020[DOI: 10.1109/ICASSP.2019.8683525http://dx.doi.org/10.1109/ICASSP.2019.8683525]
Fried O, Tewari A, Zollhöfer M, Finkelstein A, Shechtman E, Goldman D B, Genova K, Jin Z Y, Theobalt C and Agrawala M. 2019. Text-based editing of talking-head video. ACM Transactions on Graphics, 38(4): #68[DOI:10.1145/3306346.3323028]
Funahasahi T, Tominaga M, Fujiwara T and Koshimizu H. 2004. Hierarchical face tracking by using PTZ camera//Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, Korea (South): IEEE: 427-432[DOI: 10.1109/AFGR.2004.1301570http://dx.doi.org/10.1109/AFGR.2004.1301570]
Galbally J, Bostrom G and Beslay L. 2017. Full 3D touchless fingerprint recognition: sensor, database and baseline performance//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 225-233[DOI: 10.1109/BTAS.2017.8272702http://dx.doi.org/10.1109/BTAS.2017.8272702]
Gałka J, Grzywacz M and Samborski R. 2015. Playback attack detection for text-dependent speaker verification over telephone channels. Speech Communication, 67: 143-153[DOI:10.1016/j.specom.2014.12.003]
Gangwar A and Joshi A. 2016. DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE: 2301-2305[DOI: 10.1109/ICIP.2016.7532769http://dx.doi.org/10.1109/ICIP.2016.7532769]
Gao S, Wang J Y, Lu H C and Liu Z M. 2020. Pose-guided visible part matching for occluded person ReID//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 11741-11749[DOI: 10.1109/CVPR42600.2020.01176http://dx.doi.org/10.1109/CVPR42600.2020.01176]
Garcia D C and de Queiroz R L. 2015. Face-spoofing 2 d-detection based on moiré-pattern analysis. IEEE Transactions on Information Forensics and Security, 10(4): 778-786[DOI:10.1016/j.dsp.2020.102852]
Ge Y X, Zhu F, Chen D P, Zhao R and Li H S. 2020. Self-paced contrastive learning with hybrid memory for domain adaptive object Re-ID[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2006.02713v2.pdfhttps://arxiv.org/pdf/2006.02713v2.pdf
Georghiades A S, Belhumeur P N and Kriegman D J. 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 643-660[DOI:10.1109/34.927464]
Gilani S Z and Mian A. 2018. Learning from millions of 3D scans for large-scale 3D face recognition//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1896-1905[DOI: 10.1109/CVPR.2018.00203http://dx.doi.org/10.1109/CVPR.2018.00203]
Godfrey J J, Holliman E C and McDaniel J. 1992. SWITCHBOARD: telephone speech corpus for research and development//Proceedings of 1992 IEEE International Conference on Acoustics, Speech and Signal Processing. San Francisco, USA: IEEE: 517-520[DOI: 10.1109/ICASSP.1992.225858http://dx.doi.org/10.1109/ICASSP.1992.225858]
Goel A, Singh A, Agarwal A, Vatsa M and Singh R. 2018. SmartBox: benchmarking adversarial detection and mitigation algorithms for face recognition//Proceedings of the 9th IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS). Redondo Beach, USA: IEEE: 1-7[DOI: 10.1109/BTAS.2018.8698567http://dx.doi.org/10.1109/BTAS.2018.8698567]
Gong X Y, Chang S Y, Jiang Y F and Wang Z Y. 2019. AutoGAN: neural architecture search for generative adversarial networks//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 3223-3233[DOI: 10.1109/ICCV.2019.00332http://dx.doi.org/10.1109/ICCV.2019.00332]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, United States: MIT Press: 2672-2680
Gopal, Srivastava S, Bhardwaj S and Bhargava S. 2016. Fusion of palm-phalanges print with palmprint and dorsal hand vein. Applied Soft Computing, 47: 12-20[DOI:10.1016/j.asoc.2016.05.039]
Goswami G, Agarwal A, Ratha N, Singh R and Vatsa M. 2019. Detecting and mitigating adversarial perturbations for robust face recognition. International Journal of Computer Vision, 127(6/7): 719-742[DOI:10.1007/s11263-019-01160-w]
Gray D and Tao H. 2008. Viewpoint invariant pedestrian recognition with an ensemble of localized features//Proceedings of European Conference on Computer Vision. Marseille, France: Springer: 262-275[DOI: 10.1007/978-3-540-88682-2_21http://dx.doi.org/10.1007/978-3-540-88682-2_21]
Gross R and Shi J B. 2001. The CMU Motion of Body (MoBo) Database. Technical Report CMU-RI-TR-01-18. Carnegie Mellon University, USA
Gross R, Matthews I, Cohn J, Kanade T and Baker S. 2008. Multi-PIE//Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition. Amsterdam, the Netherlands: IEEE: 1-8[DOI: 10.1109/AFGR.2008.4813399http://dx.doi.org/10.1109/AFGR.2008.4813399]
Gu S, Feng J J, Lu J W and Zhou J. 2018. Efficient rectification of distorted fingerprints. IEEE Transactions on Information Forensics and Security, 13(1): 156-169[DOI:10.1109/TIFS.2017.2745685]
Gu S, Feng J J, Lu J W and Zhou J. 2021. Latent fingerprint registration via matching densely sampled points. IEEE Transactions on Information Forensics and Security, 16: 1231-1244[DOI:10.1109/TIFS.2020.3032041]
Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V and Courville A. 2017. Improved training of wasserstein GANs//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc. : 5769-5779[DOI: 10.5555/3295222.3295327http://dx.doi.org/10.5555/3295222.3295327]
Guo Y D, Zhang L, Hu Y X, He X D and Gao J F. 2016. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition//Proceedings of European Conference on Computer Vision (ECCV). Amsterdam, the Netherlands: Springer: 87-102[DOI: 10.1007/978-3-319-46487-9_6http://dx.doi.org/10.1007/978-3-319-46487-9_6]
Guo Z H, Zhang D, Zhang L, Zuo W M and Lu G M. 2011. Empirical study of light source selection for palmprint recognition. Pattern Recognition Letters, 32(2): 120-126[DOI:10.1016/j.patrec.2010.09.026]
Gupta A, Malage A, More D, Hemane P, Bhautmage P and Dhandekar D. 2014. Feature level fusion of face, palm vein and palm print modalities using discrete cosine transform//Proceedings of 2014 International Conference on Advances in Engineering and Technology Research. Unnao, India: IEEE: 1-5[DOI: 10.1109/ICAETR.2014.7012805http://dx.doi.org/10.1109/ICAETR.2014.7012805]
Gupta P and Gupta P. 2018. Multibiometric authentication system using slap fingerprints, palm dorsal vein, and hand geometry. IEEE Transactions on Industrial Electronics, 65(12): 9777-9784[DOI:10.1109/TIE.2018.2823686]
Hammami M, Ben Jemaa S and Ben-Abdallah H. 2014. Selection of discriminative sub-regions for palmprint recognition. Multimedia Tools and Applications, 68(3): 1023-1050[DOI:10.1007/s11042-012-1109-x]
Han J and Bhanu B. 2006. Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2): 316-322[DOI:10.1109/TPAMI.2006.38]
Hao Z A, Fang P Y and Yang H W. 2020. Finger vein recognition based on multi-task learning//Proceedings of the 5th International Conference on Mathematics and Artificial Intelligence. Chengdu, China: ACM: 133-140[DOI: 10.1145/3395260.3395277http://dx.doi.org/10.1145/3395260.3395277]
Hayfron-Acquah J B, Nixon M S and Carter J N. 2003. Automatic gait recognition by symmetry analysis. Pattern Recognition Letters, 24(13): 2175-2183[DOI:10.1016/S0167-8655(03)00086-2]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He L X, Liang J, Li H Q and Sun Z N. 2018. Deep spatial feature reconstruction for partial person re-identification: alignment-free approach//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7073-7082[DOI: 10.1109/CVPR.2018.00739http://dx.doi.org/10.1109/CVPR.2018.00739]
He L X, Wang Y G, Liu W, Zhao H, Sun Z N and Feng J S. 2019a. Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 8449-8458[DOI: 10.1109/ICCV.2019.00854http://dx.doi.org/10.1109/ICCV.2019.00854]
He Z F, Sun Z N, Tan T N, Qiu X C, Zhong C and Dong W B. 2008. Boosting ordinal features for accurate and fast iris recognition//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8[DOI: 10.1109/CVPR.2008.4587645http://dx.doi.org/10.1109/CVPR.2008.4587645]
He Z F, Tan T N, Sun Z N and Qiu X C. 2009. Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9): 1670-1684[DOI:10.1109/TPAMI.2008.183]
He Z L, Zuo W M, Kan M N, Shan S G and Chen X L. 2019b. AttGAN: facial attribute editing by only changing what you want. IEEE Transactions on Image Processing, 28(11): 5464-5478[DOI:10.1109/TIP.2019.2916751]
Heigold G, Moreno I, Bengio S and Shazeer N. 2016. End-to-end text-dependent speaker verification//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE: 5115-5119[DOI: 10.1109/ICASSP.2016.7472652http://dx.doi.org/10.1109/ICASSP.2016.7472652]
Hermans A, Beyer L and Leibe B. 2017. In defense of the triplet loss for person re-identification[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1703.07737v4.pdfhttps://arxiv.org/pdf/1703.07737v4.pdf
Hinton G E and Zemel R S. 1993. Autoencoders, minimum description length and Helmholtz free energy//Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco, USA: Morgan Kaufmann Publishers Inc. : 3-10
Hofbauer H, Jalilian E and Uhl A. 2019. Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recognition Letters, 120: 17-23[DOI:10.1016/j.patrec.2018.12.021]
Hollingsworth K P, Bowyer K W and Flynn P J. 2009. The best bits in an iris code. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6): 964-973[DOI:10.1109/TPAMI.2008.185]
Hossain M A, Makihara Y, Wang J Q and Yagi Y. 2010. Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognition, 43(6): 2281-2291[DOI:10.1016/j.patcog.2009.12.020]
Hou R B, Ma B P, Chang H, Gu X Q, Shan S G and Chen X L. 2019. VRSTC: occlusion-free video person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 7176-7185[DOI: 10.1109/CVPR.2019.00735http://dx.doi.org/10.1109/CVPR.2019.00735]
Hou S H, Cao C S, Liu X and Huang Y Z. 2020. Gait lateral network: learning discriminative and compact representations for gait recognition//Proceedings of European Conference on Computer Vision. Glasgow, UK: Springer: 382-398[DOI: 10.1007/978-3-030-58545-7_22http://dx.doi.org/10.1007/978-3-030-58545-7_22]
Hsu C B, Lee J C, Chuang S J and Kuei P Y. 2015. Gaussian directional pattern for dorsal hand vein recognition. The Imaging Science Journal, 63(1): 54-62[DOI:10.1179/1743131X14Y.0000000070]
Hsu C C, Lee C Y and Zhuang Y X. 2018. Learning to detect fake face images in the wild//Proceedings of 2018 International Symposium on Computer, Consumer and Control (IS3C). Taichung, China: IEEE: 388-391[DOI: 10.1109/IS3C.2018.00104http://dx.doi.org/10.1109/IS3C.2018.00104]
Hsu C C, Zhuang Y X and Lee C Y. 2020. Deep fake image detection based on pairwise learning. Applied Sciences, 10(1): #370[DOI:10.3390/app10010370]
Hu J X, Zhang H, Xiao L H, Liu J, Li X G, He Z F and Li L. 2019. Seg-edge bilateral constraint network for iris segmentation//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-6[DOI: 10.1109/ICB45273.2019.8987405http://dx.doi.org/10.1109/ICB45273.2019.8987405]
Hu P Y and Ramanan D. 2017. Finding tiny faces//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 1522-1530[DOI: 10.1109/CVPR.2017.166http://dx.doi.org/10.1109/CVPR.2017.166]
Hu Y, Sirlantzis K and Howells G. 2016. Iris liveness detection using regional features. Pattern Recognition Letters, 82: 242-250[DOI:10.1016/j.patrec.2015.10.010]
Huang B N, Dai Y G, Li R F, Tang D R and Li W X. 2010. Finger-vein authentication based on wide line detector and pattern normalization//Proceedings of 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE: 1269-1272[DOI: 10.1109/ICPR.2010.316http://dx.doi.org/10.1109/ICPR.2010.316]
Huang D S, Jia W and Zhang D. 2008. Palmprint verification based on principal lines. Pattern Recognition, 41(4): 1316-1328[DOI:10.1016/j.patcog.2007.08.016]
Huang G B, Ramesh M, Berg T and Learned-Miller E. 2007. Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments. University of Massachusetts
Huang G, Liu Z, van der Maaten L and Weinberger K Q. 2017a. Densely connected convolutional networks//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2261-2269[DOI: 10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Huang R, Zhang S, Li T Y and He R. 2017b. Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 2458-2467[DOI: 10.1109/ICCV.2017.267http://dx.doi.org/10.1109/ICCV.2017.267]
Huang Y, Xu J S, Wu Q, Zheng Z D, Zhang Z X and Zhang J. 2019. Multi-pseudo regularized label for generated data in person re-identification. IEEE Transactions on Image Processing, 28(3): 1391-1403[DOI:10.1109/TIP.2018.2874715]
Huang Z X, Liu Y G, Wang X M and Hu J R. 2015. Study on sparse representation based classification for biometric verification[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1502.06073.pdfhttps://arxiv.org/pdf/1502.06073.pdf
Huang Z Z, Feng Z H, Kittler J and Liu Y G. 2018. Improve the spoofing resistance of multimodal verification with representation-based measures//Proceedings of Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Guangzhou, China: Springer: 388-399[DOI: 10.1007/978-3-030-03338-5_33http://dx.doi.org/10.1007/978-3-030-03338-5_33]
Huber P J. 1981. Robust Statistics. New York: John Wiley and Sons
Huh M, Liu A, Owens A and Efros A A. 2018. Fighting fake news: image splice detection via learned self-consistency//Proceedings of European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 106-124[DOI: 10.1007/978-3-030-01252-6_7http://dx.doi.org/10.1007/978-3-030-01252-6_7]
Isola P, Zhu J Y, Zhou T H and Efros A A. 2017. Image-to-image translation with conditional adversarial networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5967-5976[DOI: 10.1109/CVPR.2017.632http://dx.doi.org/10.1109/CVPR.2017.632]
Iwama H, Okumura M, Makihara Y and Yagi Y. 2012. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Transactions on Information Forensics and Security, 7(5): 1511-1521[DOI:10.1109/TIFS.2012.2204253]
Jain A K and Feng J J. 2011. Latent fingerprint matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1): 88-100[DOI:10.1109/TPAMI.2010.59]
Jain A K and Ross A A. 2004. Multibiometric systems. Communications of the ACM, 47(1): 34-40[DOI:10.1145/962081.962102]
Jain V and Learned-Miller E. 2010. FDDB: a Benchmark for Face Detection in Unconstrained Settings. UMass Amherst Technical Report
Jain V, Bollmann B, Richardson M, Berger D R, Helmstaedter M N, Briggman K L, Denk W, Bowden J B, Mendenhall J M, Abraham W C, Harris K M, Kasthuri N, Hayworth K J, Schalek R, Tapia J C, Lichtman J W and Seung H S. 2010. Boundary learning by optimization with topological constraints//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 2488-2495[DOI: 10.1109/CVPR.2010.5539950http://dx.doi.org/10.1109/CVPR.2010.5539950]
Jalalifar S A, Hasani H and Aghajan H. 2018. Speech-driven facial reenactment using conditional generative adversarial networks[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1803.07461.pdfhttps://arxiv.org/pdf/1803.07461.pdf
Jalilian E and Uhl A. 2017. Iris segmentation using fully convolutional encoder-decoder networks//Bhanu B and Kumar A, eds. Deep Learning for Biometrics. [s. l.]: Springer: 133-155[DOI: 10.1007/978-3-319-61657-5_6http://dx.doi.org/10.1007/978-3-319-61657-5_6]
Jalilian E, Karakaya M and Uhl A. 2020. End-to-end off-angle iris recognition using CNN based iris segmentation//Proceedings of 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE: 1-7
Jenadeleh M, Pedersen M and Saupe D. 2018. Realtime quality assessment of iris biometrics under visible light//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE: 556-565[DOI: 10.1109/CVPRW.2018.00085http://dx.doi.org/10.1109/CVPRW.2018.00085]
Jha R R, Jaswal G, Gupta D, Saini S and Nigam A. 2020. PixiSegNet: pixel-level iris segmentation network using convolutional encoder-decoder with stacked hourglass bottleneck. IET Biometrics, 9(1): 11-24[DOI:10.1049/iet-bmt.2019.0025]
Ji S W, Xu W, Yang M and Yu K. 2013. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 221-231[DOI:10.1109/TPAMI.2012.59]
Jia W, Hu R X, Lei Y K, Zhao Y and Gui J. 2014. Histogram of oriented lines for palmprint recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3): 385-395[DOI:10.1109/TSMC.2013.2258010]
Jia Y P, Zhang J, Shan S G and Chen X L. 2020. Single-side domain generalization for face anti-spoofing//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 8481-8490[DOI: 10.1109/CVPR42600.2020.00851http://dx.doi.org/10.1109/CVPR42600.2020.00851]
Jiang S Y, Tao Z Q and Fu Y. 2019. Segmentation guided image-to-image translation with adversarial networks//Proceedings of the 14th IEEE International Conference on Automatic Face and Gesture Recognition. Lille, France: IEEE: 1-7[DOI: 10.1109/FG.2019.8756542http://dx.doi.org/10.1109/FG.2019.8756542]
Jo Y and Park J. 2019. SC-FEGAN: face editing generative adversarial network with user's sketch and color//Proceedings of 2019 IEEE/CVFInternational Conference on Computer Vision. Seoul, Korea (South): IEEE: 1745-1753[DOI: 10.1109/ICCV.2019.00183http://dx.doi.org/10.1109/ICCV.2019.00183]
Joseph R. 1985. Apparatus for the identification of individuals. US, 19850795341
Juels A and Sudan M. 2006. A fuzzy vault scheme. Designs, Codes and Cryptography, 38(2): 237-257[DOI:10.1007/s10623-005-6343-z]
Kabaciński R and Kowalski M. 2011. Vein pattern database and benchmark results. Electronics Letters, 47(20): 1127-1128[DOI:10.1049/el.2011.1441]
Kalayeh M M, Basaran E, Gökmen M, Kamasak M E and Shah M. 2018. Human semantic parsing for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1062-1071[DOI: 10.1109/CVPR.2018.00117http://dx.doi.org/10.1109/CVPR.2018.00117]
Kale A, Rajagopalan A N, Cuntoor N and Kruger V. 2002. Gait-based recognition of humans using continuous HMMs//Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE: 336-341[DOI: 10.1109/AFGR.2002.1004176http://dx.doi.org/10.1109/AFGR.2002.1004176]
Kale A, Sundaresan A, Rajagopalan A N, Cuntoor N P, Roy-Chowdhury A K, Kruger V and Chellappa R. 2004. Identification of humans using gait. IEEE Transactions on Image Processing, 13(9): 1163-1173[DOI:10.1109/TIP.2004.832865]
Kalka N D, Zuo J Y, Schmid N A and Cukic B. 2010. Estimating and fusing quality factors for iris biometric images. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 40(3): 509-524[DOI:10.1109/TSMCA.2010.2041658]
Kamble M and Patil H. 2018. Novel variable length energy separation algorithm using instantaneous amplitude features for replay detection//Proceedings of the INTERSPEECH 2018. Hyderabad, India: [s. n.]: 646-650[DOI: 10.21437/Interspeech.2018-1687http://dx.doi.org/10.21437/Interspeech.2018-1687]
Kaneko T, Kameoka H, Tanaka K and Hojo N. 2019. Cyclegan-VC2: improved cyclegan-based non-parallel voice conversion//Proceedings of 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Brighton, UK: IEEE: 6820-6824[DOI: 10.1109/ICASSP.2019.8682897http://dx.doi.org/10.1109/ICASSP.2019.8682897]
Kang W H, Mun S H, Han M H and Kim N S. 2020a. Disentangled speaker and nuisance attribute embedding for robust speaker verification. IEEE Access, 8: 141838-141849[DOI:10.1109/ACCESS.2020.3012893]
Kang W X and Wu Q X. 2014. Contactless palm vein recognition using a mutual foreground-based local binary pattern. IEEE Transactions on Information Forensics and Security, 9(11): 1974-1985[DOI:10.1109/TIFS.2014.2361020]
Kang W X, Liu H D, Luo W and Deng F Q. 2020b. Study of a full-view 3D finger vein verification technique. IEEE Transactions on Information Forensics and Security, 15: 1175-1189[DOI:10.1109/TIFS.2019.2928507]
Kang W X, Lu Y T, Li D J and Jia W. 2019. From noise to feature: exploiting intensity distribution as a novel soft biometric trait for finger vein recognition. IEEE Transactions on Information Forensics and Security, 14(4): 858-869[DOI:10.1109/TIFS.2018.2866330]
Kang W X. 2012. Vein pattern extraction based on vectorgrams of maximal intra-neighbor difference. Pattern Recognition Letters, 33(14): 1916-1923[DOI:10.1016/j.patrec.2012.02.020]
Karras T, Aila T, Laine S and Lehtinen J. 2017. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1710.10196.pdfhttps://arxiv.org/pdf/1710.10196.pdf
Kauba C and Uhl A. 2018. Shedding light on the veins-reflected light or transillumination in hand-vein recognition//Proceedings of 2018 International Conference on Biometrics (ICB). Gold Coast, Australia: IEEE: 283-290[DOI: 10.1109/ICB2018.2018.00050http://dx.doi.org/10.1109/ICB2018.2018.00050]
Kemelmacher-Shlizerman I, Seitz S M, Miller D and Brossard E. 2016. The MegaFace benchmark: 1 million faces for recognition at scale//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 4873-4882[DOI: 10.1109/CVPR.2016.527http://dx.doi.org/10.1109/CVPR.2016.527]
Kim D, Hernandez M, Choi J and Medioni G. 2017. Deep 3D face identification//Proceedings of 2017 IEEE International Joint Conference on Biometrics. Denver, USA: IEEE: 133-142[DOI: 10.1109/BTAS.2017.8272691http://dx.doi.org/10.1109/BTAS.2017.8272691]
Kisku D R, Gupta P, Mehrotra H and Sing J K. 2009. Multimodal belief fusion for face and ear biometrics. Intelligent Information Management, 1: 166-171[DOI:10.4236/iim.2009.13024]
Klare B F, Klein B, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Burge M and Jain A K. 2015. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 1931-1939[DOI: 10.1109/CVPR.2015.7298803http://dx.doi.org/10.1109/CVPR.2015.7298803]
Kollreider K, Fronthaler H, Faraj M I and Bigun J. 2007. Real-time face detection and motion analysis with application in "liveness" assessment. IEEE Transactions on Information Forensics and Security, 2(3): 548-558[DOI:10.1109/TIFS.2007.902037]
Komogortsev O V, Karpov A and Holland C D. 2015. Attack of mechanical replicas: liveness detection with eye movements. IEEE Transactions on Information Forensics and Security, 10(4): 716-725[DOI:10.1109/TIFS.2015.2405345]
Kong A W K and Zhang D. 2004. Competitive coding scheme for palmprint verification//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE: 520-523[DOI: 10.1109/ICPR.2004.1334184http://dx.doi.org/10.1109/ICPR.2004.1334184]
Kono M, Ueki H and Umemura S. 2000. A new method for the identification of individuals by using of vein pattern matching of a finger//The 5th Symposium on Pattern Measurement. Yamaguchi, Japan: [s. n.]: 9-12
Köstinger M, Hirzer M, Wohlhart P, Roth P M and Bischof H. 2012. Large scale metric learning from equivalence constraints//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 2288-2295[DOI: 10.1109/CVPR.2012.6247939http://dx.doi.org/10.1109/CVPR.2012.6247939]
Köstinger M, Wohlhart P, Roth P M and Bischof H. 2011. Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops (ICCVW). Barcelona, Spain: IEEE: 2144-2151[DOI: 10.1109/ICCVW.2011.6130513http://dx.doi.org/10.1109/ICCVW.2011.6130513]
Krizhevsky A, Sutskever I and Hinton G E. 2012. Imagenet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc. : 1097-1105
Krizhevsky A, Sutskever I and Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90[DOI:10.1145/3065386]
Kumar A and Prathyusha K V. 2009. Personal authentication using hand vein triangulation and knuckle shape. IEEE Transactions on Image Processing, 18(9): 2127-2136[DOI:10.1109/TIP.2009.2023153]
Kumar A and Shekhar S. 2011. Personal identification using multibiometrics rank-level fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(5): 743-752[DOI:10.1109/TSMCC.2010.2089516]
Kumar A and Zhang D. 2005. Biometric recognition using feature selection and combination//Proceedings of International Conference on Audio-and Video-Based Biometric Person Authentication. Rye Brook, USA: Springer: 813-822[DOI: 10.1007/11527923_85http://dx.doi.org/10.1007/11527923_85]
Kumar A and Zhou Y B. 2012. Human identification using finger images. IEEE Transactions on Image Processing, 21(4): 2228-2244[DOI:10.1109/TIP.2011.2171697]
Kumar R, Sotelo J, Kumar K, de Brébisson A and Bengio Y. 2017. ObamaNet: photo-realistic lip-sync from text[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1801.01442.pdfhttps://arxiv.org/pdf/1801.01442.pdf
Kurakin A, GoodfellowI J and Bengio S. 2017. Adversarial examples in the physical world[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1607.02533.pdfhttps://arxiv.org/pdf/1607.02533.pdf
Kurnianggoro L and Jo K H. 2019. Ensemble of predictions from augmented input as adversarial defense for face verification system//Proceedings of Asian Conference on Intelligent Information and Database Systems. Yogyakarta, Indonesia: Springer: 658-669[DOI: 10.1007/978-3-030-14802-7_57http://dx.doi.org/10.1007/978-3-030-14802-7_57]
Kuzu R S, Piciucco E, Maiorana E and Campisi P. 2020. On-the-fly finger-vein-based biometric recognition using deep neural networks. IEEE Transactions on Information Forensics and Security, 15: 2641-2654[DOI:10.1109/TIFS.2020.2971144]
Labati R D, Genovese A, Piuri V and Scotti F. 2016. Toward unconstrained fingerprint recognition: a fully touchless 3-D system based on two views on the move. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(2): 202-219[DOI:10.1109/TSMC.2015.2423252]
Lam T H W and Lee R S T. 2006. A new representation for human gait recognition: motion silhouettes image (MSI)//Proceedings of International Conference on Biometrics. Hong Kong, China: Springer: 612-618[DOI: 10.1007/11608288_81http://dx.doi.org/10.1007/11608288_81]
Lam T H W, Cheung K H and Liu J N K. 2011. Gait flow image: a silhouette-based gait representation for human identification. Pattern Recognition, 44(4): 973-987[DOI:10.1016/j.patcog.2010.10.011]
Lass N J. 2012. Contemporary Issues in Experimental Phonetics. New York: Academic Press
Lavrentyeva G, Novoselov S, Malykh E, Kozlov A, Kudashev O and Shchemelinin V. 2017. Audio replay attack detection with deep learning frameworks//Proceedings of the INTERSPEECH 2017. Stockholm, Sweden: [s. n.]: 82-86[DOI: 10.21437/Interspeech.2017-360http://dx.doi.org/10.21437/Interspeech.2017-360]
LeCun Y and Fogelman-Soulié F. 1987. Modèles connexionnistes de l'apprentissage. Intellectica, 2(1): 114-143[DOI:10.3406/intel.1987.1804]
Lee E C and Park K R. 2009. Restoration method of skin scattering blurred vein image for finger vein recognition. Electronics Letters, 45(21): 1074-1076[DOI:10.1049/el.2009.1231]
Lee H C, Kang B J, Lee E C and Park K R. 2010. Finger vein recognition using weighted local binary pattern code based on a support vector machine. Journal of Zhejiang University Science C, 11(7): 514-524[DOI:10.1631/jzus.C0910550]
Lee J C, Lo T M and Chang C P. 2014. Dorsal hand vein recognition based on directional filter bank. Signal, Image and Video Processing, 10(1): 145-152[DOI:10.1007/s11760-014-0714-8]
Lee K A, Wang Q Q and Koshinaka T. 2019. The CORAL+ algorithm for unsupervised domain adaptation of PLDA//Proceedings of 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Brighton, UK: IEEE: 5821-5825[DOI: 10.1109/ICASSP.2019.8682852http://dx.doi.org/10.1109/ICASSP.2019.8682852]
Lee L and Grimson W E L. 2002. Gait analysis for recognition and classification//Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE: 155-162[DOI: 10.1109/AFGR.2002.1004148http://dx.doi.org/10.1109/AFGR.2002.1004148]
Lee Y, Chen J C, Tseng C W and Lai S H. 2016. Accurate and robust face recognition from RGB-D images with a deep learning approach//Proceedings of the British Machine Vision Conference. UK: BMVA Press: #123[DOI: 10.5244/C.30.123http://dx.doi.org/10.5244/C.30.123]
Leon P L, Stewart B and Yamagishi J. 2012. Synthetic speech discrimination using pitch pattern statistics derived from image analysis//Proceedings of the 13th Annual Conference of the International Speech Communication Association. Portland, USA: [s. n.]: 370-373
Lewandowska M, Rumiński J, Kocejko T and Nowak J. 2011. Measuring pulse rate with a webcam-a non-contact method for evaluating cardiac activity//Proceedings of 2011 Federated Conference on Computer Science and Information Systems. Szczecin, Poland: IEEE: 405-410
Li C, Ma X K, Jiang B, Li X G, Zhang X W, Liu X, Cao Y, Kannan A and Zhu Z Y. 2017a. Deep speaker: an end-to-end neural speaker embedding system[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1705.02304https://arxiv.org/pdf/1705.02304
Li D W, Chen X T, Zhang Z and Huang K Q. 2017b. Learning deep context-aware features overbody and latent parts for person re-identification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 7398-7407[DOI: 10.1109/CVPR.2017.782http://dx.doi.org/10.1109/CVPR.2017.782]
Li J, Wang Y B, Wang C, Tai Y, Qian J J, Yang J, Wang C J, Li J L and Huang F Y. 2019a. DSFD: dual shot face detector//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5055-5064[DOI: 10.1109/CVPR.2019.00520http://dx.doi.org/10.1109/CVPR.2019.00520]
Li L T, Liu R Q, Kang J W, Fan Y, Cui H, Cai Y Q, Vipperla R, Zheng T F and Wang D. 2020a. CN-Celeb: multi-genre speaker recognition[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2012.12468https://arxiv.org/pdf/2012.12468
Li L T, Wang D, Zhang C H and Zheng T F. 2016a. Improving short utterance speaker recognition by modeling speech unit classes. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(6): 1129-1139[DOI:10.1109/TASLP.2016.2544660]
Li L Z, Bao J M, Yang H, Chen D and Wen F. 2019b. FaceShifter: towards high fidelity and occlusion aware face swapping[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1912.13457.pdfhttps://arxiv.org/pdf/1912.13457.pdf
Li M X, Zhu X T and Gong S G. 2018a. Unsupervised person re-identification by deep learning tracklet association//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 772-788[DOI: 10.1007/978-3-030-01225-0_45http://dx.doi.org/10.1007/978-3-030-01225-0_45]
Li M X, Zhu X T and Gong S G. 2020b. Unsupervised tracklet person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7): 1770-1782[DOI:10.1109/TPAMI.2019.2903058]
Li Q, Li X, Guo Z H and You J. 2015. Online personal verification by palmvein image through palmprint-like and palmvein information. Neurocomputing, 147: 364-371[DOI:10.1016/j.neucom.2014.06.050]
Li W, Zhu X T and Gong S G. 2018b. Harmonious attention network for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2285-2294[DOI: 10.1109/CVPR.2018.00243http://dx.doi.org/10.1109/CVPR.2018.00243]
Li X B, Alikhani I, Shi J G, Seppanen T, Junttila J, Majamaa-Voltti K, Tulppo M and Zhao G Y. 2018c. The OBF database: a large face video database for remote physiological signal measurement and atrial fibrillation detection//Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Xi'an, China: IEEE: 242-249[DOI: 10.1109/FG.2018.00043http://dx.doi.org/10.1109/FG.2018.00043]
Li X B, Han H, Lu H, Niu X S, Yu Z T, Dantcheva A, Zhao G Y and Shan S G. 2020c. The 1st challenge on remote physiological signal sensing (RePSS)//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE: 1274-1281[DOI: 10.1109/CVPRW50498.2020.00165http://dx.doi.org/10.1109/CVPRW50498.2020.00165]
Li X X, Huang D and Wang Y H. 2016b. Comparative study of deep learning methods on dorsal hand vein recognition//Proceedings of Chinese Conference on Biometric Recognition. Chengdu, China: Springer: 296-306[DOI: 10.1007/978-3-319-46654-5_33http://dx.doi.org/10.1007/978-3-319-46654-5_33]
Li X, Li N, Zhong J H, Wu X X, Liu X Y, Su D, Yu D and Meng H L. 2020d. Investigating robustness of adversarial samples detection for automatic speaker verification[EB/OL][2020-10-12].https://arxiv.org/pdf/2006.06186.pdfhttps://arxiv.org/pdf/2006.06186.pdf
Li X, Wu A C and Zheng W S. 2018d. Adversarial open-world person re-identification//Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer: 287-303[DOI: 10.1007/978-3-030-01216-8_18http://dx.doi.org/10.1007/978-3-030-01216-8_18]
Li X, Zhong J H, Wu X X, Yu J W, Liu X Y and Meng H L. 2020e. Adversarial attacks on GMM I-vector based speaker verification systems//Proceedings of 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 6579-6583[DOI: 10.1109/ICASSP40776.2020.9053076http://dx.doi.org/10.1109/ICASSP40776.2020.9053076]
Li Y J, Chen Y C, Lin Y Y, Du X F and Wang Y C F. 2019c. Recover and identify: a generative dual model for cross-resolution person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8089-8098[DOI: 10.1109/ICCV.2019.00818http://dx.doi.org/10.1109/ICCV.2019.00818]
Li Y J, Luo Z Y, Weng X S and Kitani K M. 2020f. Learning shape representations for clothing variations in person re-identification[EB/OL][2021-02-03].https://arxiv.org/pdf/2003.07340v1.pdfhttps://arxiv.org/pdf/2003.07340v1.pdf
Li Y Z, Chang M C and Lyu S W. 2018e. In Ictu oculi: exposing AI created fake videos by detecting eye blinking//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security (WIFS). Hong Kong, China: IEEE: 1-7[DOI: 10.1109/WIFS.2018.8630787http://dx.doi.org/10.1109/WIFS.2018.8630787]
Lian S, Luo Z, Zhong Z, Lin X, Su S and Li S. 2018. Attention guided u-net for accurate iris segmentation. Journal of Visual Communication and Image Representation, 56: 296-304[DOI:10.1016/j.jvcir.2018.10.001]
Liang W Q, Wang G C, Lai J H and Zhu J Y. 2018. M2 m-Gan: many-to-many generative adversarial transfer learning for person re-identification[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1811.03768.pdfhttps://arxiv.org/pdf/1811.03768.pdf
Liao R J, Cao C S, Garcia E B, Yu S Q and Huang Y Z. 2017. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations//Proceedings Chinese Conference on Biometric Recognition. Beijing, China: Springer: 474-483[DOI: 10.1007/978-3-319-69923-3_51http://dx.doi.org/10.1007/978-3-319-69923-3_51]
Liao R J, Yu S Q, An W Z and Huang Y Z. 2020. A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognition, 98: #107069[DOI:10.1016/j.patcog.2019.107069]
Liao S C, Zhao G Y, Kellokumpu V, Pietikäinen M and Li S Z. 2010. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 1301-1306[DOI: 10.1109/CVPR.2010.5539817http://dx.doi.org/10.1109/CVPR.2010.5539817]
Lin C H and Kumar A. 2017. Tetrahedron based fast 3D fingerprint identification using colored LEDs illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12): 3022-3033[DOI:10.1109/TPAMI.2017.2771292]
Lin C L and Fan K C. 2004. Biometric verification using thermal images of palm-dorsa vein patterns. IEEE Transactions on Circuits and Systems for Video Technology, 14(2): 199-213[DOI:10.1109/TCSVT.2003.821975]
Lin C L and Wang K J. 2010. A behavior classification based on enhanced gait energy image//Proceedings of 2010 International Conference on Networking and Digital Society. Wenzhou, China: IEEE: 589-592[DOI: 10.1109/ICNDS.2010.5479416http://dx.doi.org/10.1109/ICNDS.2010.5479416]
Lin C L, Fan K C and Chou F D. 2004. A novel approach to palmprint verification utilizing finger-webs as datum points. Image and Vision Computing, (3)
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017. Focal loss for dense object detection//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2999-3007[DOI: 10.1109/ICCV.2017.324http://dx.doi.org/10.1109/ICCV.2017.324]
Lin Y T, Xie L X, Wu Y, Yan C G and Tian Q. 2020. Unsupervised person re-identification via softened similarity learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3387-3396[DOI: 10.1109/CVPR42600.2020.00345http://dx.doi.org/10.1109/CVPR42600.2020.00345]
Lin Y T, Zheng L, Zheng Z D, Wu Y, Hu Z L, Yan C G and Yang Y. 2019. Improving person re-identification by attribute and identity learning. Pattern Recognition, 95: 151-161[DOI:10.1016/j.patcog.2019.06.006]
Liu B Y, Deng W H, Zhong Y Y, Wang M, Hu J N, Tao X Q and Huang Y H. 2019a. Fair loss: margin-aware reinforcement learning for deep face recognition//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 10051-10060[DOI: 10.1109/ICCV.2019.01015http://dx.doi.org/10.1109/ICCV.2019.01015]
Liu C J and Wechsler H. 2002. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 11(4): 467-476[DOI:10.1109/TIP.2002.999679]
Liu D and Sun D M. 2016. Contactless palmprint recognition based on convolutional neural network//Proceedings of the 13th IEEE International Conference on Signal Processing (ICSP). Chengdu, China: IEEE: 1363-1367[DOI: 10.1109/ICSP.2016.7878049http://dx.doi.org/10.1109/ICSP.2016.7878049]
Liu F and Zhang D. 2014. 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model. Pattern Recognition, 47(1): 178-193[DOI:10.1016/j.patcog.2013.06.009]
Liu F, Yin Y L, Yang G P, Dong L M and Xi X M. 2014. Finger vein recognition with superpixel-based features//Proceedings of 2014 IEEE International Joint Conference on Biometrics. Clearwater, USA: IEEE: 1-8[DOI: 10.1109/BTAS.2014.6996232http://dx.doi.org/10.1109/BTAS.2014.6996232]
Liu J W, Zha Z J, Chen D, Hong R C and Wang M. 2019b. Adaptive transfer network for cross-domain person re-identification//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 7195-7204[DOI: 10.1109/CVPR.2019.00737http://dx.doi.org/10.1109/CVPR.2019.00737]
Liu J X, Ni B B, Yan Y C, Zhou P, Cheng S and Hu J G. 2018a. Pose transferrable person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4099-4108[DOI: 10.1109/CVPR.2018.00431http://dx.doi.org/10.1109/CVPR.2018.00431]
Liu J Y and Zheng N N. 2007. Gait history image: a novel temporal template for gait recognition//Proceedings of 2017 IEEE International Conference on Multimedia and Expo. Beijing, China: IEEE: 663-666[DOI: 10.1109/ICME.2007.4284737http://dx.doi.org/10.1109/ICME.2007.4284737]
Liu L, Zhang D and You J. 2007a. Detecting wide lines using isotropic nonlinear filtering. IEEE Transactions on Image Processing, 16(6): 1584-1595[DOI:10.1109/TIP.2007.894288]
Liu M K, Wang H M, Li Q and Sun Z N. 2020. Enhanced gray-level image space for iris liveness detection. Journal of Image and Graphics, 25(7): 1421-1435
刘明康, 王宏民, 李琦, 孙哲南. 2020. 增强型灰度图像空间实现虹膜活体检测. 中国图象图形学报, 25(7): 1421-1435[DOI:10.11834/jig.190503]
Liu M Y and Tuzel O. 2016. Coupled generative adversarial networks//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, United States: Curran Associates Inc. : 469-477
Liu N F, Li H Q, Zhang M, Liu J, Sun Z N and Tan T N. 2016a. Accurate iris segmentation in non-cooperative environments using fully convolutional networks//Proceedings of 2016 International Conference on Biometrics (ICB). Halmstad, Sweden: IEEE: 1-8[DOI: 10.1109/ICB.2016.7550055http://dx.doi.org/10.1109/ICB.2016.7550055]
Liu N F, Liu J, Sun Z N and Tan T N. 2017a. A code-level approach to heterogeneous iris recognition. IEEE Transactions on Information Forensics and Security, 12(10): 2373-2386[DOI:10.1109/TIFS.2017.2686013]
Liu W F, Pokharel P P and Principe J C. 2007b. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 55(11): 5286-5298[DOI:10.1109/TSP.2007.896065]
Liu W Y, Wen Y D, Yu Z D and Yang M. 2016b. Large-margin softmax loss for convolutional neural networks[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1612.02295.pdfhttps://arxiv.org/pdf/1612.02295.pdf
Liu W Y, Wen Y D, Yu Z D, Li M, Raj B and Song L. 2017b. SphereFace: deep hypersphere embedding for face recognition//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 6738-6746[DOI: 10.1109/CVPR.2017.713http://dx.doi.org/10.1109/CVPR.2017.713]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016c. SSD: single shot multibox detector//Proceedings European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37[DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Liu X W, Pedersen M, Charrier C and Bours P. 2017c. Can no-reference image quality metrics assess visible wavelength iris sample quality//Proceedings of 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE: 3530-3534[DOI: 10.1109/ICIP.2017.8296939http://dx.doi.org/10.1109/ICIP.2017.8296939]
Liu Y J, Jourabloo A and Liu X M. 2018b. Learning deep models for face anti-spoofing: binary or auxiliary supervision//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 389-398[DOI: 10.1109/CVPR.2018.00048http://dx.doi.org/10.1109/CVPR.2018.00048]
Liu Y J, Stehouwer J, Jourabloo A and Liu X M. 2019c. Deep tree learning for zero-shot face anti-spoofing//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4675-4684[DOI: 10.1109/CVPR.2019.00481http://dx.doi.org/10.1109/CVPR.2019.00481]
Liu Z M, Wang D and Lu H C. 2017d. Stepwise metric promotion for unsupervised video person re-identification//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2448-2457[DOI: 10.1109/ICCV.2017.266http://dx.doi.org/10.1109/ICCV.2017.266]
Llano E G, Vargas J M C, García-Vázquez M S, Fuentes L M Z and Ramírez-Acosta A A. 2015. Cross-sensor iris verification applying robust fused segmentation algorithms//Proceedings of 2015 International Conference on Biometrics (ICB). Phuket, Thailand: IEEE: 17-22[DOI: 10.1109/ICB.2015.7139042http://dx.doi.org/10.1109/ICB.2015.7139042]
Llano E G, Vázquez M S G, Vargas J M C, Fuentes L M Z and Acosta A A R. 2018. Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. Pattern Recognition Letters, 101: 44-51[DOI:10.1016/j.patrec.2017.11.012]
Loffe S. 2006. Probabilistic linear discriminant analysis//Proceedings of European Conference on Computer Vision. Graz, Austria: IEEE: 531-542[DOI: 10.1007/11744085_41http://dx.doi.org/10.1007/11744085_41]
López-Fernández D, Madrid-Cuevas F J, Carmona-Poyato A, Muñoz-Salinas R and Medina-Carnicer R. 2016. A new approach for multi-view gait recognition on unconstrained paths. Journal of Visual Communication and Image Representation, 38: 396-406[DOI:10.1016/j.jvcir.2016.03.020]
Lu G M, Zhang D and Wang K Q. 2003. Palmprint recognition using eigenpalms features. Pattern Recognition Letters, 24(9/10): 1463-1467[DOI:10.1016/S0167-8655(02)00386-0]
Lu H P, Plataniotis K N and Venetsanopoulos A N. 2007. A full-body layered deformable model for automatic model-based gait recognition. EURASIP Journal on Advances in Signal Processing, 2008: 261317[DOI:10.1155/2008/261317]
Lu J J, Sibai H and Fabry E. 2017. Adversarial examples that fool detectors[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1712.02494https://arxiv.org/pdf/1712.02494
Lu J W, Wang G and Moulin P. 2014. Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Transactions on Information Forensics and Security, 9(1): 51-61[DOI:10.1109/TIFS.2013.2291969]
Lu J, Zhao Y and Hu J. 2009a. Enhanced gabor-based region covariance matrices for palmprint recognition. Electronics Letters, 45(17): 880-881[DOI:10.1049/el.2009.0871]
Lu L, Dong Y, Zhao X Y, Liu J Q and Wang H L. 2009b. The effect of language factors for robust speaker recognition//Proceedings of 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. Taipei, China: IEEE: 4217-4220[DOI: 10.1109/ICASSP.2009.4960559http://dx.doi.org/10.1109/ICASSP.2009.4960559]
Lu Y, Xie S J, YoonS, Wang Z H and Park D S. 2013. An available database for the research of finger vein recognition//Proceedings of the 6th International Congress on Image and Signal Processing (CISP). Hangzhou, China: IEEE: 410-415[DOI: 10.1109/CISP.2013.6744030http://dx.doi.org/10.1109/CISP.2013.6744030]
Lumini A and Nanni L. 2017. Overview of the combination of biometric matchers. Information Fusion, 33: 71-85[DOI:10.1016/j.inffus.2016.05.003]
Luo C C, Chen Y T, Wang N Y and Zhang Z X. 2019. Spectral feature transformation for person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 4975-4984[DOI: 10.1109/ICCV.2019.00508http://dx.doi.org/10.1109/ICCV.2019.00508]
Lyu J M and Wang X T. 2018. Cross-dataset person re-identification using similarity preserved generative adversarial networks//Proceeding International Conference on Knowledge Science, Engineering and Management. Changchun, China: Springer: 171-183[DOI: 10.1007/978-3-319-99247-1_15http://dx.doi.org/10.1007/978-3-319-99247-1_15]
Ma B P, Su Y and Jurie F. 2012. BiCov: a novel image representation for person re-identification and face verification//Proceedings of the British Machine Vision Conference. Surrey: BMVA Press: #57[DOI: 10.5244/C.26.57http://dx.doi.org/10.5244/C.26.57]
Ma L, Tan T N, Wang Y H and Zhang D X. 2003. Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12): 1519-1533[DOI:10.1109/TPAMI.2003.1251145]
Ma X, Jing X J, Huang H, Cui Y H and Mu J S. 2017. Palm vein recognition scheme based on an adaptive Gabor filter. IET Biometrics, 6(5): 325-333[DOI:10.1049/iet-bmt.2016.0085]
Ma Z C, Fang L Y, Duan J H, Xie S and Wang Z Q. 2016. Personal identification based on finger vein and contour point clouds matching//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE: 1983-1988[DOI: 10.1109/ICMA.2016.7558870http://dx.doi.org/10.1109/ICMA.2016.7558870]
MäättäJ, Hadid A and Pietikäinen M. 2011. Face spoofing detection from single images using micro-texture analysis//Proceedings of 2011 International Joint Conference on Biometrics (IJCB). Washington, USA: IEEE: 1-7[DOI: 10.1109/IJCB.2011.6117510http://dx.doi.org/10.1109/IJCB.2011.6117510]
MacGregor P and Welford R. 1991. Veincheck: imaging for security and personnel identification. Advanced Imaging, 6(7): 52-56
Makihara Y, Mannami H, Tsuji A, Hossain M A, Sugiura K, Mori A and Yagi Y. 2012. The OU-ISIR gait database comprising the treadmill dataset. IPSJ Transactions on Computer Vision and Applications, 4: 53-62[DOI:10.2197/ipsjtcva.4.53]
Makthal S and Ross A. 2005. Synthesis of iris images using Markov random fields//Proceedings of the 13th European Signal Processing Conference. Antalya, Turkey: IEEE: 1-4
Maltoni D, Maio D, Jain A K and Prabhakar S. 2009. Handbook of Fingerprint Recognition. 2nd ed. London: Springer
Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z and Smolley S P. 2017. Least squares generative adversarial networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2813-2821[DOI: 10.1109/ICCV.2017.304http://dx.doi.org/10.1109/ICCV.2017.304]
Marra F, Gragnaniello D, Cozzolino D and Verdoliva L. 2018. Detection of GAN-generated fake images over social networks//Proceedings of 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). Miami, USA: IEEE: 384-389[DOI: 10.1109/MIPR.2018.00084http://dx.doi.org/10.1109/MIPR.2018.00084]
Marra F, Gragnaniello D, Verdoliva L and Poggi G. 2019. Do GANs leave artificial fingerprints//Proceedings of 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). San Jose, USA: IEEE: 506-511[DOI: 10.1109/MIPR.2019.00103http://dx.doi.org/10.1109/MIPR.2019.00103]
Marsico M D, Nappi M, Riccio D and Wechsler H. 2021. MICHE I-Ⅱ[EB/OL]. [2021-02-03].http://biplab.unisa.it/MICHE/index_miche.htmlhttp://biplab.unisa.it/MICHE/index_miche.html
Matovski D S, Nixon M S, Mahmoodi S and Carter J N. 2012. The effect of time on gait recognition performance. IEEE Transactions on Information Forensics and Security, 7(2): 543-552[DOI:10.1109/TIFS.2011.2176118]
Maze B, Adams J, Duncan J A, Kalka N, Miller T, Otto C, Jain A K, Niggel W T, Anderson J, Cheney J and Grother P. 2018. IARPA Janus benchmark-C: face dataset and protocol//Proceedings of 2018 International Conference on Biometrics (ICB). Gold Coast, Australia: IEEE: 158-165[DOI: 10.1109/ICB2018.2018.00033http://dx.doi.org/10.1109/ICB2018.2018.00033]
McCloskey S and Albright M. 2018. Detecting GAN-generated imagery using color cues[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1812.08247.pdfhttps://arxiv.org/pdf/1812.08247.pdf
McGrath J, Bowyer K W and Czajka A. 2018. Open source presentation attack detection baseline for iris recognition[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1809.10172.pdfhttps://arxiv.org/pdf/1809.10172.pdf
McLaren M, Ferrer L, Castan D and Lawson A. 2016. The 2016 speakers in the wild speaker recognition evaluation//Proceedings of the INTERSPEECH 2016. San Francisco, USA: [s. n.]: 823-827[DOI: 10.21437/Interspeech.2016-1137http://dx.doi.org/10.21437/Interspeech.2016-1137]
Men Y F, Mao Y M, Jiang Y N, Ma W Y and Lian Z H. 2020. Controllable person image synthesis with attribute-decomposed GAN//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 5083-5092[DOI: 10.1109/CVPR42600.2020.00513http://dx.doi.org/10.1109/CVPR42600.2020.00513]
Menaria L and Jain K. 2017. A survey on biometric template protection. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2(2): 995-999[DOI:10.1186/1687-417X-2011-3]
Meng J K, Wu S and Zheng W S. 2019. Weakly supervised person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 760-769[DOI: 10.1109/CVPR.2019.00085http://dx.doi.org/10.1109/CVPR.2019.00085]
Miao J X, Wu Y, Liu P, Ding Y H and Yang Y. 2019. Pose-guided feature alignment for occluded person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 542-551[DOI: 10.1109/ICCV.2019.00063http://dx.doi.org/10.1109/ICCV.2019.00063]
Miau D, Cossairt O and Nayar S K. 2013. Focal sweep videography with deformable optics//Proceedings of 2013 IEEE International Conference on Computational Photography. Cambridge, USA: IEEE: 1-8[DOI: 10.1109/iccphot.2013.6528302http://dx.doi.org/10.1109/iccphot.2013.6528302]
Minaee S, Abdolrashidi A and Wang Y. 2017. An experimental study of deep convolutional features for iris recognition//Proceedings of 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). Philadelphia, USA: IEEE: 1-6[DOI: 10.1109/SPMB.2016.7846859http://dx.doi.org/10.1109/SPMB.2016.7846859]
Mirjalili V, Raschka S and Ross A. 2020. PrivacyNet: semi-adversarial networks for multi-attribute face privacy[EB/OL]. [2021-01-21].https://arxiv.org/pdf/2001.00561https://arxiv.org/pdf/2001.00561
Mirjalili V and Ross A. 2017. Soft biometric privacy: retaining biometric utility of face images while perturbing gender//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA, IEEE, 2017: 564-573[DOI: 10.1109/BTAS.2017.8272743.http://dx.doi.org/10.1109/BTAS.2017.8272743.]
Mirmohamadsadeghi L and Drygajlo A. 2014. Palm vein recognition with local texture patterns. IET Biometrics, 3(4): 198-206[DOI:10.1049/iet-bmt.2013.0041]
Miura N, Nagasaka A and Miyatake T. 2004. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Machine Vision and Applications, 15(4): 194-203[DOI:10.1007/s00138-004-0149-2]
Miura N, Nagasaka A and Miyatake T. 2005. Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE TRANSACTIONS on Information and Systems, E90-D(8): 1185-1194[DOI:10.1093/ietisy/e90-d.8.1185]
Mochizuki S, Shiota S and Kiya H. 2018. Voice liveness detection using phoneme-based pop-noise detector for speaker verification//Proceedings of 2018 Odyssey the Speaker and Language Recognition Workshop. Les Sables d'Olonne, France: [s. n.]: 233-239[DOI: 10.21437/Odyssey.2018-33http://dx.doi.org/10.21437/Odyssey.2018-33]
Monrose F, Reiter M K and Wetzel S. 2002. Password hardening based on keystroke dynamics. International Journal of Information Security, 1(2): 69-83[DOI:10.1007/s102070100006]
Monwar M M and Gavrilova M. 2008. FES: a system for combining face, ear and signature biometrics using rank level fusion//Proceedings of the 5th International Conference on Information Technology: New Generations. Las Vegas, USA: IEEE: 922-927[DOI: 10.1109/ITNG.2008.254http://dx.doi.org/10.1109/ITNG.2008.254]
Mu G D, Huang D, Hu G S, SunJ and Wang Y H. 2019. Led3D: a lightweight and efficient deep approach to recognizing low-quality 3D faces//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5766-5775[DOI: 10.1109/CVPR.2019.00592http://dx.doi.org/10.1109/CVPR.2019.00592]
Murase H and Sakai R. 1996. Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognition Letters, 17(2): 155-162[DOI:10.1016/0167-8655(95)00109-3]
Nagrani A, Chung J S and Zisserman A. 2017. VoxCeleb: a large-scale speaker identification dataset[EB/OL][2021-02-03].https://arxiv.org/pdf/1706.08612.pdfhttps://arxiv.org/pdf/1706.08612.pdf
Nalla P R and Kumar A. 2017. Toward more accurate iris recognition using cross-spectral matching. IEEE Transactions on Image Processing, 26(1): 208-221[DOI:10.1109/TIP.2016.2616281]
Nataraj L, Mohammed T M, Chandrasekaran S, Flenner A, Bappy J H, Roy-Chowdhury A K and Manjunath B S. 2019. Detecting GAN generated fake images using co-occurrence matrices[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1903.06836.pdfhttps://arxiv.org/pdf/1903.06836.pdf
Natsume R, Yatagawa T and Morishima S. 2018a. FSNet: an identity-aware generative model for image-based face swapping//Proceedings of Asian Conference on Computer Vision. Perth, Australia: Springer: 117-132[DOI: 10.1007/978-3-030-20876-9_8http://dx.doi.org/10.1007/978-3-030-20876-9_8]
Natsume R, Yatagawa T and Morishima S. 2018b. RSGAN: face swapping and editing using face and hair representation in latent spaces[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1804.03447.pdfhttps://arxiv.org/pdf/1804.03447.pdf
Nguyen D L, Arora S S, Wu Y H and Yang H. 2020. Adversarial light projection attacks on face recognition systems: a feasibility study[EB/OL]. [2021-01-21].https://arxiv.org/pdf/2003.11145.pdfhttps://arxiv.org/pdf/2003.11145.pdf
Nguyen D L, Cao K and Jain A K. 2018. Robust minutiae extractor: integrating deep networks and fingerprint domain knowledge//Proceedings of 2018 International Conference on Biometrics (ICB). Gold Coast, Australia: IEEE: 9-16[DOI: 10.1109/ICB2018.2018.00013http://dx.doi.org/10.1109/ICB2018.2018.00013]
Nguyen H H, Yamagishi J and Echizen I. 2019. Capsule-forensics: using capsule networks to detect forged images and videos//Proceedings of 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing. Brighton, UK: IEEE: 2307-2311[DOI: 10.1109/ICASSP.2019.8682602http://dx.doi.org/10.1109/ICASSP.2019.8682602]
Nichols R K. 1998. ICSA Guide to Cryptography. New York: McGraw-Hill
Nirkin Y, Keller Y and Hassner T. 2019. FSGAN: subject agnostic face swapping and reenactment//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 7183-7192[DOI: 10.1109/ICCV.2019.00728http://dx.doi.org/10.1109/ICCV.2019.00728]
Niu X S, Shan S G, Han H and Chen X L. 2020a. RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Transactions on Image Processing, 29: 2409-2423[DOI:10.1109/TIP.2019.2947204]
Niu X S, Yu Z T, Han H, Li X B, Shan S G and Zhao G Y. 2020b. Video-based remote physiological measurement via cross-verified feature disentangling//Proceedings of European Conference on Computer Vision. Glasgow, UK: Springer: 295-310[DOI: 10.1007/978-3-030-58536-5_18http://dx.doi.org/10.1007/978-3-030-58536-5_18]
Nixon M, Carter J, Shufler J and Grant M. 2001. Experimental Plan for Automatic Gait Recognition. University of Southampton, Southampton
OrrùG, Casula R, Tuveri P, Bazzoni C, Dessalvi G, Micheletto M, Ghiani L and Marcialis G L. 2019. LivDet in action-fingerprint liveness detection competition 2019//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-6[DOI: 10.1109/ICB45273.2019.8987281http://dx.doi.org/10.1109/ICB45273.2019.8987281]
Pala P, Seidenari L, Berretti S and Del Bimbo A. 2019. Enhanced skeleton and face 3D data for person re-identification from depth cameras. Computers and Graphics, 79: 69-80[DOI:10.1016/j.cag.2019.01.003]
Pan G, Sun L, Wu Z H and Lao S H. 2007. Eyeblink-based anti-spoofing in face recognition from a generic webcamera//Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE: 1-8[DOI: 10.1109/ICCV.2007.4409068http://dx.doi.org/10.1109/ICCV.2007.4409068]
Pan M and Kang W X. 2011. Palm vein recognition based on three local invariant feature extraction algorithms//Proceedings Chinese Conference on Biometric Recognition. Beijing, China: IEEE: 116-124[DOI: 10.1007/978-3-642-25449-9_15http://dx.doi.org/10.1007/978-3-642-25449-9_15]
Park D S, Chan W, Zhang Y, Chiu C C, Zoph B, Cubuk E D and Le Q V. 2019a. SpecAugment: a simple data augmentation method for automatic speech recognition[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1904.08779https://arxiv.org/pdf/1904.08779
Park T, Liu M Y, Wang T C and Zhu J Y. 2019b. Semantic image synthesis with spatially-adaptive normalization//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 2332-2341[DOI: 10.1109/CVPR.2019.00244http://dx.doi.org/10.1109/CVPR.2019.00244]
Parziale G, Diaz-Santana E and Hauke R. 2006. The surround imagerTM: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints//Proceedings of International Conference on Biometrics. Hong Kong, China: Springer: 244-250[DOI: 10.1007/11608288_33http://dx.doi.org/10.1007/11608288_33].
Patil H A and Kamble M R. 2018. A survey on replay attack detection for automatic speaker verification (ASV)system//Proceedings of 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Honolulu, USA: IEEE: 1047-1053[DOI: 10.23919/APSIPA.2018.8659666http://dx.doi.org/10.23919/APSIPA.2018.8659666]
Patil I, Bhilare S and Kanhangad V. 2016. Assessing vulnerability of dorsal hand-vein verification system to spoofing attacks using smartphone camera//Proceedings of 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). Sendai, Japan: IEEE: 1-6[DOI: 10.1109/ISBA.2016.7477232http://dx.doi.org/10.1109/ISBA.2016.7477232]
Peng Y G, Ganesh A, Wright J, Xu W L and Ma Y. 2012. RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11): 2233-2246[DOI:10.1109/TPAMI.2011.282]
Perwira D Y, Agung B W T and Sulistiyo M D. 2014. Personal palm vein identification using principal component analysis and probabilistic neural network//Proceedings of 2014 International Conference on Information Technology Systems and Innovation (ICITSI). Bandung, Indonesia: IEEE: 99-104[DOI: 10.1109/ICITSI.2014.7048245http://dx.doi.org/10.1109/ICITSI.2014.7048245]
Phillips P J, Flynn P J, Scruggs T, Bowyer K W, Chang J, Hoffman K, Marques J, Min J and Worek W. 2005. Overview of the face recognition grand challenge//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE: 947-954[DOI: 10.1109/CVPR.2005.268http://dx.doi.org/10.1109/CVPR.2005.268]
Piciucco E, Maiorana E and Campisi P. 2018. Palm vein recognition using a high dynamic range approach. IET Biometrics, 7(5): 439-446[DOI:10.1049/iet-bmt.2017.0192]
Pillai J K, Patel V M, Chellappa R and Ratha N K. 2011. Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9): 1877-1893[DOI:10.1109/TPAMI.2011.34]
Pillai J K, Puertas M and Chellappa R. 2014. Cross-sensor iris recognition through kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1): 73-85[DOI:10.1109/TPAMI.2013.98]
PLUSVein-FV3 Finger Vein Data Set[EB/OL]. [2021-02-03].http://www.wavelab.at/sources/PLUSVein-FV3/http://www.wavelab.at/sources/PLUSVein-FV3/
Poh M Z, McDuff D J and Picard R W. 2010. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18(10): 10762-10774[DOI:10.1364/OE.18.010762]
Proença H, Filipe S, Santos R, Oliveira J and Alexandre L A. 2021. UBIRIS V1-V2[EB/OL]. [2021-02-03].http://iris.di.ubi.pt/ubiris2.htmlhttp://iris.di.ubi.pt/ubiris2.html
Proença H. 2010. Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8): 1502-1516[DOI:10.1109/TPAMI.2009.140]
Prommegger B, Kauba C, Linortner M and Uhl A. 2019. Longitudinal finger rotation-deformation detection and correction. IEEE Transactions on Biometrics, Behavior, and Identity Science, 1(2): 123-138[DOI:10.1109/TBIOM.2019.2902020]
Pumarola A, Agudo A, Martinez A M, Sanfeliu A and Moreno-Noguer F. 2018. GANimation: anatomically-aware facial animation from a single image//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 835-851[DOI: 10.1007/978-3-030-01249-6_50http://dx.doi.org/10.1007/978-3-030-01249-6_50]
Qian X L, Fu Y W, Jiang Y G, Tao X and Xue X Y. 2017. Multi-scale deep learning architectures for person re-identification//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 5409-5418[DOI: 10.1109/ICCV.2017.577http://dx.doi.org/10.1109/ICCV.2017.577]
Qian X L, Fu Y W, Xiang T, Wang W X, Qiu J, Wu Y, Jiang Y G and Xue X Y. 2018. Pose-normalized image generation for person re-identification[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1712.02225v6.pdfhttps://arxiv.org/pdf/1712.02225v6.pdf
Qian X L, Wang W X, Zhang L, Zhu F R, Fu Y W, Xiang T, Jiang Y G and Xue X Y. 2020. Long-term cloth-changing person re-identification[EB/OL]. [2021-01-21].https://arxiv.org/pdf/2005.12633.pdfhttps://arxiv.org/pdf/2005.12633.pdf
Qin H W, Yan J J, Li X and Hu X L. 2016. Joint training of cascaded CNN for face detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 3456-3465[DOI: 10.1109/CVPR.2016.376http://dx.doi.org/10.1109/CVPR.2016.376]
Qin Y X, Zhao C X, Zhu X Y, Wang Z Z, Yu Z T, Fu T Y, Zhou F, Shi J P and Lei Z. 2020. Learning meta model for zero- and few-shot face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 11916-11923[DOI:10.1609/aaai.v34i07.6866]
Qiu X W, Kang W X, Tian S P, Jia W and Huang Z X. 2018. Finger vein presentation attack detection using total variation decomposition. IEEE Transactions on Information Forensics and Security, 13(2): 465-477[DOI:10.1109/TIFS.2017.2756598]
Radford A, Metz L K and Chintala S. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1511.06434.pdfhttps://arxiv.org/pdf/1511.06434.pdf
Ranjan R, Castillo C D and Chellappa R. 2017.L2-constrained softmax loss for discriminative face verification[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1703.09507.pdfhttps://arxiv.org/pdf/1703.09507.pdf.
Ratha N K, Chikkerur S, Connell J H and Bolle R M. 2007. Generating cancelable fingerprint templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4): 561-572[DOI:10.1109/TPAMI.2007.1004]
Rathgeb C and Uhl A. 2011. A survey on biometric cryptosystems and cancelable biometrics. EURASIP Journal on Information Security, 2011: #3[DOI:10.1186/1687-417X-2011-3]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 779-788[DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren M, Wang C Y, Wang Y L, Sun Z N and Tan T N. 2019. Alignment free and distortion robust iris recognition//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-7[DOI: 10.1109/ICB45273.2019.8987369http://dx.doi.org/10.1109/ICB45273.2019.8987369]
Ren M, Wang Y L, Sun Z N and Tan T N. 2020. Dynamic graph representation for occlusion handling in biometrics//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: AAAI: 11940-11947
Ren S Q, Cao X D, Wei Y C and Sun J. 2014. Face alignment at 3000 FPS via regressing local binary features//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1685-1692[DOI: 10.1109/CVPR.2014.218http://dx.doi.org/10.1109/CVPR.2014.218]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149[DOI:10.1109/TPAMI.2016.2577031]
Reynolds D A, Quatieri T F and Dunn R B. 2000. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10(1/3): 19-41[DOI:10.1006/dspr.1999.0361]
Reynolds D A. 2009. Gaussian mixture models//Proceedings of Encyclopedia of Biometrics. Boston, MA, USA: Springer: 827-832[DOI: 10.1007/978-1-4899-7488-4_196http://dx.doi.org/10.1007/978-1-4899-7488-4_196]
Rice J. 1987. Apparatus for the identification of individuals. U.S., No. 4699149
Rigas I and Komogortsev O V. 2015. Eye movement-driven defense against iris print-attacks. Pattern Recognition Letters, 68: 316-326[DOI:10.1016/j.patrec.2015.06.011]
Ronneberger O, Fischer P and Brox T. 2015. U-net: convolutional networks for biomedical image segmentation//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece: Springer: 234-241[DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Ross A S and Doshi-Velez F. 2017. Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1711.09404.pdfhttps://arxiv.org/pdf/1711.09404.pdf
Rozendal S. 2018. Redesign of a Finger Vein Scanner. The Netherlands: University of Twente
Rozsa A, Günther M and Boult T E. 2017. LOTS about attacking deep features//Proceedings of 2017 IEEE International Joint Conference on Biometrics. Denver, USA: IEEE: 168-176[DOI: 10.1109/BTAS.2017.8272695http://dx.doi.org/10.1109/BTAS.2017.8272695]
Rozsa A, Günther M, Rudd E M and Boult T E. 2016. Are facial attributes adversarially robust//Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico: IEEE: 3121-3127[DOI: 10.1109/ICPR.2016.7900114http://dx.doi.org/10.1109/ICPR.2016.7900114]
Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J and Nieβner M. 2018. FaceForensics: a large-scale video dataset for forgery detection in human faces[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1803.09179.pdfhttps://arxiv.org/pdf/1803.09179.pdf
Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J and Nieβner M. 2019. FaceForensics++: learning to detect manipulated facial images[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1901.08971.pdfhttps://arxiv.org/pdf/1901.08971.pdf
Sabir E, Cheng J X, Jaiswal A, AbdAlmageed W, Masi I and Natarajan P. 2019. Recurrent convolutional strategies for face manipulation detection in videos[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1905.00582.pdfhttps://arxiv.org/pdf/1905.00582.pdf
Sabour S, Frosst N and Hinton G E. 2017. Dynamic routing between capsules[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1710.09829.pdfhttps://arxiv.org/pdf/1710.09829.pdf
Sadjadi S O, Greenberg C, Singer E, Reynolds D, Mason L and Hernandez-Cordero J. 2020. The 2019 NIST Audio-visual Speaker Recognition Evaluation. Speaker Odyssey
Sadjadi S O, Kheyrkhah T, Tong A, Greenberg C, Reynolds D, Singer E, Mason L and Hernandez-Cordero J. 2017. The 2016 NIST speaker recognition evaluation//Proceedings of the INTERSPEECH 2017. Stockholm, Sweden: [s. n.]: 1353-1357
Sagonas C, Antonakos E, Tzimiropoulos G, Zafeiriou S and Pantic M. 2016. 300 faces in-the-wild challenge: database and results. Image and Vision Computing, 47: 3-18[DOI:10.1016/j.imavis.2016.01.002]
Satoh T, Masuko T, Kobayashi T and Tokuda K. 2001. A robust speaker verification system against imposture using an HMM-based speech synthesis system//Proceedings of the 7th European Conference on Speech Communication and Technology. Aalborg, Denmark: ISCA: 759-762
Schroff F, Kalenichenko D and Philbin J. 2015. FaceNet: a unified embedding for face recognition and clustering//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 815-823[DOI: 10.1109/CVPR.2015.7298682http://dx.doi.org/10.1109/CVPR.2015.7298682]
Schuch P, Schulz S D and Busch C. 2017. Deep expectation for estimation of fingerprint orientation fields//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 185-190[DOI: 10.1109/BTAS.2017.8272697http://dx.doi.org/10.1109/BTAS.2017.8272697]
Seely R D, Samangooei S, Lee M, Carter J N and Nixon M S. 2008. The university of southampton multi-biometric tunnel and introducing a novel 3D gait dataset//Proceedings of the 2nd International Conference on Biometrics: Theory, Applications, and Systems. Washington, USA: IEEE: 1-6[DOI: 10.1109/BTAS.2008.4699353http://dx.doi.org/10.1109/BTAS.2008.4699353]
Shah S and Ross A. 2009. Iris segmentation using geodesic active contours. IEEE Transactions on Information Forensics and Security, 4(4): 824-836[DOI:10.1109/TIFS.2009.2033225]
Shakhnarovich G, Lee L and Darrell T. 2001. Integrated face and gait recognition from multiple views//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA: IEEE: 439-446[DOI: 10.1109/CVPR.2001.990508http://dx.doi.org/10.1109/CVPR.2001.990508]
Shang W and Stevenson M. 2008. A preliminary study of factors affecting the performance of a playback attack detector//Proceedings of 2008 Canadian Conference on Electrical and Computer Engineering. Niagara Falls, Canada: IEEE: 459-464[DOI: 10.1109/CCECE.2008.4564576http://dx.doi.org/10.1109/CCECE.2008.4564576]
Sharif M, Bhagavatula S, Bauer L and Reiter M K. 2016. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition//Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna, Austria: ACM: 1528-1540[DOI: 10.1145/2976749.2978392http://dx.doi.org/10.1145/2976749.2978392]
Sharif M, Bhagavatula S, Bauer L and Reiter M K. 2017. Adversarial generative nets: neural network attacks on state-of-the-art face recognition[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1801.00349v1.pdfhttps://arxiv.org/pdf/1801.00349v1.pdf
Sharma R and Ross A. 2020. D-NetPAD: an explainable and interpretable iris presentation attack detector//Proceedings of 2020 IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE: 1-10[DOI: 10.1109/IJCB48548.2020.9304880http://dx.doi.org/10.1109/IJCB48548.2020.9304880]
Shen M, Liao Z L, Zhu L H, Xu K and Du X J. 2019. VLA: a practical visible light-based attack on face recognition systems in physical world. ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies, 3(3): #103[DOI:10.1145/3351261]
Shen Y J, Luo P, Luo P, Yan J J, Wang X G and Tang X O. 2018a. FaceID-GAN: learning a symmetry three-player GAN for identity-preserving face synthesis//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 821-830[DOI: 10.1109/CVPR.2018.00092http://dx.doi.org/10.1109/CVPR.2018.00092]
Shen Y T, Xiao T, Li H S, Yi S and Wang X G. 2018b. End-to-end deep kronecker-product matching for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6886-6895[DOI: 10.1109/CVPR.2018.00720http://dx.doi.org/10.1109/CVPR.2018.00720]
Shi Q F, Eriksson A, van den Hengel A and Shen C H. 2011. Is face recognition really a compressive sensing problem//Proceedings of the CVPR 2011. Colorado Springs, USA: IEEE: 553-560[DOI: 10.1109/CVPR.2011.5995556http://dx.doi.org/10.1109/CVPR.2011.5995556]
Shu W and Zhang D. 1998. Automated personal identification by palmprint. Optical Engineering, 37(8): 2359-2362[DOI:10.1117/1.601756]
Shutler J D, Nixon M S and Harris C J. 2000. Statistical gait description via temporal moments//Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation. Austin, USA: IEEE: 291-295[DOI: 10.1109/IAI.2000.839618http://dx.doi.org/10.1109/IAI.2000.839618]
Si X B, Feng J J, Yuan B and Zhou J. 2017. Dense registration of fingerprints. Pattern Recognition, 63: 87-101[DOI:10.1016/j.patcog.2016.09.012]
Si X B, Feng J J, Zhou J and Luo Y X. 2015. Detection and rectification of distorted fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3): 555-568[DOI:10.1109/TPAMI.2014.2345403]
Simonyan K and Zisserman A. 2014a. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-02-03].https://export.arxiv.org/pdf/1409.1556.pdfhttps://export.arxiv.org/pdf/1409.1556.pdf
Simonyan K and Zisserman A. 2014b. Two-stream convolutional networks for action recognition in videos[EB/OL]. [2021-02-02].https://arxiv.org/pdf/1406.2199.pdfhttps://arxiv.org/pdf/1406.2199.pdf
Snyder D, Garcia-Romero D, Sell G, Povey D and Khudanpur S. 2018. X-vectors: robust DNN embeddings for speaker recognition//Proceedings of 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Calgary, Canada: IEEE: 5329-5333[DOI: 10.1109/ICASSP.2018.8461375http://dx.doi.org/10.1109/ICASSP.2018.8461375]
Song P, Huang L, Wang Y L, Liu F and Sun Z N. 2019. Iris liveness detection based on light field imaging. Acta Automatica Sinica, 45(9): 1701-1712
宋平, 黄玲, 王云龙, 刘菲, 孙哲南. 2019. 基于计算光场成像的虹膜活体检测方法. 自动化学报, 45(9): 1701-1712[DOI:10.16383/j.aas.c180213]
Song Q, Wu Y Q and Yang L. 2018. Attacks on state-of-the-art face recognition using attentional adversarial attack generative network[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1811.12026.pdfhttps://arxiv.org/pdf/1811.12026.pdf
Sun Q L, Zhang J X, Yang A Q and Zhang Q. 2017. Palmprint recognition with deep convolutional features//Proceedings of Chinese Conference on Image and Graphics Technologies. Beijing, China: Springer: 12-19[DOI: 10.1007/978-981-10-7389-2_2http://dx.doi.org/10.1007/978-981-10-7389-2_2]
Sun X X and Zheng L. 2019. Dissecting person re-identification from the viewpoint of viewpoint//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 608-617[DOI: 10.1109/CVPR.2019.00070http://dx.doi.org/10.1109/CVPR.2019.00070]
Sun Y F, Xu Q, Li Y L, Zhang C, Li Y K, Wang S J and Sun J. 2019. Perceive where to focus: learning visibility-aware part-level features for partial person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 393-402[DOI: 10.1109/CVPR.2019.00048http://dx.doi.org/10.1109/CVPR.2019.00048]
Sun Y F, Zheng L, Yang Y, Tian Q and Wang S J. 2018. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 501-518[DOI: 10.1007/978-3-030-01225-0_30http://dx.doi.org/10.1007/978-3-030-01225-0_30]
Sun Y, Chen Y H, Wang X G and Tang X O. 2014a. Deep learning face representation by joint identification-verification//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press: 1988-1996[DOI: 10.5555/2969033.2969049http://dx.doi.org/10.5555/2969033.2969049]
Sun Y, Wang X G and Tang X O. 2013. Deep convolutional network cascade for facial point detection//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 3476-3483[DOI: 10.1109/CVPR.2013.446http://dx.doi.org/10.1109/CVPR.2013.446]
Sun Y, Wang X G and Tang X O. 2014b. Deep learning face representation from predicting 10 000 classes//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1891-1898[DOI: 10.1109/CVPR.2014.244http://dx.doi.org/10.1109/CVPR.2014.244]
Sun Z N and Tan T N. 2009. Ordinal measures for iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12): 2211-2226[DOI:10.1109/TPAMI.2008.240]
Sun Z N, Tan T N, Wang Y H and Li S Z. 2005. Ordinal palmprint represention for personal identification[represention read representation]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE: 279-284[DOI: 10.1109/CVPR.2005.267http://dx.doi.org/10.1109/CVPR.2005.267]
Sun Z N, Wang L B and Tan T N. 2014c. Ordinal feature selection for iris and palmprint recognition. IEEE Transactions on Image Processing, 23(9): 3922-3934[DOI:10.1109/TIP.2014.2332396]
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 1-9[DOI: 10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I and Fergus R. 2013. Intriguing properties of neural networks[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1312.6199.pdfhttps://arxiv.org/pdf/1312.6199.pdf
Taigman Y, Yang M, Ranzato M A and Wolf L. 2014. DeepFace: closing the gap to human-level performance in face verification//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1701-1708[DOI: 10.1109/CVPR.2014.220http://dx.doi.org/10.1109/CVPR.2014.220]
Tak H and Patil H A. 2018. Novel linear frequency residual cepstral features for replay attack detection//Proceedings of the INTERSPEECH 2018. Hyderabad, India: [s. n.]: 726-730[DOI: 10.21437/Interspeech.2018-1702http://dx.doi.org/10.21437/Interspeech.2018-1702]
Takemura N, Makihara Y, Muramatsu D, Echigo T and Yagi Y. 2018. Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10: #4[DOI:10.1186/s41074-018-0039-6]
Tan T N and Sun Z N. 2021. CASIA Iris V1-V4[EB/OL]. [2021-02-03].http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Irishttp://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris
Tang H L, Yin B C, Sun Y F and Hu Y L. 2013. 3D face recognition using local binary patterns. Signal Processing, 93(8): 2190-2198[DOI:10.1016/j.sigpro.2012.04.002]
Tang H, Bai S, Zhang L, Torr P H S and Sebe N. 2020. XingGAN for person image generation//Proceedings of European Conference on Computer Vision. Glasgow, United Kingdom: Springer: 717-734[DOI: 10.1007/978-3-030-58595-2_43http://dx.doi.org/10.1007/978-3-030-58595-2_43]
Tang J, Luo J, Tjahjadi T and Gao Y. 2014. 2.5D multi-view gait recognition based on point cloud registration. Sensors, 14(4): 6124-6143[DOI:10.3390/s140406124]
Tang J, Luo J, Tjahjadi T and Guo F. 2017a. Robust arbitrary-view gait recognition based on 3D partial similarity matching. IEEE Transactions on Image Processing, 26(1): 7-22[DOI:10.1109/TIP.2016.2612823]
Tang S, Zhou S, Kang W X, Wu Q X and Deng F Q. 2019. Finger vein verification using a Siamese CNN. IET Biometrics, 8(5): 306-315[DOI:10.1049/iet-bmt.2018.5245]
Tang Y, Gao F, Feng J F and Liu Y H. 2017b. FingerNet: an unified deep network for fingerprint minutiae extraction//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 108-116[DOI: 10.1109/BTAS.2017.8272688http://dx.doi.org/10.1109/BTAS.2017.8272688]
Tao G H, Ma S Q, Liu Y Q and Zhang X Y. 2018. Attacks meet interpretability: attribute-steered detection of adversarial samples[EB/OL]. [2021-01-21].https://arxiv.org/pdf/1810.11580.pdfhttps://arxiv.org/pdf/1810.11580.pdf
Thapar D, Jaswal G, Nigam A and Kanhangad V. 2019. PVSNet: palm vein authentication Siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features//Proceedings of the 5th IEEE International Conference on Identity, Security, and Behavior Analysis (ISBA). Hyderabad, India: IEEE: 1-8[DOI: 10.1109/ISBA.2019.8778623http://dx.doi.org/10.1109/ISBA.2019.8778623]
Theagarajan R and Bhanu B. 2020. Defending black box facial recognition classifiers against adversarial attacks//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE: 3537-3547[DOI: 10.1109/CVPRW50498.2020.00414http://dx.doi.org/10.1109/CVPRW50498.2020.00414]
Thornton J, Savvides M and Kumar B V K V. 2007. A Bayesian approach to deformed pattern matching of iris images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4): 596-606[DOI:10.1109/TPAMI.2007.1006]
Tian M Q, Yi S, Li H S, Li S H, Zhang X S, Shi J P, Yan J J and Wang X G. 2018. Eliminating background-bias for robust person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 5794-5803[DOI: 10.1109/CVPR.2018.00607http://dx.doi.org/10.1109/CVPR.2018.00607]
Tiwari K, Arya D K, Badrinath G S and Gupta P. 2013. Designing palmprint based recognition system using local structure tensor and force field transformation for human identification. Neurocomputing, 116: 222-230[DOI:10.1016/j.neucom.2011.12.065]
Todisco M, Delgado H and Evans N. 2017. Constant Q cepstral coefficients: a spoofing countermeasure for automatic speaker verification. Computer Speech and Language, 45: 516-535[DOI:10.1016/j.csl.2017.01.001]
Toh K A, Eng H L, Choo Y S, Cha Y L, Yau W Y and Low K S. 2006. Identity verification through palm vein and crease texture//Proceedings of International Conference on Biometrics. Hong Kong, China: Springer: 546-553[DOI: 10.1007/11608288_73http://dx.doi.org/10.1007/11608288_73]
Tome P and Marcel S. 2015. On the vulnerability of palm vein recognition to spoofing attacks//Proceedings of 2015 International Conference on Biometrics. Phuket, Thailand: IEEE: 319-325[DOI: 10.1109/ICB.2015.7139056http://dx.doi.org/10.1109/ICB.2015.7139056]
Tome P, Vanoni M and Marcel S. 2014. On the vulnerability of finger vein recognition to spoofing//Proceedings of 2014 International Conference of the Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE: 1-10
Ton B T and Veldhuis R N J. 2013. A high quality finger vascular pattern dataset collected using a custom designed capturing device//Proceedings of 2013 International Conference on Biometrics (ICB). Madrid, Spain: IEEE: 1-5[DOI: 10.1109/ICB.2013.6612966http://dx.doi.org/10.1109/ICB.2013.6612966]
Toygar O, Babalola F O and Bitirim Y. 2020. FYO: a novel multimodal vein database with palmar, dorsal and wrist biometrics. IEEE Access, 8: 82461-82470[DOI:10.1109/ACCESS.2020.2991475]
Trabelsi R B, Masmoudi A D and Masmoudi D S. 2015. A bi-modal palmvein palmprint biometric human identification based on fusing new CDSDP features//Proceedings of 2015 International Conference on Advances in Biomedical Engineering (ICABME). Beirut, Lebanon: IEEE: 1-4[DOI: 10.1109/ICABME.2015.7323236http://dx.doi.org/10.1109/ICABME.2015.7323236]
Turk M and Pentland A. 1991. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1): 71-86[DOI:10.1162/jocn.1991.3.1.71]
Ungureanu A S, Salahuddin S and Corcoran P. 2020. Toward unconstrained palmprint recognition on consumer devices: a literature. IEEE Access, 8: 86130-86148[DOI:10.1109/ACCESS.2020.2992219]
Ungureanu A S, Thavalengal S, Cognard T E, Costache C and Corcoran P. 2017. Unconstrained palmprint as a smartphone biometric. IEEE Transactions on Consumer Electronics, 63(3): 334-342[DOI:10.1109/TCE.2017.014994]
Vanoni M, Tome P, El Shafey L and Marcel S. 2014. Cross-database evaluation using an open finger vein sensor//Proceedings of 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS). Rome, Italy: IEEE: 30-35[DOI: 10.1109/BIOMS.2014.6951532http://dx.doi.org/10.1109/BIOMS.2014.6951532]
Variani E, Lei X, McDermott E, Moreno I L and Gonzalez-Dominguez J. 2014. Deep neural networks for small footprint text-dependent speaker verification//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE: 4052-4056[DOI: 10.1109/ICASSP.2014.6854363http://dx.doi.org/10.1109/ICASSP.2014.6854363]
Vatsa M and Singh R. 2021. ⅢTD[EB/OL]. [2021-02-03].http://iab-rubric.org/resources.htmlhttp://iab-rubric.org/resources.html
Venugopalan S and Savvides M. 2011. How to generate spoofed irises from an iris code template. IEEE Transactions on Information Forensics and Security, 6(2): 385-395[DOI:10.1109/TIFS.2011.2108288]
Venugopalan S, Prasad U, Harun K, Neblett K, Toomey D, Heyman J and Savvides M. 2011. Long range iris acquisition system for stationary and mobile subjects//Proceedings of 2011 International Joint Conference on Biometrics (IJCB). Washington, USA: IEEE: 1-8[DOI: 10.1109/IJCB.2011.6117484http://dx.doi.org/10.1109/IJCB.2011.6117484]
Verkruysse W, Svaasand L O and Nelson J S. 2008. Remote plethysmographic imaging using ambient light. Optics Express, 16(26): 21434-21445[DOI:10.1364/OE.16.021434]
Viola P and Jones M J. 2004. Robust real-time face detection. International Journal of Computer Vision, 57(2): 137-154[DOI:10.1023/B:VISI.0000013087.49260.fb]
Walia G S, Singh T, Singh K and Verma N. 2019. Robust multimodal biometric system based on optimal score level fusion model. Expert Systems with Applications, 116: 364-376[DOI:10.1016/j.eswa.2018.08.036]
Wang C Y and Sun Z N. 2020. A benchmark for iris segmentation. Journal of Computer Research and Development, 57(2): 395-412
王财勇, 孙哲南. 2020. 虹膜分割算法评价基准. 计算机研究与发展, 57(2): 395-412[DOI:10.7544/issn1000-1239.2020.20190092]
Wang C Y, Wang Y L, Xu B Q, He Y, Dong Z W and Sun Z N. 2020b. A lightweight multi-label segmentation network for mobile iris biometrics. A lightweight multi-label segmentation network for mobile iris biometrics//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 1006-1010[DOI: 10.1109/ICASSP40776.2020.9054353http://dx.doi.org/10.1109/ICASSP40776.2020.9054353]
Wang C, Zhang J P, Wang L, Pu J and Yuan X R. 2012. Human identification using temporal information preserving gait template. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11): 2164-2176[DOI:10.1109/TPAMI.2011.260]
Wang C, Zhang Q, Huang C, Liu W Y and Wang X G. 2018a. Mancs: a multi-task attentional network with curriculum sampling for person re-identification//European Conference on Computer Vision. Munich, Germany: Springer: 384-400[DOI: 10.1007/978-3-030-01225-0_23http://dx.doi.org/10.1007/978-3-030-01225-0_23]
Wang F, Xiang X, Cheng J and Yuille A L. 2017a. NormFace: L2hypersphere embedding for face verification//Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, USA: ACM: 1041-1049[DOI: 10.1145/3123266.3123359http://dx.doi.org/10.1145/3123266.3123359].
Wang G A, Yang S, Liu H Y, Wang Z C, Yang Y, Wang S L, Yu G, Zhou E J and Sun J. 2020c. High-order information matters: learning relation and topology for occluded person re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 6448-6457[DOI: 10.1109/CVPR42600.2020.00648http://dx.doi.org/10.1109/CVPR42600.2020.00648]
Wang G A, Zhang T Z, Cheng J, Liu S, Yang Y and Hou Z G. 2019a. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 3622-3631[DOI: 10.1109/ICCV.2019.00372http://dx.doi.org/10.1109/ICCV.2019.00372]
Wang G Q, Han H, Shan S G and Chen X L. 2020d. Cross-domain face presentation attack detection via multi-domain disentangled representation learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 6677-6686[DOI: 10.1109/CVPR42600.2020.00671http://dx.doi.org/10.1109/CVPR42600.2020.00671]
Wang G Q, Sun C M and Sowmya A. 2020e. Learning a compact vein discrimination model with GANerated samples. IEEE Transactions on Information Forensics and Security, 15: 635-650[DOI:10.1109/TIFS.2019.2924553]
Wang G R, Wang G C, Zhang X J, Lai J H and Lin L. 2019b. Weakly supervised person Re-ID: differentiable graphical learning and a new benchmark[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1904.03845v2.pdfhttps://arxiv.org/pdf/1904.03845v2.pdf
Wang G R, Wang G C, Zhang X J, Lai J H and Lin L. 2019c. Weakly supervised person re-identification: cost-effective learning with a new benchmark[EB/OL]. [2021-02-02].https://arxiv.org/pdf/1904.03845.pdfhttps://arxiv.org/pdf/1904.03845.pdf
Wang G X, Kang W X, Wu Q X, Wang Z Y and Gao J B. 2018b. Generative adversarial network (GAN) based data augmentation for palmprint recognition//Proceedings of 2018 Digital Image Computing: Techniques and Applications (DICTA). Canberra, Australia: IEEE: 1-7[DOI: 10.1109/DICTA.2018.8615782http://dx.doi.org/10.1109/DICTA.2018.8615782]
Wang H, Wang Y T, Zhou Z, Ji X, Gong D H, Zhou J C, Li Z F and Liu W. 2018c. CosFace: large margin cosine loss for deep face recognition//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 5265-5274[DOI: 10.1109/CVPR.2018.00552http://dx.doi.org/10.1109/CVPR.2018.00552]
Wang J and Wang G Q. 2017. Quality-specific hand vein recognition system. IEEE Transactions on Information Forensics and Security, 12(11): 2599-2610[DOI:10.1109/TIFS.2017.2713340]
Wang J D, Sun K, Cheng T H, Jiang B R, Deng C R, Zhao Y, Liu D, Mu Y D, Tan M K, Wang X G, Liu W Y and Xiao B. 2020f. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-99[DOI:10.1109/TPAMI.2020.2983686]
Wang J G, Yau W Y and Suwandy A. 2008a. Feature-level fusion of palmprint and palm vein for person identification based on a "Junction Point" representation//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE: 253-256[DOI: 10.1109/ICIP.2008.4711739http://dx.doi.org/10.1109/ICIP.2008.4711739]
Wang J G, Yau W Y, Suwandy A and Sung E. 2007a. Fusion of palmprint and palm vein images for person recognition based on "laplacianpalm" feature//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE: 1-8[DOI: 10.1109/CVPR.2007.383386http://dx.doi.org/10.1109/CVPR.2007.383386]
Wang J G, Yau W Y, Suwandy A and Sung E. 2008b. Person recognition by fusing palmprint and palm vein images based on "Laplacianpalm" representation. Pattern Recognition, 41(5): 1514-1527[DOI:10.1016/j.patcog.2007.10.021]
Wang J, Wang G Q and Zhou M. 2018d. Bimodal vein data mining via cross-selected-domain knowledge transfer. IEEE Transactions on Information Forensics and Security, 13(3): 733-744[DOI:10.1109/TIFS.2017.2766039]
Wang K and Kumar A. 2019. Toward more accurate iris recognition using dilated residual features. IEEE Transactions on Information Forensics and Security, 14(12): 3233-3245[DOI:10.1109/TIFS.2019.2913234]
Wang K J and Yuan Z. 2007. Finger vein recognition based on wavelet moment fused with PCA transform. Pattern Recognition and Artificial Intelligence, 20(5): 692-697
王科俊, 袁智. 2007. 基于小波矩融合PCA变换的手指静脉识别. 模式识别与人工智能, 20(5): 692-697[DOI:10.3969/j.issn.1003-6059.2007.05.018]
Wang L L, Wang J, Li L T, Zheng T F and Soong F K. 2016. Improving speaker verification performance against long-term speaker variability. Speech Communication, 79: 14-29[DOI:10.1016/j.specom.2016.02.004]
Wang L Y, Leedham G and Cho D S Y. 2008c. Minutiae feature analysis for infrared hand vein pattern biometrics. Pattern Recognition, 41(3): 920-929[DOI:10.1016/j.patcog.2007.07.012]
Wang L Y, Zhang K B, Ren M, Wang Y L and Sun Z N. 2020g. Recognition oriented iris image quality assessment in the feature space//Proceedings of 2020 International Joint Conference on Biometrics. Houston, USA: IEEE: 1-9[DOI: 10.1109/IJCB48548.2020.9304896http://dx.doi.org/10.1109/IJCB48548.2020.9304896]
Wang L, Tan T N, Hu W M and Ning H Z. 2003a. Automatic gait recognition based on statistical shape analysis. IEEE Transactions on Image Processing, 12(9): 1120-1131[DOI:10.1109/TIP.2003.815251]
Wang L, Tan T N, Ning H Z and Hu W M. 2003b. Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12): 1505-1518[DOI:10.1109/TPAMI.2003.1251144]
Wang P and Qin H F. 2019. Palm-vein verification based on U-Net. IOP Conference Series: Materials Science and Engineering, 806: 012043[DOI:10.1088/1757-899X/806/1/012043]
Wang Q, Lee K A and Koshinaka T. 2020h. Using multi-resolution feature maps with convolutional neural networks for anti-spoofing in ASV//Proceedings of the Odyssey 2020: The Speaker and Language Recognition Workshop. Tokyo, Japan: [s. n.]: 138-142
Wang R, Wang G Y, Chen Z, Zeng Z G and Wang Y. 2014a. A palm vein identification system based on Gabor wavelet features. Neural Computing and Applications, 24(1): 161-168[DOI:10.1007/s00521-013-1514-8]
Wang R, Xu J F, Ma L, Xie X F, Huang Y H, Wang J and Liu Y. 2019e. FakeSpotter: a simple yet robust baseline for spotting AI-synthesized fake faces[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1909.06122.pdfhttps://arxiv.org/pdf/1909.06122.pdf
Wang S Y, Wang O, Owens A, Zhang R and Efros A A. 2019f. Detecting photoshopped faces by scripting photoshop[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1906.05856v1.pdfhttps://arxiv.org/pdf/1906.05856v1.pdf
Wang T C, Liu M Y, Tao A, Liu G L, Kautz J and Catanzaro B. 2019g. Few-shot video-to-video synthesis[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1910.12713v1.pdfhttps://arxiv.org/pdf/1910.12713v1.pdf
Wang T, Yang J W, Lei Z, Liao S C and Li S Z. 2013. Face liveness detection using 3D structure recovered from a single camera//Proceedings of 2013 International Conference on Biometrics (ICB). Madrid, Spain: IEEE: 1-6[DOI: 10.1109/ICB.2013.6612957http://dx.doi.org/10.1109/ICB.2013.6612957]
Wang X Y, Bo L F and Li F X. 2019h. Adaptive wing loss for robust face alignment via heatmap regression//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6970-6980[DOI: 10.1109/ICCV.2019.00707http://dx.doi.org/10.1109/ICCV.2019.00707]
Wang X, Thome N and Cord M. 2017b. Gaze latent support vector machine for image classification improved by weakly supervised region selection. Pattern Recognition, 72: 59-71[DOI:10.1016/j.patcog.2017.07.001]
Wang Y C, Chen Z Z, Wu F and Wang G. 2018e. Person re-identification with cascaded pairwise convolutions//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1470-1478[DOI: 10.1109/CVPR.2018.00159http://dx.doi.org/10.1109/CVPR.2018.00159]
Wang Y C, Hassebrook L G and Lau D L. 2010a. Data acquisition and processing of 3-D fingerprints. IEEE Transactions on Information Forensics and Security, 5(4): 750-760[DOI:10.1109/TIFS.2010.2062177]
Wang Y D, Li K F and Cui J L. 2010b. Hand-dorsa vein recognition based on partition local binary pattern//Proceedings of 2010 IEEE 10th International Conference on Signal Processing Proceedings. Beijing, China: IEEE: 1671-1674[DOI: 10.1109/ICOSP.2010.5656717http://dx.doi.org/10.1109/ICOSP.2010.5656717]
Wang Y D, Zhang K and Shark L K. 2014b. Personal identification based on multiple keypoint sets of dorsal hand vein images. IET Biometrics, 3(4): 234-245[DOI:10.1049/iet-bmt.2013.0042]
Wang Y H, Tan T N and Jain A K. 2003c. Combining face and iris biometrics for identity verification//Proceedings of International Conference on Audio- and Video-BasedBiometric Person Authentication. Guildford, UK: Springer: 805-813[DOI: 10.1007/3-540-44887-X_93http://dx.doi.org/10.1007/3-540-44887-X_93]
Wang Y N, Liao S C and Shao L. 2020i. Surpassing real-world source training data: random 3D characters for generalizable person re-identification//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 3422-3430[DOI: 10.1145/3394171.3413815http://dx.doi.org/10.1145/3394171.3413815]
Wang Y X, Skerry-Ryan R J, Stanton D, Wu Y H, Weiss R J, Jaitly N, Yang Z H, Xiao Y, Chen Z F, Bengio S, Le Q, Agiomyrgiannakis Y, Clark R and Saurous R A. 2017c. Tacotron: towards end-to-end speech synthesis[EB/OL]. [2021-02-03].http://export.arxiv.org/pdf/1703.10135.pdfhttp://export.arxiv.org/pdf/1703.10135.pdf
Wei J Z, Wang Y L, Wu X, He Z F, He R and Sun Z N. 2019. Cross-sensor iris recognition using adversarial strategy and sensor-specific information//Proceedings of the 10th IEEE International Conference on Biometrics Theory, Applications, and Systems. Tampa, USA: IEEE: 1-8[DOI: 10.1109/BTAS46853.2019.9186008http://dx.doi.org/10.1109/BTAS46853.2019.9186008]
Wei L H, Zhang S L, Gao W and Tian Q. 2018. Person transfer GAN to bridge domain gap for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 79-88[DOI: 10.1109/CVPR.2018.00016http://dx.doi.org/10.1109/CVPR.2018.00016]
Wei Z S, Tan T N, Sun Z N and Cui J L. 2005. Robust and fast assessment of iris image quality//Proceedings of International Conference on Biometrics. Berlin, Germany: Springer: 464-471[DOI: 10.1007/11608288_62http://dx.doi.org/10.1007/11608288_62]
Weinberger K Q and Saul L K. 2009. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10: 207-244
Wen D, Han H and Jain A K.2015. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4): 746-761[DOI:10.1109/TIFS.2015.2400395]
Wen Y D, Zhang K P, Li Z F and Qiao Y. 2016. A discriminative feature learning approach for deep face recognition//Proceedings of European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 499-515[DOI: 10.1007/978-3-319-46478-7_31http://dx.doi.org/10.1007/978-3-319-46478-7_31]
Whitelam C, Taborsky E, Blanton A, Maze B, Adams J, Miller T, Kalka N, Jain A K, Duncan J A, Allen K, Cheney J and Grother P. 2017. IARPA Janus benchmark-B face dataset//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE: 592-600[DOI: 10.1109/CVPRW.2017.87http://dx.doi.org/10.1109/CVPRW.2017.87]
Wilburn B, Joshi N, Vaish V, Talvala E V, Antunez E, Barth A, Adams A, Horowitz M and Levoy M. 2005. High performance imaging using large camera arrays//Proceedings of the ACM SIGGRAPH. Los Angeles, USA: ACM: 765-776[DOI: 10.1145/1186822.1073259http://dx.doi.org/10.1145/1186822.1073259]
Wildes R P. 1997. Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 85(9): 1348-1363[DOI:10.1109/5.628669]
Wiles O, Koepke A S and Zisserman A. 2018. Self-supervised learning of a facial attribute embedding from video[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1808.06882.pdfhttps://arxiv.org/pdf/1808.06882.pdf
Wolf T, Babaee M and Rigoll G. 2016. Multi-view gait recognition using 3D convolutional neural networks//Proceedings of 2006 IEEE International Conference on Image Processing (ICIP). Phoenix, USA: IEEE: 4165-4169[DOI: 10.1109/ICIP.2016.7533144http://dx.doi.org/10.1109/ICIP.2016.7533144]
Wright J, Yang A Y, Ganesh A, Sastry S S and Ma Y. 2009. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2): 210-227[DOI:10.1109/TPAMI.2008.79]
Wu A C, Zheng W S and Lai J H. 2017a. Robust depth-based person re-identification. IEEE Transactions on Image Processing, 26(6): 2588-2603[DOI:10.1109/TIP.2017.2675201]
Wu A C, Zheng W S and Lai J H. 2019. Unsupervised person re-identification by camera-aware similarity consistency learning//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6921-6930[DOI: 10.1109/ICCV.2019.00702http://dx.doi.org/10.1109/ICCV.2019.00702]
Wu A C, Zheng W S, Gong S G and Lai J H. 2020a. RGB-IR person re-identification by cross-modality similarity preservation. International Journal of Computer Vision, 128: 1765-1785[DOI:10.1007/s11263-019-01290-1]
Wu D, Pigou L, Kindermans P J, Le N D H, Shao L, Dambre J and Odobez J M. 2016a. Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8): 1583-1597[DOI:10.1109/TPAMI.2016.2537340]
Wu H B, Liu A T and Lee H Y. 2020b. Defense for black-box attacks on anti-spoofing models by self-supervised learning[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2006.03214.pdfhttps://arxiv.org/pdf/2006.03214.pdf
Wu J D and Liu C T. 2011. Finger-vein pattern identification using principal component analysis and the neural network technique. Expert Systems with Applications, 38(5): 5423-5427[DOI:10.1016/j.eswa.2010.10.013]
Wu K S, Lee J C, Lo T M, Chang K C and Chang C P. 2013. A secure palm vein recognition system. Journal of Systems and Software, 86(11): 2870-2876[DOI:10.1016/j.jss.2013.06.065]
Wu L F, Ma Y K, Zhou P and Zheng W S. 2016. Review of biometric template protection. Chinese Journal of Scientific Instrument, 37(11): 2407-2420
毋立芳, 马玉琨, 周鹏, 郑伟诗. 2016. 生物特征模板保护综述. 仪器仪表学报, 37(11): 2407-2420[DOI:10.3969/j.issn.0254-3087.2016.11.001]
Wu L, Shen C H and Hengel A V D. 2016b. Personnet: Person Re-Identification with Deep Convolutional Neural Networks[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1601.07255.pdfhttps://arxiv.org/pdf/1601.07255.pdf
Wu W Y, Qian C, Yang S, Wang Q, Cai Y C and Zhou Q. 2018a. Look at boundary: a boundary-aware face alignment algorithm//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2129-2138[DOI: 10.1109/CVPR.2018.00227http://dx.doi.org/10.1109/CVPR.2018.00227]
Wu W, Zhang Y X, Li C, Qian C and Loy C C. 2018b. ReenactGAN: learning to reenact faces via boundary transfer//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 622-638[DOI: 10.1007/978-3-030-01246-5_37http://dx.doi.org/10.1007/978-3-030-01246-5_37]
Wu X Q, Zhang D and Wang K Q. 2003. Fisherpalms based palmprint recognition. Pattern Recognition Letters, 24(15): 2829-2838[DOI:10.1016/S0167-8655(03)00141-7]
Wu X, He R, Sun Z N and Tan T N. 2018c. A light CNN for deep face representation with noisy labels. IEEETransactions on Information Forensics and Security, 13(11): 2884-2896[DOI:10.1109/TIFS.2018.2833032]
Wu Y, Lin Y T, Dong X Y, Yan Y, Ouyang W L and Yang Y. 2018d. Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 5177-5186[DOI: 10.1109/CVPR.2018.00543http://dx.doi.org/10.1109/CVPR.2018.00543]
Wu Z F, Huang Y Z, Wang L, Wang X G and Tan T N. 2017b. A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2): 209-226[DOI:10.1109/TPAMI.2016.2545669]
Wu Z H and Yang Y C. 2009. Models and Methods for Speaker Recognition. Beijing: Tsinghua University Press
吴朝晖, 杨莹春. 2009. 说话人识别模型与方法. 北京: 清华大学出版社
Xiao L H, Sun Z N, He R and Tan T N. 2013a. Coupled feature selection for cross-sensor iris recognition//Proceedings of 2013 IEEE 6th International Conference on Biometrics: Theory, Applications and Systems (BTAS). Arlington, USA: IEEE: 1-6[DOI: 10.1109/BTAS.2013.6712752http://dx.doi.org/10.1109/BTAS.2013.6712752]
Xiao L H, Sun Z N, He R and Tan T N. 2013b. Margin based feature selection for cross-sensor iris recognition via linear programming//Proceedings of the 2nd IAPR Asian Conference on Pattern Recognition. Naha, Japan: IEEE: 246-250[DOI: 10.1109/ACPR.2013.34http://dx.doi.org/10.1109/ACPR.2013.34]
Xiao X, Tian X H, Du S, Xu H H, Chng E S and Li H Z. 2015. Spoofing speech detection using high dimensional magnitude and phase features: the NTU approach for ASVspoof 2015 challenge//Proceedings of the INTERSPEECH 2015. Dresden, Germany: [s. n.]: 2052-2056
Xie C H and Kumar A. 2019. Finger vein identification using convolutional neural network and supervised discrete hashing. Pattern Recognition Letters, 119: 148-156[DOI:10.1016/j.patrec.2017.12.001]
Xiong X H and de la Torre F. 2013. Supervised descent method and its applications to face alignment//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 532-539[DOI: 10.1109/CVPR.2013.75http://dx.doi.org/10.1109/CVPR.2013.75]
Xu B Q, He L X, Liao X Y, Liu W, Sun Z N and Mei T. 2020. Black re-ID: a head-shoulder descriptor for the challenging problem of person re-identification//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 673-681[DOI: 10.1145/3394171.3414056http://dx.doi.org/10.1145/3394171.3414056]
Xu R Z, Zhou Z M, Zhang W N and Yong Y. 2017. Face transfer with generative adversarial network[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1710.06090.pdfhttps://arxiv.org/pdf/1710.06090.pdf
Yadav S, Chen C J and Ross A. 2019. Synthesizing iris images using RaSGAN with application in presentation attack detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 2422-2430[DOI: 10.1109/CVPRW.2019.00297http://dx.doi.org/10.1109/CVPRW.2019.00297]
Yam C Y, Nixon M S and Carter J N. 2002. Gait recognition by walking and running: a model-based approach//Proceedings of the 5th Asian Conference on Computer Vision. Melbourne, Australia: [s. n.]: 1-6
Yam C Y, Nixon M S and Carter J N. 2004. Automated person recognition by walking and running via model-based approaches. Pattern Recognition, 37(5): 1057-1072[DOI:10.1016/j.patcog.2003.09.012]
Yaman D, Eyiokur F I and Ekenel H K. 2019. Multimodal age and gender classification using ear and profile face images//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE: 2414-2421[DOI: 10.1109/CVPRW.2019.00296http://dx.doi.org/10.1109/CVPRW.2019.00296]
Yambay D, Becker B, Kohli N, Yadav D, Czajka A, Bowyer K W, Schuckers S, Singh R, Vatsa M, Noore A, Grananiello D, Sansone C, Verdoliva L, He L X, Ru Y W, Li H Q, Liu N F, Sun Z N and Tan T N. 2017. LivDet iris 2017-Iris liveness detection competition 2017//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 733-741[DOI: 10.1109/BTAS.2017.8272763http://dx.doi.org/10.1109/BTAS.2017.8272763]
Yan X K, Kang W X, Deng F Q and Wu Q X. 2015. Palm vein recognition based on multi-sampling and feature-level fusion. Neurocomputing, 151: 798-807[DOI:10.1016/j.neucom.2014.10.019]
Yang A Y, Zhou Z H, Balasubramanian A G, Sastry S S and Ma Y. 2013. Fast ℓ1-minimization algorithms for robust face recognition. IEEE Transactions on Image Processing, 22(8): 3234-3246[DOI:10.1109/TIP.2013.2262292]
Yang B and Martiri E. 2015. Using honey templates to augment hash based biometric template protection//Proceedings of the 39th IEEE Annual Computer Software and Applications Conference. Taichung, China: IEEE: 312-316[DOI: 10.1109/COMPSAC.2015.247http://dx.doi.org/10.1109/COMPSAC.2015.247]
Yang F X, Zhong Z, Luo Z M, Lian S and Li S Z. 2020a. Leveraging virtual and real person for unsupervised person re-identification. IEEE Transactions on Multimedia, 22(9): 2444-2453[DOI:10.1109/TMM.2019.2957928]
Yang J F and Shi Y H. 2012. Finger-vein ROI localizationand vein ridge enhancement. Pattern Recognition Letters, 33(12): 1569-1579[DOI:10.1016/j.patrec.2012.04.018]
Yang J F and Yang J L. 2009. Multi-channel Gabor filter design for finger-vein image enhancement//Proceedings of the 5th International Conference on Image and Graphics. Xi'an, China: IEEE: 87-91[DOI: 10.1109/ICIG.2009.170http://dx.doi.org/10.1109/ICIG.2009.170]
Yang J F, Zhang B and Shi Y H. 2012a. Scattering removal for finger-vein image restoration. Sensors, 12(3): 3627-3640[DOI:10.3390/s120303627]
Yang J R, Zheng W S, Yang Q Z, Chen Y C and Tian Q. 2020b. Spatial-temporal graph convolutional network for video-based person re-identification//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3286-3296[DOI: 10.1109/CVPR42600.2020.00335http://dx.doi.org/10.1109/CVPR42600.2020.00335]
YangJ W, Lei Z and Li S Z. 2014a. Learn convolutional neural network for face anti-spoofing[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1408.5601v2.pdfhttps://arxiv.org/pdf/1408.5601v2.pdf
Yang J, Liu Q S and Zhang K H. 2017. Stacked hourglass network for robust facial landmark localisation//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE: 2025-2033[DOI: 10.1109/CVPRW.2017.253http://dx.doi.org/10.1109/CVPRW.2017.253]
Yang L, Yang G P, Xi X M, Su K, Chen Q and Yin Y L. 2019a. Finger vein code: from indexing to matching. IEEE Transactions on Information Forensics and Security, 14(5): 1210-1223[DOI:10.1109/TIFS.2018.2871778]
Yang M, Zhang L and Zhang D. 2012b. Efficient misalignment-robust representation for real-time face recognition//Proceedings of European Conference on Computer Vision. Florence, Italy: Springer: 850-863[DOI: 10.1007/978-3-642-33718-5_61http://dx.doi.org/10.1007/978-3-642-33718-5_61]
Yang Q Z, Wu A C and Zheng W S. 2019b. Person re-identification by contour sketch under moderate clothing change. IEEE Transactions on Pattern Analysis and Machine Intelligence: #2960509[DOI:10.1109/TPAMI.2019.2960509]
Yang Q Z, Yu H X, Wu A C and Zheng W S. 2019c. Patch-based discriminative feature learning for unsupervised person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 3628-3637[DOI: 10.1109/CVPR.2019.00375http://dx.doi.org/10.1109/CVPR.2019.00375]
Yang S, Luo P, Loy C C and Tang X O. 2016. Wider face: a face detection benchmark//Proceedings of 2016 IEEE Conference on ComputerVision and Pattern Recognition. Las Vegas, USA: IEEE: 5525-5533[DOI: 10.1109/CVPR.2016.596http://dx.doi.org/10.1109/CVPR.2016.596]
Yang W L, Luo W, Kang W X, Huang Z X and Wu Q X. 2020c. FVRAS-Net: an embedded finger-vein recognition and AntiSpoofing system using a unified CNN. IEEE Transactions on Instrumentation and Measurement, 69(11): 8690-8701[DOI:10.1109/TIM.2020.3001410]
Yang W M, Huang X L, Zhou F and Liao Q M. 2014b. Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion. Information Sciences, 268: 20-32[DOI:10.1016/j.ins.2013.10.010]
Yang X F and Sun D M. 2017. Feature-level fusion of palmprint and palm vein base on canonical correlation analysis//Proceedings of the 13th IEEE International Conference on Signal Processing. Chengdu, China: IEEE: 1353-1356[DOI: 10.1109/ICSP.2016.7878047http://dx.doi.org/10.1109/ICSP.2016.7878047]
Yang X, Feng J J and Zhou J. 2014c. Localized dictionaries based orientation field estimation for latent fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5): 955-969[DOI:10.1109/TPAMI.2013.184]
Yang X, Li Y Z and Lyu S W. 2019d. Exposing deep fakes using inconsistent head poses//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK: IEEE: 8261-8265[DOI: 10.1109/ICASSP.2019.8683164http://dx.doi.org/10.1109/ICASSP.2019.8683164]
Yang X, Luo W H, Bao L C, Gao Y, Gong D H, Zheng S B, Li Z F and Liu W. 2019e. Face anti-spoofing: model matters, so does data//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 3502-3511[DOI: 10.1109/CVPR.2019.00362http://dx.doi.org/10.1109/CVPR.2019.00362]
Yang X, Wei F Y, Zhang H Y and Zhu J. 2019f. Design and interpretation of universal adversarial patches in face detection[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1912.05021.pdfhttps://arxiv.org/pdf/1912.05021.pdf
Yang X, Yang D C, Dong Y P, Yu W J, Su H and Zhu J. 2020d. Delving into the adversarial robustness on face recognition[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2007.04118.pdfhttps://arxiv.org/pdf/2007.04118.pdf
Yao A C. 1982. Protocols for secure computations//Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. Chicago, USA: IEEE: 160-164[DOI: 10.1109/SFCS.1982.38http://dx.doi.org/10.1109/SFCS.1982.38]
Ye M, Ma A J, Zheng L, Li J W and Yuen P C. 2017. Dynamic label graph matching for unsupervised video re-identification//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 5152-5160[DOI: 10.1109/ICCV.2017.550http://dx.doi.org/10.1109/ICCV.2017.550]
Yi D, Lei Z, Liao S C and Li S Z. 2014. Learning face representation from scratch[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1411.7923.pdfhttps://arxiv.org/pdf/1411.7923.pdf
Yin J H, Wu A C and Zheng W S. 2020. Fine-grained person re-identification. International Journal of Computer Vision, 128(6): 1654-1672[DOI:10.1007/s11263-019-01259-0]
Yin Y L, Liu L L and Sun X W. 2011. SDUMLA-HMT: a multimodal biometric database//Proceedings of Chinese Conference on Biometric Recognition. Beijing, China: Springer: 260-268[DOI: 10.1007/978-3-642-25449-9_33http://dx.doi.org/10.1007/978-3-642-25449-9_33]
Yin Z, Zheng W S, Wu A C, Yu H X, Wan H, Guo X W, Huang F Y and Lai J H. 2018. Adversarial attribute-image person re-identification//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: AAAI Press: 1100-1106[DOI: 10.24963/ijcai.2018/153http://dx.doi.org/10.24963/ijcai.2018/153]
Yoo J H, Nixon M S and Harris C J. 2002a. Extracting human gait signatures by body segment properties//Proceedings of the 5th IEEE Southwest Symposium on Image Analysis and Interpretation. Sante Fe, USA: IEEE: 35-39[DOI: 10.1109/IAI.2002.999885http://dx.doi.org/10.1109/IAI.2002.999885]
Yoo J H, Nixon M S and Harris C J. 2002b. Model-driven statistical analysis of human gait motion//Proceedings of the International Conference on Image Processing. Rochester, USA: IEEE: I-285-I-288[DOI: 10.1109/ICIP.2002.1038015http://dx.doi.org/10.1109/ICIP.2002.1038015]
Yu H X and Zheng W S. 2020. Weakly supervised discriminative feature learning with state information for person identification//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 5527-5537[DOI: 10.1109/CVPR42600.2020.00557http://dx.doi.org/10.1109/CVPR42600.2020.00557]
Yu H X, Wu A C and Zheng W S. 2017a. Cross-view asymmetric metric learning for unsupervised person re-identification//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 994-1002[DOI: 10.1109/iccv.2017.113http://dx.doi.org/10.1109/iccv.2017.113]
Yu H X, Wu A C and Zheng W S. 2020a. Unsupervised person re-identification by deep asymmetric metric embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4): 956-973[DOI:10.1109/TPAMI.2018.2886878]
Yu H X, Zheng W S, Wu A C, Guo X W, Gong S G and Lai J H. 2019a. Unsupervised person re-identification by soft multilabel learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 2143-2152[DOI: 10.1109/CVPR.2019.00225http://dx.doi.org/10.1109/CVPR.2019.00225]
Yu S J, Li S H, Chen D P, Zhao R, Yan J J and Qiao Y. 2020b. COCAS: a large-scale clothes changing person dataset for re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3397-3406[DOI: 10.1109/CVPR42600.2020.00346http://dx.doi.org/10.1109/CVPR42600.2020.00346]
Yu S Q, Chen H F, Reyes E B G and Poh N. 2017b. GaitGAN: invariant gait feature extraction using generative adversarial networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE: 532-539[DOI: 10.1109/CVPRW.2017.80http://dx.doi.org/10.1109/CVPRW.2017.80]
Yu S Q, Chen H F, Wang Q, Shen L L and Huang Y Z. 2017c. Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing, 239: 81-93[DOI:10.1016/j.neucom.2017.02.006]
Yu S Q, Tan D L and Tan T N. 2006. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE: 441-444[DOI: 10.1109/ICPR.2006.67http://dx.doi.org/10.1109/ICPR.2006.67]
Yu S Q, Wang L, Hu W M and Tan T N. 2004. Gait analysis for human identification in frequency domain//Proceedings of the 3rd International Conference on Image and Graphics. Hong Kong, China: IEEE: 282-285[DOI: 10.1109/ICIG.2004.72http://dx.doi.org/10.1109/ICIG.2004.72]
Yu S Q, Wang Q and Huang Y Z. 2013. A large RGB-D gait dataset and the baseline algorithm//Proceedings of Chinese Conference on Biometric Recognition. Jinan, China: Springer: 417-424[DOI: 10.1007/978-3-319-02961-0_52http://dx.doi.org/10.1007/978-3-319-02961-0_52]
Yu Z T, Peng W, Li X B, Hong X P and Zhao G Y. 2019b. Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 151-160[DOI: 10.1109/ICCV.2019.00024http://dx.doi.org/10.1109/ICCV.2019.00024]
Yuksel A, Akarun L and Sankur B. 2011. Hand vein biometry based on geometry and appearance methods. IET Computer Vision, 5(6): 398-406[DOI:10.1049/iet-cvi.2010.0175]
Zhang B, Li J, Wang Y B, Tai Y, Wang C J, Li J L, Huang F Y, Xia Y L, Pei W J and Ji R R. 2020a. ASFD: automatic and scalable face detector[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2003.11228.pdfhttps://arxiv.org/pdf/2003.11228.pdf
Zhang C Y, Wu L and Wang Y. 2019a. Crossing generative adversarial networks for cross-view person re-identification. Neurocomputing, 340: 259-269[DOI:10.1016/j.neucom.2019.01.093]
Zhang C, Hou G Q, Zhang Z X, Sun Z N and Tan T N. 2018a. Efficient auto-refocusing for light field camera. Pattern Recognition, 81: 176-189[DOI:10.1016/j.patcog.2018.03.020]
Zhang D P and Shu W. 1999. Two novel characteristics in palmprint verification: datum point invariance and line feature matching. Pattern Recognition, 32(4): 691-702[DOI:10.1016/S0031-3203(98)00117-4]
Zhang D, Guo Z H, Lu G M, Zhang L and Zuo W M. 2010a. An online system of multispectral palmprint verification. IEEE Transactions on Instrumentation and Measurement, 59(2): 480-490[DOI:10.1109/TIM.2009.2028772]
Zhang D, Kong W K, You J and Wong M. 2003. Online palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9): 1041-1050[DOI:10.1109/TPAMI.2003.1227981]
Zhang D, Zuo W M and Yue F. 2012. A comparative study of palmprint recognition algorithms. ACM Computing Surveys, 44(1): #2[DOI:10.1145/2071389.2071391]
Zhang E H, Zhao Y W and Xiong W. 2010b. Active energy image plus 2DLPP for gait recognition. Signal Processing, 90(7): 2295-2302[DOI:10.1016/j.sigpro.2010.01.024]
Zhang H, Goodfellow I, Metaxas D and Odena A. 2019b. Self-attention generative adversarial networks//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: [s. n.]: 7354-7363
Zhang H, Sun Z N, Tan T N and Wang J Y. 2011. Learning hierarchical visual codebook for iris liveness detection//Proceedings of the International Joint Conference on Biometrics. Washington D C, USA: IEEE: 1-6
Zhang J and Yang J F. 2009. Finger-vein image enhancement based on combination of gray-level grouping and circular Gabor filter//Proceedings of 2009 International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE: 1-4[DOI: 10.1109/ICIECS.2009.5363431http://dx.doi.org/10.1109/ICIECS.2009.5363431]
Zhang J, Shan S G, Kan M N and Chen X L. 2014a. Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment//Proceedings of European Conference on Computer Vision. Zurich, Switzerland: Springer: 1-16[DOI: 10.1007/978-3-319-10605-2_1http://dx.doi.org/10.1007/978-3-319-10605-2_1]
Zhang K B, Shen Z T, Wang Y L and Sun Z N. 2020b. All-in-focus iris camera with a great capture volume//Proceedings of 2020 IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE: 1-9[DOI: 10.1109/IJCB48548.2020.9304932http://dx.doi.org/10.1109/IJCB48548.2020.9304932]
Zhang K P, Zhang Z P, Li Z F and Qiao Y. 2016. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10): 1499-1503[DOI:10.1109/LSP.2016.2603342]
Zhang L H, Tan S and Yang J. 2017a. Hearing your voice is not enough: an articulatory gesture based liveness detection for voice authentication//Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas Texas, USA: ACM: 57-71[DOI: 10.1145/3133956.3133962http://dx.doi.org/10.1145/3133956.3133962]
Zhang L, Cheng Z X, Shen Y and Wang D Q. 2018b. Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset. Symmetry, 10(4): 78[DOI:10.3390/sym10040078]
Zhang L, Li L D, Yang A Q, Shen Y and Yang M. 2017b. Towards contactless palmprint recognition: a novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recognition, 69: 199-212[DOI:10.1016/j.patcog.2017.04.016]
Zhang Q, Li H Q, Sun Z N and Tan T N. 2018c. Deep feature fusion for iris and periocular biometrics on mobile devices. IEEE Transactions on Information Forensics and Security, 13(11): 2897-2912[DOI:10.1109/TIFS.2018.2833033]
Zhang R, Vogler C and Metaxas D. 2007. Human gait recognition at sagittal plane. Image and Vision Computing, 25(3): 321-330[DOI:10.1016/j.imavis.2005.10.007]
Zhang S F, Zhu X Y, Lei Z, Shi H L, Wang X B and Li S Z. 2017c. FaceBoxes: a CPU real-time face detector with high accuracy//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 1-9[DOI: 10.1109/BTAS.2017.8272675http://dx.doi.org/10.1109/BTAS.2017.8272675]
Zhang X, Karaman S and Chang S F. 2019c. Detecting and simulating artifacts in GAN fake images[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1907.06515.pdfhttps://arxiv.org/pdf/1907.06515.pdf
Zhang Y K, Jiang Z Y, Villalba J and Dehak N. 2020c. Black-box attacks on spoofing countermeasures using transferability of adversarial examples//Proceedings of the INTERSPEECH 2020. Shanghai, China: [s. n.]: 4238-4242[DOI: 10.21437/Interspeech.2020-2834http://dx.doi.org/10.21437/Interspeech.2020-2834]
Zhang Y L, Shi D Q, Zhan X S, Cao D, Zhu K Y and Li Z W. 2019d. Slim-resCNN: a deep residual convolutional neural network for fingerprint liveness detection. IEEE Access, 7: 91476-91487[DOI:10.1109/ACCESS.2019.2927357]
Zhang Y, Zheng L L and Thing V L L. 2017d. Automated face swapping and its detection//Proceedings of the 2nd International Conference on Signal and Image Processing (ICSIP). Singapore, Singapore: IEEE: 15-19[DOI: 10.1109/SIPROCESS.2017.8124497http://dx.doi.org/10.1109/SIPROCESS.2017.8124497]
Zhang Z H and Troje N F. 2005. View-independent person identification from human gait. Neurocomputing, 69(1/3): 250-256[DOI:10.1016/j.neucom.2005.06.002]
Zhang Z P, Luo P, Loy C C and Tang X O. 2014b. Faciallandmark detection by deep multi-task learning//Proceedings of European Conference on Computer Vision. Zurich, Switzerland: Springer: 94-108[DOI: 10.1007/978-3-319-10599-4_7http://dx.doi.org/10.1007/978-3-319-10599-4_7]
Zhang Z Y, Tran L, Yin X, Atoum Y, Liu X M, Wan J and Wang N X. 2019e. Gait recognition via disentangled representation learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4705-4714[DOI: 10.1109/CVPR.2019.00484http://dx.doi.org/10.1109/CVPR.2019.00484]
Zhang Z Z, Lan C L, Zeng W J and Chen Z B. 2019f. Densely semantically aligned person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 667-676[DOI: 10.1109/CVPR.2019.00076http://dx.doi.org/10.1109/CVPR.2019.00076]
Zhao G Y, Liu G Y, Li H and Pietikainen M. 2006. 3D gait recognition using multiple cameras//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK: IEEE: 529-534[DOI: 10.1109/FGR.2006.2http://dx.doi.org/10.1109/FGR.2006.2]
Zhao J J, Tian H L, Xu W X and Li X. 2009. A new approach to hand vein image enhancement//Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation. Changsha, China: IEEE: 499-501[DOI: 10.1109/ICICTA.2009.127http://dx.doi.org/10.1109/ICICTA.2009.127]
Zhao S Z, Gao C X, Zhang J, Cheng H, Han C C, Jiang X Y, Guo X W, Zheng W S, Sang N and Sun X. 2020. Do not disturb me: person re-identification under the interference of other pedestrians//Proceedings of European Conference on Computer Vision. Glasgow, United Kingdom: Springer: 647-663[DOI: 10.1007/978-3-030-58539-6_39http://dx.doi.org/10.1007/978-3-030-58539-6_39]
Zhao Z J and Kumar A. 2017. Towards more accurate iris recognition using deeply learned spatially corresponding features//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 3829-3838[DOI: 10.1109/ICCV.2017.411http://dx.doi.org/10.1109/ICCV.2017.411]
Zhao Z J and Kumar A. 2019. A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recognition, 93: 546-557[DOI:10.1016/j.patcog.2019.04.010]
Zheng L L, Duffner S, Idrissi K, Garcia C and Baskurt A. 2016a. Siamese multi-layer perceptrons for dimensionality reduction and face identification. Multimedia Tools and Applications, 75(9): 5055-5073[DOI:10.1007/s11042-015-2847-3]
Zheng L, Shen L Y, Tian L, Wang S J, Wang J D and Tian Q. 2015a. Scalable person re-identification: a benchmark//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1116-1124[DOI: 10.1109/ICCV.2015.133http://dx.doi.org/10.1109/ICCV.2015.133]
Zheng L, Zhang H H, Sun S Y, Chandraker M, Yang Y and Tian Q. 2017a. Person re-identification in the wild//Proceedings of 2017 IEEE International Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3346-3355[DOI: 10.1109/CVPR.2017.357http://dx.doi.org/10.1109/CVPR.2017.357]
Zheng T F and Li L T. 2017. Robustness-Related Issues in Speaker Recognition. Singapore: Springer[DOI:10.1007/978-981-10-3238-7]
Zheng T F. 2020. To push on the systematism of trusted identity authentication technologies. Journal of Information Security Research, 6(7): #574
Zheng W S, Gong S G and Xiang T. 2013. Reidentification by relative distance comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3): 653-668[DOI:10.1109/TPAMI.2012.138]
Zheng W S, Gong S G and Xiang T. 2016b. Towards open-world person re-identification by one-shot group-based verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3): 591-606[DOI:10.1109/TPAMI.2015.2453984]
Zheng W S, Li X, Xiang T, Liao S C, Lai J H and Gong S G. 2015b. Partial person re-identification//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 4678-4686[DOI: 10.1109/ICCV.2015.531http://dx.doi.org/10.1109/ICCV.2015.531]
Zheng Z D, Yang X D, Yu Z D, Zheng L, Yang Y and Kautz J. 2019. Joint discriminative and generative learning for person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 2133-2142[DOI: 10.1109/CVPR.2019.00224http://dx.doi.org/10.1109/CVPR.2019.00224]
Zheng Z D, Zheng L and Yang Y. 2017b. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 3774-3782[DOI: 10.1109/ICCV.2017.405http://dx.doi.org/10.1109/ICCV.2017.405]
Zhong D X and Zhu J S. 2020. Centralized large margin cosine loss for open-set deep palmprint recognition. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1559-1568[DOI:10.1109/TCSVT.2019.2904283]
Zhong D X, Shao H K and Du X F. 2019a. A hand-based multi-biometrics via deep hashing network and biometric graph matching. IEEE Transactions on Information Forensics and Security, 14(12): 3140-3150[DOI:10.1109/TIFS.2019.2912552]
Zhong D X, Yang Y and Du X F. 2018a. Palmprint recognition using siamese network//Proceedings of Chinese Conference on Biometric Recognition. Urumchi, China: Springer: 48-55[DOI: 10.1007/978-3-319-97909-0_6http://dx.doi.org/10.1007/978-3-319-97909-0_6]
Zhong Y Y and Deng W H. 2019. Adversarial learning with margin-based triplet embedding regularization//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6548-6557[DOI: 10.1109/ICCV.2019.00665http://dx.doi.org/10.1109/ICCV.2019.00665]
Zhong Y Y and Deng W H. 2021. Towards transferable adversarial attack against deep face recognition. IEEE Transactions on Information Forensics and Security, 16: 1452-1466[DOI:10.1109/TIFS.2020.3036801]
Zhong Z, Zheng L, Luo Z M, Li S Z and Yang Y. 2019b. Invariance matters: exemplar memory for domain adaptive person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 598-607[DOI: 10.1109/CVPR.2019.00069http://dx.doi.org/10.1109/CVPR.2019.00069]
Zhong Z, Zheng L, Zheng Z D, Li S Z and Yang Y. 2018b. Camera style adaptation for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 5157-5166[DOI: 10.1109/CVPR.2018.00541http://dx.doi.org/10.1109/CVPR.2018.00541]
Zhou W B and Li N. 2019. Exploring implementation of three-dimensional skeleton reconstruction of finger vein for PPS. Procedia CIRP, 83: 826-830[DOI:10.1016/j.procir.2019.05.022]
Zhou Z, Tang D, Wang X F, Han W L, Liu X Y and Zhang K H. 2018. Invisible mask: practical attacks on face recognition with infrared[EB/OL]. [2021-02-03].https://arxiv.org/pdf/1803.04683.pdfhttps://arxiv.org/pdf/1803.04683.pdf
Zhu H, Fu C Y, Wu Q Y, Wu W, Qian C and He R. 2020a. AOT: appearance optimal transport based identity swapping for forgery detection[EB/OL]. [2021-02-03].https://arxiv.org/pdf/2011.02674.pdfhttps://arxiv.org/pdf/2011.02674.pdf
Zhu J Y, Park T, Isola P and Efros A A. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2242-2251[DOI: 10.1109/ICCV.2017.244http://dx.doi.org/10.1109/ICCV.2017.244]
Zhu X Y, Lei Z, Liu X M, Shi H L and Li S Z. 2016. Face alignment across large poses: a 3D solution//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 146-155[DOI: 10.1109/CVPR.2016.23http://dx.doi.org/10.1109/CVPR.2016.23]
Zhuang L S, Yang A Y, Zhou Z H, Sastry S S and Ma Y. 2013. Single-sample face recognition with image corruption and misalignment via sparse illumination transfer//Proceedings of 2013 IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 3546-3553[DOI: 10.1109/CVPR.2013.455http://dx.doi.org/10.1109/CVPR.2013.455]
Zhuo J X, Chen Z Y, Lai J H and Wang G C. 2018. Occluded person re-identification//Proceedings of 2018 IEEE International Conference on Multimedia and Expo (ICME). San Diego, USA: IEEE: 1-6[DOI: 10.1109/ICME.2018.8486568http://dx.doi.org/10.1109/ICME.2018.8486568]
Zuo J Y, Schmid N A and Chen X H. 2007. On generation and analysis of synthetic iris images. IEEE Transactions on Information Forensics and Security, 2(1): 77-90[DOI:10.1109/TIFS.2006.890305]
Zuo W M, Lin Z C, Guo Z H and Zhang D. 2010. The multiscale competitive code via sparse representation for palmprint verification//Proceedings of 2010 IEEE Computer Society Conference on ComputerVision and Pattern Recognition. San Francisco, USA: IEEE: 2265-2272[DOI: 10.1109/CVPR.2010.5539909http://dx.doi.org/10.1109/CVPR.2010.5539909]
相关作者
相关机构