From graph convolution networks to graph scattering networks:a survey
- Vol. 29, Issue 1, Pages: 45-64(2024)
Published: 16 January 2024
DOI: 10.11834/jig.230069
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 January 2024 ,
移动端阅览
柳世禹, 戴文睿, 李成林, 熊红凯. 2024. 从图卷积网络到图散射网络:回顾与展望. 中国图象图形学报, 29(01):0045-0064
Liu Shiyu, Dai Wenrui, Li Chenglin, Xiong Hongkai. 2024. From graph convolution networks to graph scattering networks:a survey. Journal of Image and Graphics, 29(01):0045-0064
在图像与图形处理中,非欧氏空间数据与传统欧氏空间数据共同构成了数据的不同表达形式。随着面向图像、音频等传统信号的处理技术已经发展了数十年并趋于成熟,诸如图等非欧氏空间数据的兴起,对非欧氏空间的数据处理提取提出了更高的要求。图卷积网络的出现将面向传统信号的深度学习网络模型和卷积操作拓展到了图上,在一定程度上解决了学术界和工业界对图信号处理的需求。然而,空域特征聚合的图卷积网络容易产生过平滑问题。本文回顾了从图卷积网络到图散射网络的发展进程,分别梳理空域图卷积网络和谱域图卷积网络;并以图卷积网络为桥梁引出了图散射网络,比较和总结了图散射网络的前沿的理论和方法。传统的谱域图卷积网络虽然可以通过滤波器设计避免过平滑问题,但由于可训练参数较少、输出特征比较单一,往往存在表达能力不足的问题。图散射网络的提出很好地解决了图卷积网络中存在的问题。一方面,图散射变换将面向传统信号的散射变换操作拓展到图信号处理上,通过多尺度小波分解提取图信号的多分辨率特征,在保证网络稳定性的前提下解决了空域图卷积网络的特征过平滑问题;另一方面,相较于传统的谱域图卷积网络,图散射网络输出能够提取多尺度带通特征,增强模型的表达能力,提高了图分类等任务的结果。最后分析了现有图散射技术和理论的局限性,并提出了未来图散射网络可能的研究方向。
In image processing and computer graphics, non-Euclidean data such as graphs have gained increasing attention in recent years because Euclidean data such as images and videos fail to represent data with structure information. Compared with traditional Euclidean data, the scale of a graph can be arbitrary large. The structure of a graph usually contains information such as the relation between vertices, the logical sequences, and the properties of graph itself. While images can be easily converted into graphs based on the Euclidean position of pixels, graphs (especially for irregular graphs) can merely be converted into images. Therefore, graphs require a higher level of representation learning compared with traditional Euclidean data. However, in the era of deep learning, traditional convolution neural networks (CNNs) fail to learn representations for graphs due to permutation covariance for nodewise features and permutation invariance for outputs such as classification labels. The performance of CNNs in graph representation learning is still limited even if inputs are augmented by arbitrary permutation during training to learn permutation covariance. The development of graph neural networks and graph convolution operations achieves milestone in representation learning of non-Euclidean data such as graphs. Commonly, graph convolution neural networks (GCNs) can be divided into two categories: spatial GCNs and spectral GCNs. Spatial GCNs focus on the establishment of neighborhood and update with aggregation functions that combine the features of the center vertex and its neighbors. Though GCNs based on neighborhood feature aggregation encourage the propagation of nodewise features, deep GCNs usually suffer from oversmoothness issue, and the features of vertices become indistinguishable. Therefore, later works consider introducing skip connections in deep GCNs or constructing shallow GCNs with multiscale neighborhood considered within each convolution to alleviate this issue. Spectral GCNs focus on the graph spectral theorem and update their parameters by signal filtering in spectral domain with designed filters. However, eigen-decomposition of graph shift operator is costly for large graphs because its computation complexity is
<math id="M1"><mtext> </mtext><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msup><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=52788516&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=52788512&type=
8.89000034
3.21733332
. Therefore, spectral GCNs usually apply K-order polynomials (i.e., Chebyshev polynomials) to approximate the target filters and avoid eigen-decomposition. Though spectral GCNs may avoid oversmoothness issue with graph filter design, the limited number of learnable parameters and filter responses of spectral GCNs usually limit their expression ability. Spatial GCNs and spectral GCNs are not necessarily independent from one another. For example, 1-order Chebyshev polynomials with diffusion matrix are equivalent to feature aggregation within 1-hop neighborhood. Therefore, spatial GCNs based on feature aggregation with diffusion Laplacian matrix or lazy random walk matrix usually have the spectral form, which bridges the spatial GCNs and spectral GCNs. The rapid development in graph representation learning gives rise to the demand for survey and review that summarize existing works and serve as guidance for beginners. Currently, graph neural networks such as graph convolution neural networks, graph embeddings, and graph autoencoders have been reviewed. However, current surveys and reviews lack one domain in graph representation learning: graph scattering transforms (GSTs) and graph scattering networks (GSNs). GSNs are non-trainable spectral GCNs based on wavelet decomposition. With the benefit of multiscale wavelets and the structure of networks, GSNs generate diverse features with nearly nonoverlapping frequency responses in the spectral domain. As one of the newly developed graph representation learning methods, GSNs are used in tasks such as graph classification and node classification. Recent works employed graph scattering transform to spatial GCNs to overcome the oversmoothness issue. Compared with spectral GCNs, GSNs generate diverse features that strengthen the expressive capability of model without introducing the oversmoothness issue. However, the nontrainable property of GSNs may limit the flexibility in graph representation learning on different graph datasets with different distributions of spectrum. GSNs suffer from the exponential growth of diffusion paths with the increase of scattering layers, which limit the depth of GSNs in practice. In this paper, a survey comprehensively reviews the designs from GCNs to GSNs. First, GCNs are divided into two categories: spatial GCNs and spectral GCNs. Spatial GCNs are categorized into the following types: 1) diffusion-based GCNs, 2) GCNs on large graphs with neighbor sampling or subgraph sampling, 3) GCNs with attention mechanism, and 4) GCNs with dynamic neighborhood construction. Spectral GCNs are reviewed according to different filters (filter kernels): Chebyshev polynomials, Cayley polynomials, and K-order polynomials. After addressing the drawbacks of spatial GCNs and spectral GCNs, the definition of GSTs, the structure of classical GSNs, and the advantages of GSNs compared with GCNs are introduced. The current arts of GSNs are elaborated from the perspectives of network design along with application and stability in theory. The networks and application of graph scattering transform are reviewed in the following categories: 1) classical GSNs, 2) graph scattering transforms in GCNs to solve the over-smoothness issue, 3) graph attention networks with GSTs, 4) graph scattering transform on spatial-temporal graphs, 5) reducing scattering paths of GSNs via pruning to increase the efficiency of graph scattering transform, 6) GSNs with multiresolution graphs, and 7) trainable GSNs with wavelet scale selection and learnable spectral filters. In theory, the frame theorem and the stability theorem under signal and topology perturbation, respectively, are concluded. The limitations of GSNs (GSTs) in current works are analyzed, and possible directions for the development of graph scattering technics in the future are proposed.
深度学习图卷积网络(GCN)图散射网络(GSN)表征学习稳定性信号扰动拓扑扰动
deep learninggraph convolution network (GCN)graph scattering network (GSN)representation learningstabilitysignal perturbationtopology perturbation
Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H, Ver Steeg G and Galstyan A. 2019. MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1905.00067.pdfhttps://arxiv.org/pdf/1905.00067.pdf
Atwood J and Towsley D. 2016. Diffusion-convolutional neural networks//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc.: 2001-2009
Battaglia P W, Hamrick J B, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y J and Pascanu R. 2018. Relational inductive biases, deep learning, and graph networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1806.01261.pdfhttps://arxiv.org/pdf/1806.01261.pdf
Bhaskar D, Grady J, Castro E, Perlmutter M and Krishnaswamy S. 2022. Molecular graph generation via geometric scattering//Proceedings of the 32nd IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Xi’an, China: IEEE: 1-6 [DOI: 10.1109/MLSP55214.2022.9943379http://dx.doi.org/10.1109/MLSP55214.2022.9943379]
Bianchi F M, Grattarola D, Livi L and Alippi C. 2022. Graph neural networks with convolutional ARMA filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7): 3496-3507 [DOI: 10.1109/TPAMI.2021.3054830http://dx.doi.org/10.1109/TPAMI.2021.3054830]
Bouritsas G, Frasca F, Zafeiriou S and Bronstein M M. 2023. Improving graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1): 657-668 [DOI: 10.1109/TPAMI.2022.3154319http://dx.doi.org/10.1109/TPAMI.2022.3154319]
Bremer J C, Coifman R R, Maggioni M and Szlam A D. 2006. Diffusion wavelet packets. Applied and Computational Harmonic Analysis, 21(1): 95-112 [DOI: 10.1016/j.acha.2006.04.005http://dx.doi.org/10.1016/j.acha.2006.04.005]
Bronstein M M, Bruna J, LeCun Y, Szlam A and Vandergheynst P. 2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4): 18-42 [DOI: 10.1109/MSP.2017.2693418http://dx.doi.org/10.1109/MSP.2017.2693418]
Bruna J and Mallat S. 2013. Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1872-1886 [DOI: 10.1109/TPAMI.2012.230http://dx.doi.org/10.1109/TPAMI.2012.230]
Bruna J, Zaremba W, Szlam A and LeCun Y. 2014. Spectral networks and deep locally connected networks on graphs//Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada: [n. s.]
Caelli T, Amin A, Duin R P W, Ridder D and Kamel M. 2002. Structural, syntactic, and statistical pattern recognition//Proceedings of the Joint IAPR International Workshops SSPR 2002 and SPR 2002. Windsor, Canada: Springer [DOI: 10.1007/3-540-70659-3http://dx.doi.org/10.1007/3-540-70659-3]
Chen J, Ma T F and Xiao C. 2018. Fastgcn: fast learning with graph convolutional networks via importance sampling [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1801.10247.pdfhttps://arxiv.org/pdf/1801.10247.pdf
Chen J F, Zhu J and Song L. 2017. Stochastic training of graph convolutional networks with variance reduction [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1710.10568.pdfhttps://arxiv.org/pdf/1710.10568.pdf
Chen M, Wei Z W, Huang Z F, Ding B L and Li Y L. 2020. Simple and deep graph convolutional networks//Proceedings of the 37th International Conference on Machine Learning. Virtual Event: JMLR.org: 1725-1735
Chen M Q, Zhang Y, Kou X Y, Li Y T and Zhang Y. 2021. r-GAT: relational graph attention network for multi-relational graphs [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2109.05922.pdfhttps://arxiv.org/pdf/2109.05922.pdf
Cheng X Y, Chen X and Mallat S. 2016. Deep Haar scattering networks. Information and Inference, 5(2): 105-133 [DOI: 10.1093/imaiai/iaw007http://dx.doi.org/10.1093/imaiai/iaw007]
Cheng Z D, Chen S H and Zhang Y. 2022. Spatio-temporal graph complementary scattering networks//Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore, Singapore: IEEE: 5573-5577 [DOI: 10.1109/ICASSP43922.2022.9747790http://dx.doi.org/10.1109/ICASSP43922.2022.9747790]
Cheung M, Shi J, Wright O, Jiang L Y, Liu X J and Moura J M F. 2020. Graph signal processing and deep learning: convolution, pooling, and topology. IEEE Signal Processing Magazine, 37(6): 139-149 [DOI: 10.1109/MSP.2020.3014594http://dx.doi.org/10.1109/MSP.2020.3014594]
Chew J, Hirn M, Krishnaswamy S, Needell D, Perlmutter M, Steach H, Viswanath S and Wu H T. 2022. Geometric scattering on measure spaces [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2208.08561.pdfhttps://arxiv.org/pdf/2208.08561.pdf
Chiang W L, Liu X Q, Si S, Li Y, Bengio S and Hsieh C J. 2019. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage, USA: ACM: 257-266 [DOI: 10.1145/3292500.3330925http://dx.doi.org/10.1145/3292500.3330925]
Chung F R K. 1997. Spectral Graph Theory. Providence, USA: American Mathematical Society
Coifman R R and Lafon S. 2006. Diffusion maps. Applied and Computational Harmonic Analysis, 21(1): 5-30 [DOI: 10.1016/j.acha.2006.04.006http://dx.doi.org/10.1016/j.acha.2006.04.006]
Coifman R R and Maggioni M. 2006. Diffusion wavelets. Applied and Computational Harmonic Analysis, 21(1): 53-94 [DOI: 10.1016/j.acha.2006.04.004http://dx.doi.org/10.1016/j.acha.2006.04.004]
Defferrard M, Bresson X and Vandergheynst P. 2016. Convolutional neural networks on graphs with fast localized spectral filtering//Proceedings of the 30th International Conference on neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc.: 3844-3852 [DOI: 10.5555/3157382.3157527http://dx.doi.org/10.5555/3157382.3157527]
Espinace P, Kollar T, Soto A and Roy N. 2010. Indoor scene recognition through object detection//Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE: 1406-1413 [DOI: 10.1109/ROBOT.2010.5509682http://dx.doi.org/10.1109/ROBOT.2010.5509682]
Gama F, Bruna J and Ribeiro A. 2020b. Stability properties of graph neural networks. IEEE Transactions on Signal Processing, 68: 5680-5695 [DOI: 10.1109/TSP.2020.3026980http://dx.doi.org/10.1109/TSP.2020.3026980]
Gama F, Ribeiro A and Bruna J. 2018. Diffusion scattering transforms on graphs [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1806.08829.pdfhttps://arxiv.org/pdf/1806.08829.pdf
Gama F, Ribeiro A and Bruna J. 2019. Stability of graph scattering transforms//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates, Inc.: 8038-8048
Gama F, Ribeiro A and Bruna J. 2020a. Stability of graph neural networks to relative perturbations//Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 9070-9074 [DOI: 10.1109/ICASSP40776.2020.9054341http://dx.doi.org/10.1109/ICASSP40776.2020.9054341]
Gama F, Isufi E, Leus G and Ribeiro A. 2020c. Graphs, convolutions, and neural networks: from graph filters to graph neural networks. IEEE Signal Processing Magazine, 37(6): 128-138 [DOI: 10.1109/MSP.2020.3016143http://dx.doi.org/10.1109/MSP.2020.3016143]
Gao F, Wolf G and Hirn M. 2019. Geometric scattering for graph data analysis//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR: 2122-2131
Gao H Y and Ji S W. 2022. Graph U-Nets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 4948-4960 [DOI: 10.1109/TPAMI.2021.3081010http://dx.doi.org/10.1109/TPAMI.2021.3081010]
Gao H Y, Wang Z Y and Ji S W. 2018. Large-scale learnable graph convolutional networks//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, United Kingdom: Association for Computing Machinery: 1416-1424 [DOI: 10.1145/3219819.3219947http://dx.doi.org/10.1145/3219819.3219947]
Gasteiger J, Bojchevski A and Günnemann S. 2022a. Predict then propagate: graph neural networks meet personalized PageRank [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1810.05997.pdfhttps://arxiv.org/pdf/1810.05997.pdf
Gasteiger J, Weißenberger S and Günnemann S. 2022b. Diffusion improves graph learning [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1911.05485.pdfhttps://arxiv.org/pdf/1911.05485.pdf
Hamilton W L, Ying R and Leskovec J. 2018. Representation learning on graphs: methods and applications [EB/OL]. [2023-02-15].https://arxiv.org/pdf/1709.05584.pdfhttps://arxiv.org/pdf/1709.05584.pdf
Hammond D K, Vandergheynst P and Gribonval R. 2011. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2): 129-150 [DOI: 10.1016/j.acha.2010.04.005http://dx.doi.org/10.1016/j.acha.2010.04.005]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Identity mappings in deep residual networks//Proceedings of the 14th European Conference on Computer Vision. Amesteram, the Netherlands: Springer: 630-645 [DOI: 10.1007/978-3-319-46493-0_38http://dx.doi.org/10.1007/978-3-319-46493-0_38]
Henaff M, Bruna J and LeCun Y. 2015. Deep convolutional networks on graph-structured data [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1506.05163.pdfhttps://arxiv.org/pdf/1506.05163.pdf
Huang W B, Zhang T, Rong Y and Huang J Z. 2018. Adaptive sampling towards fast graph representation learning//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc.: 4563-4572
Ioannidis V N, Chen S H and Giannakis G B. 2022. Efficient and stable graph scattering transforms via pruning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3): 1232-1246 [DOI: 10.1109/TPAMI.2020.3025258http://dx.doi.org/10.1109/TPAMI.2020.3025258]
Kazi A, Shekarforoush S, Arvind Krishna S, Burwinkel H, Vivar G, Kortüm K, Ahmadi S A, Albarqouni S and Navab N. 2019. InceptionGCN: receptive field aware graph convolutional network for disease prediction//Proceedings of the 26th International Conference on Information Processing in Medical Imaging. Hong Kong, China: Springer: 73-85 [DOI: 10.1007/978-3-030-20351-1_6http://dx.doi.org/10.1007/978-3-030-20351-1_6]
Kenlay H, Thanou D and Dong X W. 2020. On the stability of polynomial spectral graph filters//Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 5350-5354 [DOI: 10.1109/ICASSP40776.2020.9054072http://dx.doi.org/10.1109/ICASSP40776.2020.9054072]
Kipf T N and Welling M. 2017. Semi-supervised classification with graph convolutional networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1609.02907.pdfhttps://arxiv.org/pdf/1609.02907.pdf
Krzywda M, Łukasik S and Gandomi A H. 2022. Graph neural networks in computer vision-architectures, datasets and common approaches//Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE: 1-10 [DOI: 10.1109/IJCNN55064.2022.9892658http://dx.doi.org/10.1109/IJCNN55064.2022.9892658]
Lee J B, Rossi R A, Kim S, Ahmed N K and Koh E. 2019. Attention models in graphs: a survey. ACM Transactions on Knowledge Discovery from Data, 13(6): #62 [DOI: 10.1145/3363574http://dx.doi.org/10.1145/3363574]
Levie R, Monti F, Bresson X and Bronstein M M. 2019. CayleyNets: graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1): 97-109 [DOI: 10.48550/arXiv.1705.07664http://dx.doi.org/10.48550/arXiv.1705.07664]
Li G H, Müller M, Thabet A and Ghanem B. 2019. DeepGCNs: can GCNs go as deep as CNNs?//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 9266-9275 [DOI: 10.1109/ICCV.2019.00936http://dx.doi.org/10.1109/ICCV.2019.00936]
Li M S, Chen S H, Zhang Z J, Xie L X, Tian Q and Zhang Y. 2022. Skeleton-parted graph scattering networks for 3D human motion prediction//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 18-36 [DOI: 10.1007/978-3-031-20068-7_2http://dx.doi.org/10.1007/978-3-031-20068-7_2]
Li Q M, Han Z C and Wu X M. 2018a. Deeper insights into graph convolutional networks for semi-supervised learning//Proceedings of the 32nd AAAI conference on artificial intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New Orlands, USA: AAAI Press: 3538-3545 [DOI: 10.5555/3504035.3504468http://dx.doi.org/10.5555/3504035.3504468]
Li R Y, Wang S, Zhu F Y and Huang J Z. 2018b. Adaptive graph convolutional neural networks//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New Orlands, USA: AAAI Press: 3546-3553
Li Y G, Yu R, Shahabi C and Liu Y. 2018c. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1707.01926.pdfhttps://arxiv.org/pdf/1707.01926.pdf
Li Z L, Sun Z H, Li H A and Liu T X. 2020. Automatic selection of tooth seed point by graph convolutional network. Journal of Image and Graphics, 25(7): 1481-1489
李占利, 孙志浩, 李洪安, 刘童鑫. 2020. 图卷积网络下牙齿种子点自动选取. 中国图象图形学报, 25(7): 1481-1489 [DOI:10.11834/jig.190575http://dx.doi.org/10.11834/jig.190575]
Liu Z Q, Chen C C, Li L F, Zhou J, Li X L, Song L and Qi Y. 2019. GeniePath: graph neural networks with adaptive receptive paths//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and the 31st Innovative Applications of Artificial Intelligence Conference and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, USA: AAAI Press: 4424-4431 [DOI: 10.5555/3327345.3327389http://dx.doi.org/10.5555/3327345.3327389]
Liu G J, Li M S and Chen S H. 2022. Multiscale graph scattering transform//Proceedings of the 30th European Signal Processing Conference (EUSIPCO). Belgrade, Serbia: IEEE: 812-816 [DOI: 10.23919/EUSIPCO55093.2022.9909669http://dx.doi.org/10.23919/EUSIPCO55093.2022.9909669]
Mallat S. 2012. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10): 1331-1398 [DOI: 10.1002/cpa.21413http://dx.doi.org/10.1002/cpa.21413]
Miao B, Zhou L G, Mian A S, Lam T L and Xu Y S. 2021. Object-to-scene: learning to transfer object knowledge to indoor scene recognition//Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE: 2069-2075 [DOI: 10.1109/IROS51168.2021.9636700http://dx.doi.org/10.1109/IROS51168.2021.9636700]
Micheli A. 2009. Neural network for graphs: a contextual constructive approach. IEEE Transactions on Neural Networks, 20(3): 498-511 [DOI: 10.1109/TNN.2008.2010350http://dx.doi.org/10.1109/TNN.2008.2010350]
Min Y M, Wenkel F, Perlmutter M and Wolf G. 2022. Can hybrid geometric scattering networks help solve the maximal clique problem? [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2206.01506.pdfhttps://arxiv.org/pdf/2206.01506.pdf
Min Y M, Wenkel F and Wolf G. 2020. Scattering GCN: overcoming oversmoothness in graph convolutional networks//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc.: 14498-14508 [DOI: 10.48550/arXiv:2003.08414http://dx.doi.org/10.48550/arXiv:2003.08414]
Min Y M, Wenkel F and Wolf G. 2021. Geometric scattering attention networks//Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, Canada: IEEE: 8518-8522 [DOI: 10.1109/ICASSP39728.2021.9414557http://dx.doi.org/10.1109/ICASSP39728.2021.9414557]
Monti F, Boscaini D, Masci J, Rodol E, Svoboda J and Bronstein M M. 2017. Geometric deep learning on graphs and manifolds using mixture model CNNs//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5425-5434 [DOI: 10.1109/CVPR.2017.576http://dx.doi.org/10.1109/CVPR.2017.576]
Niepert M, Ahmed M and Kutzkov K. 2016. Learning convolutional neural networks for graphs//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: JMLR.org: 2014-2023
Noh H, Hong S and Han B. 2015. Learning deconvolution network for semantic segmentation//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1520-1528 [DOI: 10.1109/ICCV.2015.178http://dx.doi.org/10.1109/ICCV.2015.178]
Nt H and Maehara T. 2019. Revisiting graph neural networks: all we have is low-pass filters [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1905.09550.pdfhttps://arxiv.org/pdf/1905.09550.pdf
Pan C, Chen S H and Ortega A. 2021. Spatio-temporal graph scattering transform [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2012.03363.pdfhttps://arxiv.org/pdf/2012.03363.pdf
Pei H B, Wei B Z, Chang K C C, Lei Y and Yang B. 2020. Geom-GCN: geometric graph convolutional networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2002.05287.pdfhttps://arxiv.org/pdf/2002.05287.pdf
Perlmutter M, Gao F, Wolf G and Hirn M. 2020. Geometric wavelet scattering networks on compact Riemannian manifolds. Proceedings of Machine Learning Research, 107: 570-604
Perlmutter M, Tong A, Gao F, Wolf G and Hirn M. 2023. Understanding graph neural networks with generalized geometric scattering transforms [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1911.06253.pdfhttps://arxiv.org/pdf/1911.06253.pdf
Qian G C, Abualshour A, Li G H, Thabet A and Ghanem B. 2021. PU-GCN: point cloud upsampling using graph convolutional networks//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 11678-11687 [DOI: 10.1109/CVPR46437.2021.01151http://dx.doi.org/10.1109/CVPR46437.2021.01151]
Sandryhaila A and Moura J M F. 2013a. Discrete signal processing on graphs. IEEE Transactions on Signal Processing, 61(7): 1644-1656 [DOI: 10.1109/TSP.2013.2238935http://dx.doi.org/10.1109/TSP.2013.2238935]
Sandryhaila A and Moura J M F. 2013b. Discrete signal processing on graphs: graph filters//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE: 6163-6166 [DOI: 10.1109/ICASSP.2013.6638849http://dx.doi.org/10.1109/ICASSP.2013.6638849]
Sandryhaila A and Moura J M F. 2014. Discrete signal processing on graphs: frequency analysis. IEEE Transactions on Signal Processing, 62(12): 3042-3054 [DOI: 10.1109/TSP.2014.2321121http://dx.doi.org/10.1109/TSP.2014.2321121]
Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G. 2009. The graph neural network model. IEEE Transactions on Neural Networks, 20(1): 61-80 [DOI: 10.1109/TNN.2008.2005605http://dx.doi.org/10.1109/TNN.2008.2005605]
Seo Y, Defferrard M, Vandergheynst P and Bresson X. 2018. Structured sequence modeling with graph convolutional recurrent networks//Proceedings of the 25th International Conference on Neural Information Processing. Siem Reap, Cambodia: Springer: 362-373 [DOI: 10.1007/978-3-030-04167-0_33http://dx.doi.org/10.1007/978-3-030-04167-0_33]
Shen Y M, Dai W R, Li C L, Zou J N and Xiong H K. 2021. Multi-scale graph convolutional network with spectral graph wavelet frame. IEEE Transactions on Signal and Information Processing over Networks, 7: 595-610 [DOI: 10.1109/TSIPN.2021.3109820http://dx.doi.org/10.1109/TSIPN.2021.3109820]
Shi LS, Wang L, Long C J, Zhou S P, Zhou M, Niu Z X and Hua G. 2021. SGCN: sparse graph convolution network for pedestrian trajectory prediction//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 8990-8999 [DOI: 10.1109/CVPR46437.2021.00888http://dx.doi.org/10.1109/CVPR46437.2021.00888]
Song W, Cai W Y, He S Q and Li W J. 2021. Dynamic graph convolution with spatial attention for point cloud classification and segmentation. Journal of Image and Graphics, 26(11): 2691-2702
宋巍, 蔡万源, 何盛琪, 李文俊. 2021. 结合动态图卷积和空间注意力的点云分类与分割. 中国图象图形学报, 26(11): 2691-2702 [DOI: 10.11834/jig.200550http://dx.doi.org/10.11834/jig.200550]
Tang C S, Hu C C, Sun J D and Sima H F. 2021. Deep learning-based medical images analysis evolved from convolution to graph convolution. Journal of Image and Graphics, 26(9): 2078-2093
唐朝生, 胡超超, 孙君顶, 司马海峰. 2021. 医学图像深度学习技术: 从卷积到图卷积的发展. 中国图象图形学报, 26(9): 2078-2093 [DOI: 10.11834/jig.200666http://dx.doi.org/10.11834/jig.200666]
Tang S S, Li B and Yu H J. 2019. ChebNet: efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1911.05467.pdfhttps://arxiv.org/pdf/1911.05467.pdf
Tong A, Wenkel F, Bhaskar D, Macdonald K, Grady J, Perlmutter M, Krishnaswamy S and Wolf G. 2022. Learnable filters for geometric scattering modules [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2208.07458.pdfhttps://arxiv.org/pdf/2208.07458.pdf
Tong A, Wenkel F, Macdonald K, Krishnaswamy S and Wolf G. 2021. Data-driven learning of geometric scattering modules for GNNs//Proceedings of the 31st IEEEInternational Workshop on Machine Learning for Signal Processing (MLSP). Gold Coast, Australia: IEEE: 1-6 [DOI: 10.1109/MLSP52302.2021.9596169http://dx.doi.org/10.1109/MLSP52302.2021.9596169]
Tran D V, Navarin N and Sperduti A. 2018. On filter size in graph convolutional networks//Proceedings of 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bengaluru, India: IEEE: 1534-1541 [DOI: 10.1109/SSCI.2018.8628758http://dx.doi.org/10.1109/SSCI.2018.8628758]
Tseng C C. 2020. Rational graph filter design using spectral transformation and IIR digital filter//Proceedings of 2020 IEEE Region 10 Conference (TENCON). Osaka, Japan: IEEE: 247-250 [DOI: 10.1109/TENCON50793.2020.9293870http://dx.doi.org/10.1109/TENCON50793.2020.9293870]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin I. 2017. Attention is all you need//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.: 6000-6010
Veličković P, Cucurull G, Casanova A, Romero A, Liò P and Bengio Y. 2018. Graph attention networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1710.10903.pdfhttps://arxiv.org/pdf/1710.10903.pdf
Von Luxburg U. 2007. A tutorial on spectral clustering. Statistics and Computing, 17(4): 395-416 [DOI: 10.1007/s11222-007-9033-zhttp://dx.doi.org/10.1007/s11222-007-9033-z]
Wang X, Zhu M Q, Bo D Y, Cui P, Shi C and Pei J. 2020. AM-GCN: adaptive multi-channel graph convolutional networks//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Virtual Event, USA: ACM: 1243-1253 [DOI: 10.1145/3394486.3403177http://dx.doi.org/10.1145/3394486.3403177]
Wang X Y and Zhang M H. 2022. How powerful are spectral graph neural networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2205.11172.pdfhttps://arxiv.org/pdf/2205.11172.pdf
Wang Y, Sun Y B, Liu Z W, Sarma S E, Bronstein M M and Solomon J M. 2019a. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38(5): #146 [DOI: 10.1145/3326362http://dx.doi.org/10.1145/3326362]
Wang Y F, Wu S H, Huang H, Cohen-Or D and Sorkine-Hornung O. 2019b. Patch-based progressive 3D point set upsampling//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5951-5960 [DOI: 10.1109/CVPR.2019.00611http://dx.doi.org/10.1109/CVPR.2019.00611]
Wei H R, Liu X, Xu S C, Dai Z J, Dai Y P and Xu X Y. 2022. DWRSeg: dilation-wise residual network for real-time semantic segmentation [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2212.01173.pdfhttps://arxiv.org/pdf/2212.01173.pdf
Wei W C, Lin G F, Liao K Y, Kang X B and Zhao F. 2022. Survey of graph network hierarchical information mining for classification. Journal of Image and Graphics, 27(10): 2916-2936
魏文超, 蔺广逢, 廖开阳, 康晓兵, 赵凡. 2022. 图网络层级信息挖掘分类算法综述. 中国图象图形学报, 27(10): 2916-2936 [DOI:10.11834/jig.200550http://dx.doi.org/10.11834/jig.200550]
Wenkel F, Min Y M, Hirn M, Perlmutter M and Wolf G. 2022. Overcoming oversmoothness in graph convolutional networks via hybrid scattering networks [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2201.08932.pdfhttps://arxiv.org/pdf/2201.08932.pdf
Wiatowski T and Bölcskei H. 2015. Deep convolutional neural networks based on semi-discrete frames//Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT). Hong Kong, China: IEEE: 1212-1216 [DOI: 10.1109/ISIT.2015.7282648http://dx.doi.org/10.1109/ISIT.2015.7282648]
Wiatowski T and Bölcskei H. 2018. A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Transactions on Information Theory, 64(3): 1845-1866 [DOI: 10.1109/TIT.2017.2776228http://dx.doi.org/10.1109/TIT.2017.2776228]
Wu F, Souza A, Zhang T Y, Fifty C, Yu T and Weinberger K. 2019. Simplifying graph convolutional networks//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR: 6861-6871 [DOI: 10.48550/arXiv:1902.07153http://dx.doi.org/10.48550/arXiv:1902.07153]
Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q and Yu P S. 2021. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1): 4-24 [DOI: 10.1109/tnnls.2020.2978386http://dx.doi.org/10.1109/tnnls.2020.2978386]
Xu K, Hu W H, Leskovec J and Jegelka S. 2019. How powerful are graph neural networks? [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1810.00826.pdfhttps://arxiv.org/pdf/1810.00826.pdf
Xu S Q, Zhou D F, Fang J, Wang P C and Zhang L J. 2023. Multi-sem fusion: multimodal semantic fusion for 3D object detection [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2212.05265.pdfhttps://arxiv.org/pdf/2212.05265.pdf
Yao R, Xia S X, Zhou Y, Zhao J Q and Hu F Y. 2021. Spatial-temporal video object segmentation with graph convolutional network and attention mechanism. Journal of Image and Graphics, 26(10): 2376-2387
姚睿, 夏士雄, 周勇, 赵佳琦, 胡伏原. 2021. 时空图卷积网络与注意机制的视频目标分割. 中国图象图形学报, 26(10): 2376-2387 [DOI: 10.11834/jig.200357http://dx.doi.org/10.11834/jig.200357]
Ye R, Li X, Fang Y J, Zang H Y and Wang M Z. 2019. A vectorized relational graph convolutional network for multi-relational network alignment//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: AAAI Press: 4135-4141
Ying Z, You J X, Morris C, Ren X, Hamilton W L and Leskovec J. 2018. Hierarchical graph representation learning with differentiable pooling//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc.: 4805-4815
Zhang J N, Shi X J, Xie J Y, Ma H, King I and Yeung D Y. 2018a. GaAN: gated attention networks for learning on large and spatiotemporal graphs [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/1803.07294.pdfhttps://arxiv.org/pdf/1803.07294.pdf
Zhang M H, Cui Z C, Neumann M and Chen Y X. 2018b. An end-to-end deep learning architecture for graph classification//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New Orlands, USA: AAAI Press: 4438-4445
Zhao J L, Dong Y X, Ding M, Kharlamov E and Tang J. 2021. Adaptive diffusion in graph neural networks//Proceedings of the 34th Conference on Neural Information Processing Systems. Curran Associates, Inc.: 23321-23333
Zhou J, Cui G Q, Hu S D, Zhang Z Y, Yang C, Liu Z Y, Wang L F, Li C C and Sun M S. 2020. Graph neural networks: a review of methods and applications. AI Open, 1: 57-81 [DOI: 10.1016/j.aiopen.2021.01.001http://dx.doi.org/10.1016/j.aiopen.2021.01.001]
Zhou L G, Cen J, Wang X C, Sun Z L, Lam T L and Xu Y S. 2021. BORM: Bayesian object relation model for indoor scene recognition//Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Pragur, Czech Republic: IEEE: 39-46 [DOI: 10.1109/IROS51168.2021.9636024http://dx.doi.org/10.1109/IROS51168.2021.9636024]
Zhou L G, Zhou Y H Z, Qi X N, Hu J J, Lam T L and Xu Y S. 2022b. Attentional graph convolutional network for structure-aware audio-visual scene classification [EB/OL]. [2023-02-15]. https://arxiv.org/pdf/2301.00145.pdfhttps://arxiv.org/pdf/2301.00145.pdf
Zhou W Z, Du D W, Zhang L B, Luo T J and Wu Y J. 2022a. Multi-granularity alignment domain adaptation for object detection//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orlands, USA: IEEE: 9571-9580 [DOI: 10.1109/CVPR52688.2022.00936http://dx.doi.org/10.1109/CVPR52688.2022.00936]
Zhu H and Koniusz P. 2020. Simple spectral graph convolution//Proceedings of 2020 International Conference on Learning Representations. Millennium Hall, Addis Ababa, Ethiopia: PMLR: 6861-6871
Zhuang C Y and Ma Q. 2018. Dual graph convolutional networks for graph-based semi-supervised classification//Proceedings of 2018 World Wide Web Conference. Lyon, France: International World Wide Web Conferences Steering Committee: 499-508 [DOI: 10.1145/3178876.3186116http://dx.doi.org/10.1145/3178876.3186116]
Zou D M and Lerman G. 2020. Graph convolutional neural networks via scattering. Applied and Computational Harmonic Analysis, 49(3): 1046-1074 [DOI: 10.1016/j.acha.2019.06.003http://dx.doi.org/10.1016/j.acha.2019.06.003]
相关文章
相关作者
相关机构