Progress of image retargeting quality evaluation:a survey
- Vol. 29, Issue 1, Pages: 22-44(2024)
Published: 16 January 2024
DOI: 10.11834/jig.220722
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 January 2024 ,
移动端阅览
胡波, 谢国庆, 李雷达, 李静, 杨嘉琛, 路文, 高新波. 2024. 图像重定向质量评价的研究进展. 中国图象图形学报, 29(01):0022-0044
Hu Bo, Xie Guoqing, Li Leida, Li Jing, Yang Jiachen, Lu Wen, Gao Xinbo. 2024. Progress of image retargeting quality evaluation:a survey. Journal of Image and Graphics, 29(01):0022-0044
随着移动显示设备的普及,人们可以使用不同的终端设备来获取图像信息。为了适配不同尺寸的设备,图像重定向技术应运而生,并成为当前研究的热点。尽管该技术在近年来取得了长足进步,但没有算法能够保证在不降低视觉内容质量的前提下满足多种显示设备的要求。换句话说,在图像重定向的过程中,不可避免地会引入失真,降低用户的视觉体验。因此,如何客观、准确地评价重定向图像质量对图像重定向算法的选择、优化及发展至关重要。当前,研究人员已针对图像重定向质量评价开展了一系列研究,并取得了一定的研究成果。但是缺乏对图像重定向质量评价的综述,因此本文对当前图像重定向质量评价的研究进展进行了较为全面的回顾和总结。首先简单介绍了图像重定向以及传统图像质量评价;然后分别介绍图像重定向质量评价的数据集和客观质量评价方法,将现有的客观质量评价分为基于传统特征相似性的方法和基于图像配准的方法两类,并分析了两类方法的优缺点;接着在3个数据集上对具有代表性的算法的性能进行了对比分析;最后,总结了当前图像重定向质量评价领域面临的问题和挑战,并指明了未来可能的发展方向。
With the popularization of the Internet, intelligent technology, and various sensing devices, images and videos are playing an increasingly important role in video surveillance, health care, and distance education. All kinds of information can be obtained through images or videos using different terminal devices (such as mobile phones, laptops, and tablets) anytime and anywhere. Because different terminal devices have dissimilarsizes and resolutions, how to display the same image with high visual quality on these devices has become a common concern of the academic and industrial community. To solve this problem, image retargeting technology has emerged and become a popular, cutting-edge research direction in the field of computer vision and image processing. Image retargeting technology aims to adjust the image resolution without destroying the visual content to adapt to the information acquisition of various terminals. Traditional image retargeting algorithms achieve this goal through some simple operations (such as scaling and clipping), but such operations usually cause serious distortions of visual content and the loss of important information; thus, obtaining a visual satisfying retargeted image is difficult. To compensate for the performance disadvantages of traditional algorithms, a series of more advanced content-aware image retargeting algorithms have been proposed in recent years. Generally, these algorithms adopt a two-stage framework. The first step is to calculate the importance map of the input image and assign an importance weight to each pixel. The higher the weight is, the higher the probability that it should be retained. The second step is to implement the corresponding image resizing method to preserve the important content of the image as much as possible to meet the geometric constraints. According to different technologies, content-based image retargeting algorithms can be divided into four categories: discrete methods, continuous methods, multioperator methods, and deep learning methods. Although great progress has been made in this field, no algorithm can be guaranteed to meet the requirements of multiple display devices without reducing the visual quality. Distortions are inevitably introduced in image retargeting. Therefore, how to evaluate the quality of retargeted images objectively and accurately is very important for the selection, optimization, and development of image retargeting algorithms. Image quality assessment (IQA) is a basic problem in image processing and computer vision. In general, it can be divided into subjective assessment and objective assessment. Subjective assessment, which is the most direct, effective way, is completed through the judgment of subjects. Objective assessment is to predict and evaluate image quality automatically by constructing models. Compared with subjective assessment, objective assessment has the advantages of low cost, reusability, and easy deployment, so it is the focus of the existing research. According to whether reference image is used or not, it can be further divided into full-reference quality metrics, reduced-reference quality metrics, and no-reference quality metrics. According to different problems, it can also be divided into objective assessment of natural images, objective assessment of screen content images, objective assessment of cartoon images, and objective assessment of image retargeting. In recent years, a massive effort has been made in objective image retargeting quality assessment (IRQA); thus, encouraging research progress has been achieved. However, up to now, no review paper has studied image retargeting quality evaluation, which could hinder further development of this field. To this end, this review paper analyzes the challenges facing the field, reviews and summarizes the existing methods, examines their advantages and disadvantages, and states the possible development directions of the field to help researchers quickly understand and master the basic situation and promote the development of this field. First, the related work, namely, image retargeting and traditional IQA, is briefly introduced according to the classification principle. Specifically, image retargeting is divided into traditional algorithms and content-aware algorithms, and traditional IQA is described and summarized according to full-reference metric, reduced-reference metric, and no-reference metric. Second, the dataset and objective evaluation of image retargeting are introduced emphatically. For the datasets, subjective quality assessment is used as the performance upper bound of objective quality assessment and provides performance comparison for objective quality algorithms. From these datasets, the distortion characteristics of image retargeting are analyzed, and the important steps in the construction of different databases are compared and summarized. Two types of representative IRQA models, namely, the traditional feature similarity-based IRQA model and the image registration-based IRQA model, are introduced and summarized in detail. Traditional feature similarity-based IRQA models extract perception-sensitive features from reference images and retargeted images, respectively and quantify the distortion degree of retargeted images by calculating their feature similarity. To cater to the characteristics of the human visual system, saliency maps are often incorporated into the design of these models. Before feature extraction, image registration-based IRQA models first conduct sparse or dense image registration of two images to extract features effectively and improve the outcome of the algorithms. Next, their main ideas, advantages, and disadvantages are thoroughly analyzed and compared. Third, the performances of representative IRQA metrics are compared and analyzed on three public datasets in terms of prediction accuracy and monotonicity. Experimental results show the current models are only partially consistent with human perception and can still be improved. More energy and efforts are needed in this field. Finally, the current problems and challenges in the field of IRQA are summarized, and the possible development directions in the future are identified.
图像质量评价(IQA)图像重定向图像配准内容损失几何失真
image quality assessment (IQA)image retargetingimage registrationcontent lossgeometric distortion
Afshar F, Mansouri A and Zandi M. 2017. Image retargeting quality assessment using structural similarity and information preservation rate//Proceedings of the 10th Iranian Conference on Machine Vision and Image Processing (MVIP). Isfahan, Iran: IEEE: 58-63 [DOI: 10.1109/IranianMVIP.2017.8342369http://dx.doi.org/10.1109/IranianMVIP.2017.8342369]
Ahmadi M, Karimi N and Samavi S. 2021. Context-aware saliency detection for image retargeting using convolutional neural networks. Multimedia Tools and Applications, 80(8): 11917-11941 [DOI: 10.1007/s11042-020-10185-0http://dx.doi.org/10.1007/s11042-020-10185-0]
Avidan S and Shamir A. 2007. Seam carving for content-aware image resizing. ACM Transactions on Graphics, 26(3): #1276390 [DOI: 10.1145/1276377.1276390http://dx.doi.org/10.1145/1276377.1276390]
Bay H, Tuytelaars T and van Gool L. 2006. SURF: speeded up robust features//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer: 404-417 [DOI: 10.1007/11744023_32http://dx.doi.org/10.1007/11744023_32]
Bosse S, Maniry D, Müller K R, Wiegand T and Samek W. 2018. Deep neural networks for no-reference and full-reference image quality assessment. IEEE Transactions on Image Processing, 27(1): 206-219 [DOI: 10.1109/TIP.2017.2760518http://dx.doi.org/10.1109/TIP.2017.2760518]
Chen L Q, Xie X, Fan X, Ma W Y, Zhang H J and Zhou H Q. 2003. A visual attention model for adapting images on small displays. Multimedia Systems, 9(4): 353-364 [DOI: 10.1007/s00530-003-0105-4http://dx.doi.org/10.1007/s00530-003-0105-4]
Chen Y, Liu Y J and Lai Y K. 2017a. Learning to rank retargeted images//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 4743-4751 [DOI: 10.1109/CVPR.2017.504http://dx.doi.org/10.1109/CVPR.2017.504]
Chen Z B, Lin J X, Liao N and Chen C W. 2017b. Full reference quality assessment for image retargeting based on natural scene statistics modeling and bi-directional saliency similarity. IEEE Transactions on Image Processing, 26(11): 5138-5148 [DOI: 10.1109/TIP.2017.2736422http://dx.doi.org/10.1109/TIP.2017.2736422]
Cheng R Q, Yu Y, Shi D Z and Cai W. 2022. The critical review of image and video quality assessment methods. Journal of Image and Graphics, 27(5): 1410-1429
程茹秋, 余烨, 石岱宗, 蔡文. 2022. 图像与视频质量评价综述. 中国图象图形学报, 27(5): 1410-1429 [DOI: 10.11834/jig.210314http://dx.doi.org/10.11834/jig.210314]
Cho D, Park J, Oh T H, Tai Y W and Kweon I S. 2017. Weakly- and self-supervised learning for content-aware deep image retargeting//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 4568-4577 [DOI: 10.1109/ICCV.2017.488http://dx.doi.org/10.1109/ICCV.2017.488]
Dong W M, Zhou N, Paul J C and Zhang X P. 2009. Optimized image resizing using seam carving and scaling. ACM Transactions on Graphics (TOG), 28(5): 1-10 [DOI: 10.1145/1618452.1618471http://dx.doi.org/10.1145/1618452.1618471]
Du H, Liu Z, Jiang J L and Shen L Q. 2013. Stretchability-aware block scaling for image retargeting. Journal of Visual Communication and Image Representation, 24(4): 499-508 [DOI: 10.1016/j.jvcir.2013.03.003http://dx.doi.org/10.1016/j.jvcir.2013.03.003]
Fang Y M, Fang Z J, Yuan F N, Yang Y, Yang S Y and Xiong N N. 2017. Optimized multioperator image retargeting based on perceptual similarity measure. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11): 2956-2966 [DOI: 10.1109/TSMC.2016.2557225http://dx.doi.org/10.1109/TSMC.2016.2557225]
Fang Y M, Sui X J, Yan J B, Liu X L and Huang L P. 2021. Progress in no-reference image quality assessment. Journal of Image and Graphics, 26(2): 265-286
方玉明, 眭相杰, 鄢杰斌, 刘学林, 黄丽萍. 2021. 无参考图像质量评价研究进展. 中国图象图形学报, 26(2): 265-286 [DOI: 10.11834/jig.200274http://dx.doi.org/10.11834/jig.200274]
Fang Y M, Zeng K, Wang Z, Lin W S, Fang Z J and Lin C W. 2014. Objective quality assessment for image retargeting based on structural similarity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(1): 95-105 [DOI: 10.1109/JETCAS.2014.2298919http://dx.doi.org/10.1109/JETCAS.2014.2298919]
Fu Z Q, Shao F, Jiang Q P, Fu R D and Ho Y S. 2018. Quality assessment of retargeted images using hand-crafted and deep-learned features. IEEE Access, 6: 12008-12018 [DOI: 10.1109/ACCESS.2018.2808322http://dx.doi.org/10.1109/ACCESS.2018.2808322]
Gao F, Wang Y, Li P P, Tan M, Yu J and Zhu Y N. 2017. DeepSim: deep similarity for image quality assessment. Neurocomputing, 257: 104-114 [DOI: 10.1016/j.neucom.2017.01.054http://dx.doi.org/10.1016/j.neucom.2017.01.054]
Gao X B, Lu W, Li X L and Tao D C. 2008. Wavelet-based contourlet in quality evaluation of digital images. Neurocomputing, 72(1/3): 378-385 [DOI: 10.1016/j.neucom.2007.12.031http://dx.doi.org/10.1016/j.neucom.2007.12.031]
Golestaneh S A and Karam L J. 2016. Reduced-reference quality assessment based on the entropy of DWT coefficients of locally weighted gradient magnitudes. IEEE Transactions on Image Processing, 25(11): 5293-5303 [DOI: 10.1109/TIP.2016.2601821http://dx.doi.org/10.1109/TIP.2016.2601821]
Gu K, Zhai G T, Yang X K and Zhang W J. 2015. Using free energy principle for blind image quality assessment. IEEE Transactions on Multimedia, 17(1): 50-63 [DOI: 10.1109/TMM.2014.2373812http://dx.doi.org/10.1109/TMM.2014.2373812]
Guo D Y, Ding J D, Tang J H, Xu M and Zhao C X. 2015. NIF-based seam carving for image resizing. Multimedia Systems, 21(6): 603-613 [DOI: 10.1007/s00530-014-0425-6http://dx.doi.org/10.1007/s00530-014-0425-6]
Guo G J, Wa ng H Z, Shen C H, Yan Y and Liao H Y M. 2018b. Automatic image cropping for visual aesthetic enhancement using deep neural networks and cascaded regression. IEEE Transactions on Multimedia, 20(8): 2073-2085 [DOI: 10.1109/TMM.2018.2794262http://dx.doi.org/10.1109/TMM.2018.2794262]
Guo Y C, Hao Y T and Yu M. 2018a. Image retargeting quality assessment based on content deformation measurement. Signal Processing: Image Communication, 67: 171-181 [DOI: 10.1016/j.image.2018.06.010http://dx.doi.org/10.1016/j.image.2018.06.010]
Guo Y C, Zhang M and Hao X K. 2022. Review on content-aware image retargeting methods. Computer Engineering and Applications, 58(4): 22-39
郭迎春, 张萌, 郝小可. 2022. 内容感知的图像重定向方法综述. 计算机工程与应用, 58(4): 22-39 [DOI: 10.3778/j.issn.1002-8331.2109-0145http://dx.doi.org/10.3778/j.issn.1002-8331.2109-0145]
Hou W L, Gao X B, Tao D C and Li X L. 2015. Blind image quality assessment via deep learning. IEEE Transactions on Neural Networks and Learning Systems, 26(6): 1275-1286 [DOI: 10.1109/TNNLS.2014.2336852http://dx.doi.org/10.1109/TNNLS.2014.2336852]
Hsu C C, Lin C W, Fang Y M and Lin W S. 2014. Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss. IEEE Journal of Selected Topics in Signal Processing, 8(3): 377-389 [DOI: 10.1109/JSTSP.2014.2311884http://dx.doi.org/10.1109/JSTSP.2014.2311884]
Jiang B, Yang J C, Meng Q G, Li B H and Lu W. 2020. A deep evaluator for image retargeting quality by geometrical and contextual interaction. IEEE Transactions on Cybernetics, 50(1): 87-99 [DOI: 10.1109/TCYB.2018.2864158http://dx.doi.org/10.1109/TCYB.2018.2864158]
Jiang Q P, Shao F, Lin W S and Jiang G Y. 2018. Learning sparse representation for objective image retargeting quality assessment. IEEE Transactions on Cybernetics, 48(4): 1276-1289 [DOI: 10.1109/TCYB.2017.2690452http://dx.doi.org/10.1109/TCYB.2017.2690452]
Kang L, Ye P, Li Y and Doermann D. 2014. Convolutional neural networks for no-reference image quality assessment//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1733-1740 [DOI: 10.1109/CVPR.2014.224http://dx.doi.org/10.1109/CVPR.2014.224]
Karimi M, Samavi S, Karimi N, Soroushmehr S M R, Lin W S and Najarian K. 2017. Quality assessment of retargeted images by salient region deformity analysis. Journal of Visual Communication and Image Representation, 43: 108-118 [DOI: 10.1016/j.jvcir.2016.12.011http://dx.doi.org/10.1016/j.jvcir.2016.12.011]
Karni Z, Freedman D and Gotsman C. 2009. Energy-based image deformation. Computer Graphics Forum, 28(5): 1257-1268 [DOI: 10.1111/j.1467-8659.2009.01503.xhttp://dx.doi.org/10.1111/j.1467-8659.2009.01503.x]
Kasutani E and Yamada A. 2001. The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval//Proceedings of 2001 International Conference on Image Processing. Thessaloniki, Greece: IEEE: 674-677 [DOI: 10.1109/ICIP.2001.959135http://dx.doi.org/10.1109/ICIP.2001.959135]
Kim J and Lee S. 2017. Deep learning of human visual sensitivity in image quality assessment framework//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 1969-1977 [DOI: 10.1109/CVPR.2017.213http://dx.doi.org/10.1109/CVPR.2017.213]
Kim J, Nguyen A D and Lee S. 2019. Deep CNN-based blind image quality predictor. IEEE Transactions on Neural Networks and Learning Systems, 30(1): 11-24 [DOI: 10.1109/TNNLS.2018.2829819http://dx.doi.org/10.1109/TNNLS.2018.2829819]
Kim Y, Jung S, Jung C and Kim C. 2018. A structure-aware axis-aligned grid deformation approach for robust image retargeting. Multimedia Tools and Applications, 77(6): 7717-7739 [DOI: 10.1007/s11042-017-4674-1http://dx.doi.org/10.1007/s11042-017-4674-1]
Krähenbühl P, Lang M, Hornung A and Gross M. 2009. A system for retargeting of streaming video. ACM Transactions on Graphics, 28(5): 1-10 [DOI: 10.1145/1618452.1618472http://dx.doi.org/10.1145/1618452.1618472]
Lau C P, Yung C P and Lui L M. 2018. Image retargeting via Beltrami representation. IEEE Transactions on Image Processing, 27(12): 5787-5801 [DOI: 10.1109/TIP.2018.2858146http://dx.doi.org/10.1109/TIP.2018.2858146]
Li L D, Li Y X, Wu J J, Ma L and Fang Y M. 2021. Quality evaluation for image retargeting with instance semantics. IEEE Transactions on Multimedia, 23: 2757-2769 [DOI: 10.1109/TMM.2020.3016124http://dx.doi.org/10.1109/TMM.2020.3016124]
Liang Y, Liu Y J and Gutierrez D. 2017. Objective quality prediction of image retargeting algorithms. IEEE Transactions on Visualization and Computer Graphics, 23(2): 1099-1110 [DOI: 10.1109/TVCG.2016.2517641http://dx.doi.org/10.1109/TVCG.2016.2517641]
Liang Y, Su Z and Luo X N. 2012. Patchwise scaling method for content-aware image resizing. Signal Processing, 92(5): 1243-1257 [DOI: 10.1016/j.sigpro.2011.11.018http://dx.doi.org/10.1016/j.sigpro.2011.11.018]
Liang Y D, Wang J J, Wan X Y, Gong Y H and Zheng N N. 2016. Image quality assessment using similar scene as reference//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 3-18 [DOI: 10.1007/978-3-319-46454-1_1http://dx.doi.org/10.1007/978-3-319-46454-1_1]
Lin J X, Zhu L L, Chen Z B and Chen X M. 2015. Objective quality assessment for image retargeting based on hybrid distortion pooled model//Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX). Pilos, Greece: IEEE: 1-6 [DOI: 10.1109/QoMEX.2015.7148090http://dx.doi.org/10.1109/QoMEX.2015.7148090]
Ling S Y, Li J, Che Z H, Zhou W, Wang J L and Le Callet P. 2021. Re-visiting discriminator for blind free-viewpoint image quality assessment. IEEE Transactions on Multimedia, 23: 4245-4258 [DOI: 10.1109/TMM.2020.3038305http://dx.doi.org/10.1109/TMM.2020.3038305]
Liu A M, Lin W S, Chen H and Zhang P. 2015. Image retargeting quality assessment based on support vector regression. Signal Processing: Image Communication, 39: 444-456 [DOI: 10.1016/j.image.2015.08.001http://dx.doi.org/10.1016/j.image.2015.08.001]
Liu A M, Lin W S and Narwaria M. 2012. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 21(4): 1500-1512 [DOI: 10.1109/TIP.2011.2175935http://dx.doi.org/10.1109/TIP.2011.2175935]
Liu C, Yuen J and Torralba A. 2011a. Sift flow: dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5): 978-994 [DOI: 10.1109/TPAMI.2010.147http://dx.doi.org/10.1109/TPAMI.2010.147]
Liu C, Yuen J, Torralba A, Sivic J and Freeman W T. 2008. SIFT flow: dense correspondence across different scenes//Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer: 28-42 [DOI: 10.1007/978-3-540-88690-7_3http://dx.doi.org/10.1007/978-3-540-88690-7_3]
Liu F and Gleicher M. 2005. Automatic image retargeting with fisheye-view warping//Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology. Seattle, USA: Association for Computing Machinery: 153-162 [DOI: 10.1145/1095034.1095061http://dx.doi.org/10.1145/1095034.1095061]
Liu J Z, Zhou W, Li X, Xu J H and Chen Z B. 2022. LIQA: lifelong blind image quality assessment. IEEE Transactions on Multimedia, 1-16 [DOI: 10.1109/TMM.2022.3190700http://dx.doi.org/10.1109/TMM.2022.3190700]
Liu Y J, Han Y H, Ye Z P and Lai Y K. 2020. Ranking-preserving cross-source learning for image retargeting quality assessment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7): 1798-1805 [DOI: 10.1109/TPAMI.2019.2923998http://dx.doi.org/10.1109/TPAMI.2019.2923998]
Liu Y J, Luo X, Xuan Y M, Chen W F and Fu X L. 2011b. Image retargeting quality assessment. Computer Graphics Forum, 30(2): 583-592 [DOI: 10.1111/j.1467-8659.2011.01881.xhttp://dx.doi.org/10.1111/j.1467-8659.2011.01881.x]
Liu Y T, Zhai G T, Gu K, Liu X M, Zhao D B and Gao W. 2018. Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Transactions on Multimedia, 20(2): 379-391 [DOI: 10.1109/TMM.2017.2729020http://dx.doi.org/10.1109/TMM.2017.2729020]
Ma J P, Wu J J, Li L D, Dong W S, Xie X M, Shi G M and Lin W S. 2021. Blind image quality assessment with active inference. IEEE Transactions on Image Processing, 30: 3650-3663 [DOI: 10.1109/TIP.2021.3064195http://dx.doi.org/10.1109/TIP.2021.3064195]
Ma K D, Duanmu Z F, Wu Q B, Wang Z, Yong H W, Li H L and Zhang L. 2017. Waterloo exploration database: new challenges for image quality assessment models. IEEE Transactions on Image Processing, 26(2): 1004-1016 [DOI: 10.1109/TIP.2016.2631888http://dx.doi.org/10.1109/TIP.2016.2631888]
Ma K D, Liu W T, Zhang K, Duanmu Z F, Wang Z and Zuo W M. 2018. End-to-end blind image quality assessment using deep neural networks. IEEE Transactions on Image Processing, 27(3): 1202-1213 [DOI: 10.1109/TIP.2017.2774045http://dx.doi.org/10.1109/TIP.2017.2774045]
Ma L, Lin W S, Deng C W and Ngan K N. 2012. Image retargeting quality assessment: a study of subjective scores and objective metrics. IEEE Journal of Selected Topics in Signal Processing, 6(6): 626-639 [DOI: 10.1109/JSTSP.2012.2211996http://dx.doi.org/10.1109/JSTSP.2012.2211996]
Ma L, Xu L, Zeng H Q, Ngan K N and Deng C W. 2014. How does the shape descriptor measure the perceptual quality of the retargeting image?//Proceedings of 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). Chengdu, China: IEEE: 1-6 [DOI: 10.1109/ICMEW.2014.6890548http://dx.doi.org/10.1109/ICMEW.2014.6890548]
Ma L, Xu L, Zhang Y C, Yan Y H and Ngan K N. 2016. No-reference retargeted image quality assessment based on pairwise rank learning. IEEE Transactions on Multimedia, 18(11): 2228-2237 [DOI: 10.1109/TMM.2016.2614187http://dx.doi.org/10.1109/TMM.2016.2614187]
Manjunath B S, Ohm J R, Vasudevan V V and Yamada A. 2001. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6): 703-715 [DOI: 10.1109/76.927424http://dx.doi.org/10.1109/76.927424]
Min X K, Gu K, Zhai G T, Hu M H and Yang X K. 2018. Saliency-induced reduced-reference quality index for natural scene and screen content images. Signal Processing, 145: 127-136 [DOI: 10.1016/j.sigpro.2017.10.025http://dx.doi.org/10.1016/j.sigpro.2017.10.025]
Mittal A, Moorthy A K and Bovik A C. 2012. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12): 4695-4708 [DOI: 10.1109/TIP.2012.2214050http://dx.doi.org/10.1109/TIP.2012.2214050]
Mittal A, Soundararajan R and Bovik A C. 2013. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20(3): 209-212 [DOI: 10.1109/LSP.2012.2227726http://dx.doi.org/10.1109/LSP.2012.2227726]
Naderi M R, Givkashi M H, Karimi N, Shirani S and Samavi S. 2022. OAIR: object-aware image retargeting using PSO and aesthetic quality assessment [EB/OL]. [2022-09-11]. https://arxiv.org/pdf/2209.04804.pdfhttps://arxiv.org/pdf/2209.04804.pdf
Niu Y Z, Zhang S, Wu Z S, Zhao T S and Chen W L. 2021. Image retargeting quality assessment based on registration confidence measure and noticeability-based pooling. IEEE Transactions on Circuits and Systems for Video Technology, 31(3): 972-985 [DOI: 10.1109/TCSVT.2020.2998087http://dx.doi.org/10.1109/TCSVT.2020.2998087]
Oliva A and Torralba A. 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3): 145-175 [DOI: 10.1023/A:1011139631724http://dx.doi.org/10.1023/A:1011139631724]
Oliveira S A F, Alves S S A, Gomes J P P and Neto A R R. 2018. A bi-directional evaluation-based approach for image retargeting quality assessment. Computer Vision and Image Understanding, 168: 172-181 [DOI: 10.1016/j.cviu.2017.11.011http://dx.doi.org/10.1016/j.cviu.2017.11.011]
Pele O and Werman M. 2009. Fast and robust Earth mover’s distances//Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: 460-467 [DOI: 10.1109/ICCV.2009.5459199http://dx.doi.org/10.1109/ICCV.2009.5459199]
Peng Z Y, Jiang Q P, Shao F, Gao W and Lin W S. 2022. LGGD+: image retargeting quality assessment by measuring local and global geometric distortions. IEEE Transactions on Circuits and Systems for Video Technology, 32(6): 3422-3437 [DOI: 10.1109/TCSVT.2021.3112933http://dx.doi.org/10.1109/TCSVT.2021.3112933]
Pritch Y, Kav-Venaki E and Peleg S. 2009. Shift-map image editing//Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE: 151-158 [DOI: 10.1109/ICCV.2009.5459159http://dx.doi.org/10.1109/ICCV.2009.5459159]
Ren T W, Guo Y W, Wu G S and Zhang F Y. 2008. Constrained sampling for image retargeting//Proceedings of 2008 IEEE International Conference on Multimedia and Expo. Hannover, Germany: IEEE: 1397-1400 [DOI: 10.1109/ICME.2008.4607705http://dx.doi.org/10.1109/ICME.2008.4607705]
Rubinstein M, Gutierrez D, Sorkine O and Shamir A. 2010. A comparative study of image retargeting. ACM Transactions on Graphics, 29(6): #160 [DOI: 10.1145/1866158.1866186http://dx.doi.org/10.1145/1866158.1866186]
Rubinstein M, Shamir A and Avidan S. 2008. Improved seam carving for video retargeting. ACM Transactions on Graphics (TOG), 27(3): 1-9 [DOI: 10.1145/1360612.1360615http://dx.doi.org/10.1145/1360612.1360615]
Rubinstein M, Shamir A and Avidan S. 2009. Multi-operator media retargeting. ACM Transactions on Graphics (TOG), 28(3): 1-11 [DOI: 10.1145/1531326.1531329http://dx.doi.org/10.1145/1531326.1531329]
Saad M A, Bovik A C and Charrier C. 2010. A DCT statistics-based blind image quality index. IEEE Signal Processing Letters, 17(6): 583-586 [DOI: 10.1109/LSP.2010.2045550http://dx.doi.org/10.1109/LSP.2010.2045550]
Santella A, Agrawala M, DeCarlo D, Salesin D and Cohen M. 2006. Gaze-based interaction for semi-automatic photo cropping//Proceedings of 2006 SIGCHI Conference on Human Factors in Computing Systems. Montréal, Canada: Association for Computing Machinery: 771-780 [DOI: 10.1145/1124772.1124886http://dx.doi.org/10.1145/1124772.1124886]
Schwenker F, Kestler H A and Palm G. 2001. Three learning phases for radial-basis-function networks. Neural Networks, 14(4/5): 439-458 [DOI: 10.1016/S0893-6080(01)00027-2http://dx.doi.org/10.1016/S0893-6080(01)00027-2]
Shafieyan F, Karimi N, Mirmahboub B, Samavi S and Shirani S. 2017. Image retargeting using depth assisted saliency map. Signal Processing: Image Communication, 50: 34-43 [DOI: 10.1016/j.image.2016.10.006http://dx.doi.org/10.1016/j.image.2016.10.006]
Shao F, Fu Z Q, Jiang Q P, Jiang G Y and Ho Y S. 2021. Transformation-aware similarity measurement for image retargeting quality assessment via bidirectional rewarping. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5): 3053-3067 [DOI: 10.1109/TSMC.2019.2917496http://dx.doi.org/10.1109/TSMC.2019.2917496]
Sheikh H R, Sabir M F and Bovik A C. 2006. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11): 3440-3451 [DOI: 10.1109/TIP.2006.881959http://dx.doi.org/10.1109/TIP.2006.881959]
Shi Z F, Yao S Y and Zhao Y C. 2008. A novel video image scaling algorithm based on morphological edge interpolation//Proceedings of 2008 International Conference on Neural Networks and Signal Processing. Nanjing, China: IEEE: 388-391 [DOI: 10.1109/ICNNSP.2008.4590378http://dx.doi.org/10.1109/ICNNSP.2008.4590378]
Shocher A, Bagon S, Isola P and Irani M. 2019. InGAN: capturing and retargeting the “DNA” of a natural image//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 4491-4500 [DOI: 10.1109/ICCV.2019.00459http://dx.doi.org/10.1109/ICCV.2019.00459]
Sim K, Yang J C, Lu W and Gao X B. 2022. Blind stereoscopic image quality evaluator based on binocular semantic and quality channels. IEEE Transactions on Multimedia, 24: 1389-1398 [DOI: 10.1109/TMM.2021.3064240http://dx.doi.org/10.1109/TMM.2021.3064240]
Simakov D, Caspi Y, Shechtman E and Irani M. 2008. Summarizing visual data using bidirectional similarity//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8 [DOI: 10.1109/CVPR.2008.4587842http://dx.doi.org/10.1109/CVPR.2008.4587842]
Sobel I and Feldman G. 1973. A 3 × 3 isotropic gradient operator for image processing//Pattern Classification and Scene Analysis. London: John Wiley and Sons: 271-272
Soundararajan R and Bovik A C. 2012. RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Transactions on Image Processing, 21(2): 517-526 [DOI: 10.1109/TIP.2011.2166082http://dx.doi.org/10.1109/TIP.2011.2166082]
Specht D F. 1991. A general regression neural network. IEEE Transactions on Neural Networks, 2(6): 568-576 [DOI: 10.1109/72.97934http://dx.doi.org/10.1109/72.97934]
Suh B, Ling H B, Bederson B B and Jacobs D W. 2003. Automatic thumbnail cropping and its effectiveness//Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology. Vancouver, Canada: Association for Computing Machinery: 95-104 [DOI: 10.1145/964696.964707http://dx.doi.org/10.1145/964696.964707]
Sun S M, Yu T, Xu J H, Zhou W and Chen Z B. 2023. GraphIQA: learning distortion graph representations for blind image quality assessment. IEEE Transactions on Multimedia, 25: 2912-2925
Sun W, Min X K, Zhai G T and Ma S W. 2021. Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training [EB/OL]. [2022-09-11]. https://arxiv.org/pdf/2105.14550v1.pdfhttps://arxiv.org/pdf/2105.14550v1.pdf
Tan W M, Yan B, Lin C M and Niu X J. 2020. Cycle-IR: deep cyclic image retargeting. IEEE Transactions on Multimedia, 22(7): 1730-1743 [DOI: 10.1109/TMM.2019.2959925http://dx.doi.org/10.1109/TMM.2019.2959925]
Tang F, Dong W M, Meng Y P, Ma C Y, Wu F Z, Li X R and Lee T Y. 2020. Image retargetability. IEEE Transactions on Multimedia, 22(3): 641-654 [DOI: 10.1109/TMM.2019.2932620http://dx.doi.org/10.1109/TMM.2019.2932620]
Tang Z H and Yao J M. 2022. Image retargeting quality assessment based on saliency-driven classification. Signal Processing: Image Communication, 105: #116688 [DOI: 10.1016/j.image.2022.116688http://dx.doi.org/10.1016/j.image.2022.116688]
Wang J, Bei J, Ren T W, Liu Y and Xu B W. 2012. Image retargeting assessment based on salient region similarity//Proceedings of the 4th International Conference on Internet Multimedia Computing and Service. Wuhan, China: Association for Computing Machinery: 140-143 [DOI: 10.1145/2382336.2382376http://dx.doi.org/10.1145/2382336.2382376]
Wang J Q, Qu Z, Chen Y Y, Mei T, Xu M, Zhang L and Lu H Q. 2016. Adaptive content condensation based on grid optimization for thumbnail image generation. IEEE Transactions on Circuits and Systems for Video Technology, 26(11): 2079-2092 [DOI: 10.1109/TCSVT.2015.2493500http://dx.doi.org/10.1109/TCSVT.2015.2493500]
Wang S F and Lai S H. 2009. Fast structure-preserving image retargeting//Proceedings of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE: 1049-1052 [DOI: 10.1109/ICASSP.2009.4959767http://dx.doi.org/10.1109/ICASSP.2009.4959767]
Wang Y S, Tai C L, Sorkine O and Lee T Y. 2008. Optimized scale-and-stretch for image resizing. ACM Transactions on Graphics, 27(5): #118 [DOI: 10.1145/1409060.1409071http://dx.doi.org/10.1145/1409060.1409071]
Wang Z, Bovik A C, Sheikh H R and Simoncelli E P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612 [DOI: 10.1109/TIP.2003.819861http://dx.doi.org/10.1109/TIP.2003.819861]
Wang Z and Li Q. 2011. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20(5): 1185-1198 [DOI: 10.1109/TIP.2010.2092435http://dx.doi.org/10.1109/TIP.2010.2092435]
Wang Z M. 2015. Review of no-reference image quality assessment. Acta Automatica Sinica, 41(6): 1062-1079
王志明. 2015. 无参考图像质量评价综述. 自动化学报, 41(6): 1062-1079 [DOI: 10.16383/j.aas.2015.c140404http://dx.doi.org/10.16383/j.aas.2015.c140404]
Wei L S, Zhao L and Peng J. 2021. Reduced reference quality assessment for image retargeting by earth mover’s distance. Applied Sciences, 11(20): #9776 [DOI: 10.3390/app11209776http://dx.doi.org/10.3390/app11209776]
Wolf L, Guttmann M and Cohen-Or D. 2007. Non-homogeneous content-driven video-retargeting//Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE: 1-6 [DOI: 10.1109/ICCV.2007.4409010http://dx.doi.org/10.1109/ICCV.2007.4409010]
Wu J J, Lin W S, Shi G M and Liu A M. 2013. Reduced-reference image quality assessment with visual information fidelity. IEEE Transactions on Multimedia, 15(7): 1700-1705 [DOI: 10.1109/TMM.2013.2266093http://dx.doi.org/10.1109/TMM.2013.2266093]
Wu J J, Yang W, Li L D, Dong W S, Shi G M and Lin W S. 2021. Blind image quality prediction with hierarchical feature aggregation. Information Sciences, 552: 167-182 [DOI: 10.1016/j.ins.2020.12.018http://dx.doi.org/10.1016/j.ins.2020.12.018]
Wu Z S, Zhang S and Niu Y Z. 2019. Retargeted image quality assessment based on multi-scale distortion-aware feature. Journal of Beijing University of Aeronautics and Astronautics, 45(12): 2487-2494
吴志山, 张帅, 牛玉贞. 2019. 基于多尺度失真感知特征的重定向图像质量评估. 北京航空航天大学学报, 45(12): 2487-2494 [DOI: 10.13700/j.bh.1001-5965.2019.0368http://dx.doi.org/10.13700/j.bh.1001-5965.2019.0368]
Xu L, Jia J Y and Matsushita Y. 2012. Motion detail preserving optical flow estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9): 1744-1757 [DOI: 10.1109/TPAMI.2011.236http://dx.doi.org/10.1109/TPAMI.2011.236]
Xu L, Li J, Lin W S, Zhang Y B, Ma L, Fang Y M and Yan Y H. 2017. Multi-task rank learning for image quality assessment. IEEE Transactions on Circuits and Systems for Video Technology, 27(9): 1833-1843 [DOI: 10.1109/TCSVT.2016.2543099http://dx.doi.org/10.1109/TCSVT.2016.2543099]
Yan B, Bare B, Li K, Li J and Bovik A C. 2017. Learning quality assessment of retargeted images. Signal Processing: Image Communication, 56: 12-19 [DOI: 10.1016/j.image.2017.04.005http://dx.doi.org/10.1016/j.image.2017.04.005]
Yan J B, Fang Y M and Liu X L. 2022. The review of distortion-related image quality assessment. Journal of Image and Graphics, 27(5): 1430-1466
鄢杰斌, 方玉明, 刘学林. 2022. 图像质量评价研究综述——从失真的角度. 中国图象图形学报, 27(5): 1430-1466 [DOI: 10.11834/jig.210790http://dx.doi.org/10.11834/jig.210790]
Yang J C, Bian Z L, Liu J C, Jiang B, Lu W, Gao X B and Song H B. 2021. No-reference quality assessment for screen content images using visual edge model and adaboosting neural network. IEEE Transactions on Image Processing, 30: 6801-6814 [DOI: 10.1109/TIP.2021.3098245http://dx.doi.org/10.1109/TIP.2021.3098245]
Yang J C, Huang Z H, Sim K, Lu W, Liu K and Liu H H. 2019b. No-reference image quality assessment focusing on human facial region. Signal Processing: Image Communication, 78: 51-61 [DOI: 10.1016/j.image.2019.05.011http://dx.doi.org/10.1016/j.image.2019.05.011]
Yang J C, Sim K, Lu W and Jiang B. 2019a. Predicting stereoscopic image quality via stacked auto-encoders based on stereopsis formation. IEEE Transactions on Multimedia, 21(7): 1750-1761 [DOI: 10.1109/TMM.2018.2889562http://dx.doi.org/10.1109/TMM.2018.2889562]
Yang J C, Zhao Y, Liu J C, Jiang B, Meng Q G, Lu W and Gao X B. 2022. No reference quality assessment for screen content images using stacked autoencoders in pictorial and textual regions. IEEE Transactions on Cybernetics, 52(5): 2798-2810 [DOI: 10.1109/TCYB.2020.3024627http://dx.doi.org/10.1109/TCYB.2020.3024627]
Yao J M, Tang Z H, Lu X F, Dong W X and Luo Y T. 2021. Image retargeting quality assessment based on aspect ratio similarity of salient region//Proceedings of 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI). Guangzhou, China: IEEE: 47-51 [DOI: 10.1109/CCAI50917.2021.9447493http://dx.doi.org/10.1109/CCAI50917.2021.9447493]
Zhang B, Sander P V and Bermak A. 2017a. Registration based retargeted image quality assessment//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, USA: IEEE: 1258-1262 [DOI: 10.1109/ICASSP.2017.7952358http://dx.doi.org/10.1109/ICASSP.2017.7952358]
Zhang G X, Cheng M M, Hu S M and Martin R R. 2009. A shape-preserving approach to image resizing. Computer Graphics Forum, 28(7): 1897-1906 [DOI: 10.1111/j.1467-8659.2009.01568.xhttp://dx.doi.org/10.1111/j.1467-8659.2009.01568.x]
Zhang J Y and Kuo C C J. 2014. An objective quality of experience (QoE) assessment index for retargeted images//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA: Association for Computing Machinery: 257-266 [DOI: 10.1145/2647868.2654922http://dx.doi.org/10.1145/2647868.2654922]
Zhang L, Zhang L, Mou X Q and Zhang D. 2011. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8): 2378-2386 [DOI: 10.1109/TIP.2011.2109730http://dx.doi.org/10.1109/TIP.2011.2109730]
Zhang L X, Song H Z, Ou Z M, Fu Y and Zhang X L. 2013. Image retargeting with multifocus fisheye transformation. The Visual Computer, 29(5): 407-420 [DOI: 10.1007/s00371-012-0744-6http://dx.doi.org/10.1007/s00371-012-0744-6]
Zhang T T, Yu M, Guo Y C and Liu Y. 2019. Content-aware retargeted image quality assessment. Information, 10(3): #111 [DOI: 10.3390/info10030111http://dx.doi.org/10.3390/info10030111]
Zhang W X, Ma K D, Yan J, Deng D X and Wang Z. 2020. Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology, 30(1): 36-47 [DOI: 10.1109/TCSVT.2018.2886771http://dx.doi.org/10.1109/TCSVT.2018.2886771]
Zhang Y B, Fang Y M, Lin W S, Zhang X F and Li L D. 2016a. Backward registration-based aspect ratio similarity for image retargeting quality assessment. IEEE Transactions on Image Processing, 25(9): 4286-4297 [DOI: 10.1109/TIP.2016.2585884http://dx.doi.org/10.1109/TIP.2016.2585884]
Zhang Y B, Lin W S, Li Q H, Cheng W T and Zhang X F. 2018. Multiple-level feature-based measure for retargeted image quality. IEEE Transactions on Image Processing, 27(1): 451-463 [DOI: 10.1109/TIP.2017.2761556http://dx.doi.org/10.1109/TIP.2017.2761556]
Zhang Y B, Lin W S, Zhang X F, Fang Y M and Li L D. 2016b. Aspect ratio similarity (ARS) for image retargeting quality assessment//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE: 1080-1084 [DOI: 10.1109/ICASSP.2016.7471842http://dx.doi.org/10.1109/ICASSP.2016.7471842]
Zhang Y C and Ngan K N. 2015. Region-based image retargeting quality assessment//Proceedings of 2015 IEEE International Conference on Image Processing (ICIP). Quebec City, Canada: IEEE: 1757-1761 [DOI: 10.1109/ICIP.2015.7351102http://dx.doi.org/10.1109/ICIP.2015.7351102]
Zhang Y C and Ngan K N. 2016. Objective quality assessment of image retargeting based on line distortion//Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest, Hungary: IEEE: 2505-2510 [DOI: 10.1109/SMC.2016.7844616http://dx.doi.org/10.1109/SMC.2016.7844616]
Zhang Y C, Ngan K N, Ma L and Li H L. 2017b. Objective quality assessment of image retargeting by incorporating fidelity measures and inconsistency detection. IEEE Transactions on Image Processing, 26(12): 5980-5993 [DOI: 10.1109/TIP.2017.2746260http://dx.doi.org/10.1109/TIP.2017.2746260]
Zhou Y, Wang Y, Li L D, Gao C Q and Lu Z L. 2022. Research progress in objective quality evaluation of virtual reality images. Journal of Image and Graphics, 27(8): 2313-2328
周玉, 汪一, 李雷达, 高陈强, 卢兆林. 2022. 虚拟现实图像客观质量评价研究进展. 中国图象图形学报, 27(8): 2313-2328 [DOI: 10.11834/jig.210949http://dx.doi.org/10.11834/jig.210949]
Zhu H C, Li L D, Wu J J, Dong W S and Shi G M. 2020. MetaIQA: deep meta-learning for no-reference image quality assessment//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 14131-14140 [DOI: 10.1109/CVPR42600.2020.01415http://dx.doi.org/10.1109/CVPR42600.2020.01415]
相关文章
相关作者
相关机构