医学影像多血管和气道分割方法综述
Review of various vessels and airway segmentation in medical imaging
- 2024年29卷第9期 页码:2692-2715
纸质出版日期: 2024-09-16
DOI: 10.11834/jig.230240
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-09-16 ,
移动端阅览
楼陆飞, 应俊杰, 蔡凯俊, 辛宇. 2024. 医学影像多血管和气道分割方法综述. 中国图象图形学报, 29(09):2692-2715
Lou Lufei, Ying Junjie, Cai Kaijun, Xin Yu. 2024. Review of various vessels and airway segmentation in medical imaging. Journal of Image and Graphics, 29(09):2692-2715
医学影像分析中,血管和气道分割是备受关注的研究。通过对血管和气道异常的评估,例如动脉壁增厚和硬化、脑血管破裂导致的出血以及肺部或气道内的肿瘤等,可以实现此类疾病的早期诊断和临床治疗指导。随着医学成像技术的发展,影像分割技术在评估和诊断这些结构异常方面变得越来越重要。然而,由于其复杂的结构和病理变化,血管和气道的准确分割仍然是一项具有挑战性的任务。许多研究都集中在特定类型的血管或气道分割上,对多种类型的血管和气道分割方法的综合回顾相对缺乏。对各类血管和气道的综合回顾可以为医学专家和研究人员提供更全面的临床参考价值。此外,不同类型的血管和气道具有形态上的相似性,一些算法和技术可以同时应用于它们的分割中,综合回顾也增强了讨论的广泛性。因此,本文对近20年来具有代表性的视网膜血管分割、脑血管分割、冠状动脉分割和气道分割4类研究工作进行了归纳,分别从传统方法、机器学习方法和深度学习方法3个方面对每类研究进行综述,同时总结了各种方法的优缺点,为后续研究提供了理论参考。此外,本文还介绍了适用于医学影像血管和气道分割的损失函数、评价指标,并收集了目前公开的各类血管和气道分割数据集。最后,本文讨论了目前医学影像血管和气道分割方法的局限性以及未来研究的方向。
Vessel and airway segmentation are arouse considerable interest in medical image analysis. Vessel and airway abnormalities, such as thickening and sclerosis of arterial walls, bleeding due to cerebrovascular rupture, and tumors in lungs or airways, must be evaluated for the corresponding early diagnosis and clinical treatment guidance. The development of medical imaging technology made image segmentation techniques important in the evaluation and diagnosis of such structural abnormalities. However, the accurate segmentation of vessels and airways presents a challenge due to their complex structural and pathological variations. Most studies have focused on specific types of vessels or airway segmentation, and comprehensive reviews of various vessel types and airway segmentation methods are relatively lacking. Medical experts and researchers can benefit from a comprehensive review of all types of vessels and airways, which can serve as a comprehensive clinical reference. In addition, various types of vessels and airways show morphological similarities, and certain algorithms and techniques can be simultaneously applied in their segmentation, with a comprehensive review expanding the breadth of discussion. Therefore, this paper summarizes four types of representative research on retinal vessel segmentation, cerebral vessel segmentation, coronary artery segmentation, and airway segmentation in the past two decades and reviews each type of research from three aspects: traditional, machine learning, and deep learning methods, In addition, this review summarizes the advantages and disadvantages of these various methods to provide theoretical references for subsequent studies. Moreover, this paper introduces loss functions, evaluation metrics that apply to vessel and airway segmentation in medical images, and collates currently publicly available datasets on various types of vessel and airway segmentation. Finally, this paper discusses the limitations of the current methods for medical image vessel and airway segmentation and future research directions. In our research, we have identified DRIVE and STARE datasets as prevailing public benchmarks for retinal vessel segmentation tasks and established a standardized system for evaluation metrics. Such development offers valuable insights and guidance in the advancement of this field. However, in regard to cerebrovascular and coronary artery segmentation tasks, various research endeavor utilized datasets that s exhibit substantial heterogeneity and are seldom publicly accessible. Furthermore, various studies apply inconsistent evaluation metrics, which underscores the imperative need for increased attention and progress in this domain. In addition, in the context of airway segmentation tasks, numerous research have adopted custom metrics, such as Branch Detected and Tree-length Detected, which enable precise assessment based on airway-specific attributes and are highly relevant to other types of segmentation tasks. The various subtypes of vessel and airway segmentation tasks share commonalities while also displaying distinctive features. On one hand, conventional techniques, such as threshold segmentation and morphological transformations, are widely applied in each segmentation task, with a focus on the processing of raw and grayscale image data. Traditional machine learning methods predominantly depend on the application of mathematical techniques and stochastic models to improve segmentation outcomes and focus on feature enhancement and noise reduction. Conversely, deep learning methods address specific challenges unique to each domain in various tasks while adapting to particular issues encountered. In the case of retinal vessel segmentation, most research initiatives concentrate on overcoming the challenges posed by capillaries. Cerebrovascular and coronary artery segmentation face the challenges associated with data scarcity and compromised image quality due to the limited number of datasets. In addition, airway segmentation is a relatively well-explored area, with ongoing research endeavors concentrating on the improvement and completeness of segmentation coherence to augment its clinical applicability. Deep learning methods have prevailed in current research due to their capacity for multilevel feature learning. Although notable progress has been achieved in the field of medical imaging for vessels and airway segmentation via deep learning, certain limitations persist, and pressing issues warrant attention. First, vessels and airway datasets have limited sizes, which constrains the generalizability of deep-learning models and renders them susceptible to overfitting during training. Second, the application of inconsistent evaluation metrics and undisclosed datasets in most studies hampers objective comparisons among algorithms in the same field and research progress. Third, supervised methods continually dominate the vessel and airway segmentation landscape. Notably, current endeavors are aimed at addressing the shortage of adequately labeled vessel image datasets through the use of unsupervised or semisupervised deep-learning techniques. Although these methods, which include approaches such as reinforcement learning, generative networks, and recurrent networks, may not be directly applicable to clinical vessel segmentation, they are garnering increased research interest. Furthermore, evaluation of vessels and airway segmentation models solely based on metrics, such as accuracy, intersection over union, and Dice coefficient, falls short. A comprehensive and standardized evaluation framework specific to vessels and airway segmentation, which necessitates systematic and meticulous research and formulation, must be developed. In addition, the evolution of imaging technology has resulted in production of high-resolution vessel and airway images but at the cost of increased computational demands. Nonetheless, numerous clinical applications demand real-time processing, but limited attention has been devoted to addressing this issue. Consequently, future research endeavors should focus on the reduction of the computational burden of segmentation algorithms. The research on medical imaging vessels and tracheal segmentation can be directed toward several key areas. First, with the continual advancement of medical imaging technology, the integration of medical image data from various modalities has been expanding. Consequently, medical imaging vessels and airway segmentation will increasingly focus on the exploration of the segmentation of multimodal images and effective strategies for the fusion of multiple image information. Second, the precise assessment of segmentation algorithm performance and guide model improvement can be attained through the development of specialized metrics tailored to distinguishing the characteristics of vessels and airway segmentation, such as the clDice metric emphasizing connectivity. Third, the research focus will pivot toward real-time vessel and airway segmentation in medical imaging, which will facilitate immediate analysis and diagnosis, which is critical for intraoperative navigation and emergency medicine, during image acquisition. Finally, despite the high number of methods developed for medical imaging vessels and airway segmentation, a universal macromodel suitable for all applications is lacking. Another crucial direction is the development of a versatile macromodel for medical imaging vessels and airway segmentation, which will leverage powerful computational capabilities and large-scale data training to construct accurate, efficient, and broadly applicable medical-image segmentation models. This direction holds promise in the context of the complex and diverse nature of medical imaging data.
深度学习医学影像分割视网膜血管分割脑血管分割冠状动脉分割气道分割图像处理
deep learningmedical image segmentationretinal vessel segmentationcerebrovascular segmentationcoronary artery segmentationairway segmentationimage processing
Abbasi-Sureshjani S, Smit-Ockeloen I, Zhang J and Romeny B T H. 2015. Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images//Proceedings of the 12th International Conference on Image Analysis and Recognition. Niagara Falls, Canada: Springer International Publishing: 325-334 [DOI: 10.1007/978-3-319-20801-5_35http://dx.doi.org/10.1007/978-3-319-20801-5_35]
Abrmoff M D, Folk J C, Han D P, Walker J D, Williams D F, Russell S R, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga D C, Quellec G and Niemeijer M. 2013. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmology, 131(3): 351-357 [DOI: 10.1001/jamaophthalmol.2013.1743http://dx.doi.org/10.1001/jamaophthalmol.2013.1743]
Armato S, McLennan G, McNitt-Gray M, Meyer C, Reeves A, Bidaut L, Zhao B, Croft B and Clarke L. 2010. WE-B-201B-02: the lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed public database of CT scans for lung nodule analysis. Medical Physics, 37(6Part6): 3416-3417 [DOI: 10.1118/1.3469350http://dx.doi.org/10.1118/1.3469350]
Aykac D, Hoffman E A, McLennan G and Reinhardt J M. 2003. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Transactions on Medical Imaging, 22(8): 940-950 [DOI: 10.1109/tmi.2003.815905http://dx.doi.org/10.1109/tmi.2003.815905]
Azzopardi G, Strisciuglio N, Vento M and Petkov N. 2015. Trainable COSFIRE filters for vessel delineation with application to retinal images. Medical Image Analysis, 19(1): 46-57 [DOI: 10.1016/j.media.2014.08.002http://dx.doi.org/10.1016/j.media.2014.08.002]
Bendaoudi H, Cheriet F, Manraj A, Ben Tahar H and Pierre Langlois J M. 2018. Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images. Journal of Real-Time Image Processing, 15(1): 31-42 [DOI: 10.1007/s11554-016-0661-4http://dx.doi.org/10.1007/s11554-016-0661-4]
Bergström G, Berglund G, Blomberg A, Brandberg J, Engström G, Engvall J, Eriksson M, De Faire U, Flinck A, Hansson M G, Hedblad B, Hjelmgren O, Janson C, Jernberg T, Johnsson Å, Johansson L, Lind L, Löfdahl C G, Melander O, Östgren C J, Persson A, Persson M, Sandström A, Schmidt C, Söderberg S, Sundström J, Toren K, Waldenström A, Wedel H, Vikgren J, Fagerberg B and Rosengren A. 2015. The Swedish CArdioPulmonary Bioimage study: objectives and design. Journal of Internal Medicine, 278(6): 645-659 [DOI: 10.1111/joim.12384http://dx.doi.org/10.1111/joim.12384]
Bibiloni P, Gonzlez-Hidalgo M and Massanet S. 2019. A real-time fuzzy morphological algorithm for retinal vessel segmentation. Journal of Real-Time Image Processing, 16(6): 2337-2350 [DOI: 10.1007/s11554-018-0748-1http://dx.doi.org/10.1007/s11554-018-0748-1]
Bouraoui B, Ronse C, Baruthio J, Passat N and Germain P. 2010. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Computerized Medical Imaging and Graphics, 34(5): 377-387 [DOI: 10.1016/j.compmedimag.2010.01.001http://dx.doi.org/10.1016/j.compmedimag.2010.01.001]
Bullitt E, Zeng D L, Gerig G, Aylward S, Joshi S, Smith J K, Lin W L and Ewend M G. 2005. Vessel tortuosity and brain tumor malignancy: a blinded study. Academic Radiology, 12(10): 1232-1240 [DOI: 10.1016/j.acra.2005.05.027http://dx.doi.org/10.1016/j.acra.2005.05.027]
Câmara Neto L, Ramalho G L B, Rocha Neto J F S, Veras R M S and Medeiros F N S. 2017. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Systems with Applications, 78: 182-192 [DOI: 10.1016/j.eswa.2017.02.015http://dx.doi.org/10.1016/j.eswa.2017.02.015]
Cetin S, Demir A, Yezzi A, Degertekin M and Unal G. 2013. Vessel tractography using an intensity based tensor model with branch detection. IEEE Transactions on Medical Imaging, 32(2): 348-363 [DOI: 10.1109/tmi.2012.2227118http://dx.doi.org/10.1109/tmi.2012.2227118]
Cetin S and Unal G. 2015. A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE Transactions on Medical Imaging, 34(10): 2172-2185 [DOI: 10.1109/tmi.2015.2425535http://dx.doi.org/10.1109/tmi.2015.2425535]
Chapman B E, Stapelton J O and Parker D L. 2004. Intracranial vessel segmentation from time-of-flight MRA using pre-processing of the MIP Z-buffer: accuracy of the ZBS algorithm. Medical Image Analysis, 8(2): 113-126 [DOI: 10.1016/j.media.2003.12.002http://dx.doi.org/10.1016/j.media.2003.12.002]
Chen C H, Chuah J H, Ali R and Wang Y Z. 2021. Retinal vessel segmentation using deep learning: a review. IEEE Access, 9: 111985-112004 [DOI: 10.1109/access.2021.3102176http://dx.doi.org/10.1109/access.2021.3102176]
Decencière E, Zhang X W, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B and Klein J C. 2014. Feedback on a publicly distributed image database: the Messidor database. Image Analysis and Stereology, 33(3): 231-234 [DOI: 10.5566/ias.1155http://dx.doi.org/10.5566/ias.1155]
Elena Martinez-Perez M, Hughes A D, Thom S A, Bharath A A and Parker K H. 2007. Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis, 11(1): 47-61 [DOI: 10.1016/j.media.2006.11.004http://dx.doi.org/10.1016/j.media.2006.11.004]
Fabijańska A. 2009. Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans. Computerized Medical Imaging and Graphics, 33(7): 537-546 [DOI: 10.1016/j.compmedimag.2009.04.012http://dx.doi.org/10.1016/j.compmedimag.2009.04.012]
Fan S Y, Bian Y Y, Chen H, Kang Y, Yang Q and Tan T. 2020. Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model. Frontiers in Neuroinformatics, 13: #17 [DOI: 10.3389/fninf.2019.00077http://dx.doi.org/10.3389/fninf.2019.00077]
Faraggi D and Reiser B. 2002. Estimation of the area under the ROC curve. Statistics in Medicine, 21(20): 3093-3106 [DOI: 10.1002/sim.1228http://dx.doi.org/10.1002/sim.1228]
Farnell D J J, Hatfield F N, Knox P, Reakes M, Spencer S, Parry D and Harding S P. 2008. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute, 345(7): 748-765 [DOI: 10.1016/j.jfranklin.2008.04.009http://dx.doi.org/10.1016/j.jfranklin.2008.04.009]
Forkert N D, Schmidt-Richberg A, Fiehler J, Illies T, Möller D, Säring D, Handels H and Ehrhardt J. 2013. 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magnetic Resonance Imaging, 31(2): 262-271 [DOI: 10.1016/j.mri.2012.07.008http://dx.doi.org/10.1016/j.mri.2012.07.008]
Fraz M M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A R, Owen C G and Barman S A. 2012. Blood vessel segmentation methodologies in retinal images—a survey. Computer Methods and Programs in Biomedicine, 108(1): 407-433 [DOI: 10.1016/j.cmpb.2012.03.009http://dx.doi.org/10.1016/j.cmpb.2012.03.009]
Gan R, Chung A C S, Wong W C K and Yu S C H. 2004. Vascular segmentation in three-dimensional rotational angiography based on maximum intensity projections//2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821). Arlington, USA: IEEE: 133-136 [DOI:10.1109/ISBI.2004.1398492http://dx.doi.org/10.1109/ISBI.2004.1398492]
Garcia-Uceda Juarez A, Tiddens H A W M and de Bruijne M. 2018. Automatic airway segmentation in chest CT using convolutional neural networks//Stoyanov D, Taylor Z, Kainz B, Maicas G, Beichel R R, Martel A, Maier-Hein L, Bhatia K, Vercauteren T, Oktay O, Carneiro G, Bradley A P, Nascimento J, Min H, Brown M S, Jacobs C, Lassen-Schmidt B, Mori K, Petersen J, Estépar R S J, Schmidt-Richberg A and Veiga C, eds. Image Analysis for Moving Organ, Breast, and Thoracic Images. Cham, Germany: Springer International Publishing: 238-250 [DOI: 10.1007/978-3-030-00946-5_24http://dx.doi.org/10.1007/978-3-030-00946-5_24]
GBD 2016 Causes of Death Collaborators. 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the global burden of disease study 2016. The Lancet, 390(10100): 1151-1210 [DOI: 10.1016/S0140-6736(17)32152-9http://dx.doi.org/10.1016/S0140-6736(17)32152-9]
Gegundez-Arias M E, Aquino A, Bravo J M and Marin D. 2012. A function for quality evaluation of retinal vessel segmentations. IEEE Transactions on Medical Imaging, 31(2): 231-239 [DOI: 10.1109/tmi.2011.2167982http://dx.doi.org/10.1109/tmi.2011.2167982]
Giarratano Y, Bianchi E, Gray C, Morris A, MacGillivray T, Dhillon B and Bernabeu M O. 2020. Automated segmentation of optical coherence tomography angiography images: benchmark data and clinically relevant metrics. Translational Vision Science and Technology, 9(13): #5 [DOI: 10.1167/tvst.9.13.5http://dx.doi.org/10.1167/tvst.9.13.5]
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2020. Generative adversarial networks. Communications of the ACM, 63(11): 139-144 [DOI: 10.1145/3422622http://dx.doi.org/10.1145/3422622]
Graham M W, Gibbs J D, Cornish D C and Higgins W E. 2010. Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy. IEEE Transactions on Medical Imaging, 29(4): 982-997 [DOI: 10.1109/tmi.2009.2035813http://dx.doi.org/10.1109/tmi.2009.2035813]
Guo X Y, Chen C, Lu Y Y, Meng K, Chen H Y, Zhou K N, Wang Z L and Xiao R X. 2020. Retinal vessel segmentation combined with generative adversarial networks and dense U-net. IEEE Access, 8: 194551-194560 [DOI: 10.1109/access.2020.3033273http://dx.doi.org/10.1109/access.2020.3033273]
Hoover A D, Kouznetsova V and Goldbaum M. 2000. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3): 203-210 [DOI: 10.1109/42.845178http://dx.doi.org/10.1109/42.845178]
Hotter B, Pittl S, Ebinger M, Oepen G, Jegzentis K, Kudo K, Rozanski M, Schmidt W U, Brunecker P, Xu C, Martus P, Endres M, Jungehülsing G J, Villringer A and Fiebach J B. 2009. Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset-1000plus study. BMC Neurology, 9(1): #60 [DOI: 10.1186/1471-2377-9-60http://dx.doi.org/10.1186/1471-2377-9-60]
Hou Y N, Ma Z, Liu C X and Loy C C. 2019. Learning lightweight lane detection CNNS by self attention distillation//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1013-1021 [DOI: 10.1109/ICCV.2019.00110http://dx.doi.org/10.1109/ICCV.2019.00110]
Huttenlocher D P, Klanderman G A and Rucklidge W J. 1993. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9): 850-863 [DOI: 10.1109/34.232073http://dx.doi.org/10.1109/34.232073]
Ji J P, Li L H, Yang R Q and Wu X M. 2011. Interactive three-dimensional segmentation based on watershed algorithm. Journal of Clinical Rehabilitative Tissue Engineering Research, 15(39): 7351-7354
纪建鹏, 黎丽华, 杨荣骞, 吴效明. 2011. 基于分水岭算法的交互式三维分割方法. 中国组织工程研究与临床康复, 15(39): 7351-7354 [DOI: 10.3969/j.issn.1673-8225.2011.39.033http://dx.doi.org/10.3969/j.issn.1673-8225.2011.39.033]
Jiang W, Lyu X Q, Ren X Y and Ren G Y. 2015. 3D segmentation method combining region growing and graph cut for coronary arteries computed tomography angiography images. Journal of Computer Applications, 35(5): 1462-1466
姜伟, 吕晓琪, 任晓颖, 任国印. 2015. 结合区域生长与图割算法的冠状动脉CT血管造影图像三维分割. 计算机应用, 35(5): 1462-1466 [DOI: 10.11772/j.issn.1001-9081.2015.05.1462http://dx.doi.org/10.11772/j.issn.1001-9081.2015.05.1462]
Jiang X, Yuan Y X, Wang Y P, Xiao Z X, Zhu M L, Chen Z H, Liu T M and Shen D G. 2022. A 20-year retrospect and prospect of medical imaging artificial intelligence in China. Journal of Image and Graphics, 27(3): 655-671
蒋希, 袁奕萱, 王雅萍, 肖振祥, 朱美芦, 陈泽华, 刘天明, 沈定刚. 2022. 中国医学影像人工智能20年回顾和展望. 中国图象图形学报, 27(3): 655-671 [DOI: 10.11834/jig.211162http://dx.doi.org/10.11834/jig.211162]
Jiang X Y and Mojon D. 2003. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1): 131-137 [DOI: 10.1109/tpami.2003.1159954http://dx.doi.org/10.1109/tpami.2003.1159954]
Jiang Z X, Zhang H, Wang Y and Ko S B. 2018. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68: 1-15 [DOI: 10.1016/j.compmedimag.2018.04.005http://dx.doi.org/10.1016/j.compmedimag.2018.04.005]
Jin D K, Xu Z Y, Harrison A P, George K and Mollura D J. 2017. 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels//Proceedings of the 8th International Workshop on Machine Learning in Medical Imaging. Quebec City, Canada: Springer International Publishing: 141-149 [DOI: 10.1007/978-3-319-67389-9_17http://dx.doi.org/10.1007/978-3-319-67389-9_17]
Kande G B, Venkata Subbaiah P and Satya Savithri T. 2010. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. Journal of Medical Systems, 34(5): 849-858 [DOI: 10.1007/s10916-009-9299-0http://dx.doi.org/10.1007/s10916-009-9299-0]
Kauppi T, Kalesnykiene V, Kamarainen J K, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H and Pietilä J. 2007. The DIARETDB1 diabetic retinopathy database and evaluation protocol//Proceedings of 2007 British Machine Vision Conference. [s.l.]: [s.n.]: #10 [DOI: 10.5244/c.21.15http://dx.doi.org/10.5244/c.21.15]
Kirişli H A, Schaap M, Metz C T, Dharampal A S, Meijboom W B, Papadopoulou S L, Dedic A, Nieman K, de Graaf M A, Meijs M F L, Cramer M J, Broersen A, Cetin S, Eslami A, Flórez-Valencia L, Lor K L, Matuszewski B, Melki I, Mohr B, Öksüz I, Shahzad R, Wang C, Kitslaar P H, Unal G, Katouzian A, Orkisz M, Chen C M, Precioso F, Najman L, Masood S, Ünay D, van Vliet L, Moreno R, Goldenberg R, Vuçini E, Krestin G P, Niessen W J and van Walsum T. 2013. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Medical Image Analysis, 17(8): 859-876 [DOI: 10.1016/j.media.2013.05.007http://dx.doi.org/10.1016/j.media.2013.05.007]
Klepaczko A, Szczypiński P, Deistung A, Reichenbach J R and Materka A. 2016. Simulation of MR angiography imaging for validation of cerebral arteries segmentation algorithms. Computer Methods and Programs in Biomedicine, 137: 293-309 [DOI: 10.1016/j.cmpb.2016.09.020http://dx.doi.org/10.1016/j.cmpb.2016.09.020]
Koukounis D, Ttofis C, Papadopoulos A and Theocharides T. 2014. A high performance hardware architecture for portable, low-power retinal vessel segmentation. Integration, 47(3): 377-386 [DOI: 10.1016/j.vlsi.2013.11.005http://dx.doi.org/10.1016/j.vlsi.2013.11.005]
Kuo W, de Bruijne M, Petersen J, Nasserinejad K, Ozturk H, Chen Y, Perez-Rovira A and Tiddens H A W M. 2017. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: objective airway-artery quantification. European Radiology, 27(11): 4680-4689 [DOI: 10.1007/s00330-017-4819-7http://dx.doi.org/10.1007/s00330-017-4819-7]
Laibacher T, Weyde T and Jalali S. 2018. M2U-Net: effective and efficient retinal vessel segmentation for resource-constrained environments [EB/OL]. [2023-10-01]. http://arxiv.org/pdf/181107738.pdfhttp://arxiv.org/pdf/181107738.pdf
Law M W K and Chung A C S. 2010. An oriented flux symmetry based active contour model for three dimensional vessel segmentation//Proceedings of the 11th European Conference on Computer Vision on Computer Vision—ECCV 2010. Heraklion, Greece: Springer: 720-734 [DOI: 10.1007/978-3-642-15558-1_52http://dx.doi.org/10.1007/978-3-642-15558-1_52]
Lee M, Lee J G, Kim N, Seo J B and Lee S M. 2019. Hybrid airway segmentation using multi-scale tubular structure filters and texture analysis on 3D chest CT scans. Journal of Digital Imaging, 32(5): 779-792 [DOI: 10.1007/s10278-018-0158-8http://dx.doi.org/10.1007/s10278-018-0158-8]
Lei M, Guo Z W and Mu Q W. 2022. Application progress of machine learning in the complications of acute ischemic stroke. Chinese Journal of Cerebrovascular Diseases, 19(1): 61-64
雷曼, 郭志伟, 母其文. 2022. 机器学习在急性缺血性卒中并发症中的应用进展. 中国脑血管病杂志, 19(1): 61-64 [DOI: 10.3969/j.issn.1672-5921.2022.01.009http://dx.doi.org/10.3969/j.issn.1672-5921.2022.01.009]
Li H, Tang Z Y, Nan Y and Yang G. 2022. Human treelike tubular structure segmentation: a comprehensive review and future perspectives. Computers in Biology and Medicine, 151: #106241 [DOI: 10.1016/j.compbiomed.2022.106241http://dx.doi.org/10.1016/j.compbiomed.2022.106241]
Li M X, Zhang Y Y, Xiong Z W and Liu D. 2020. Cascaded attention guided network for retinal vessel segmentation//Proceedings of the 7th International Workshop on Ophthalmic Medical Image Analysis. Lima, Peru: Springer International Publishing: 62-71 [DOI: 10.1007/978-3-030-63419-3_7http://dx.doi.org/10.1007/978-3-030-63419-3_7]
Lin T Y, Goyal P, Girshick R, He K M and Dollr P. 2017. Focal loss for dense object detection//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 2999-3007 [DOI: 10.1109/ICCV.2017.324http://dx.doi.org/10.1109/ICCV.2017.324]
Lin Y, Zhang H G and Hu G. 2019. Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access, 7: 57717-57724 [DOI: 10.1109/ACCESS.2018.2844861http://dx.doi.org/10.1109/ACCESS.2018.2844861]
Liskowski P and Krawiec K. 2016. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11): 2369-2380 [DOI: 10.1109/tmi.2016.2546227http://dx.doi.org/10.1109/tmi.2016.2546227]
Liu H, Wang Y, Wang Y N and Xu C. 2021. Three-dimensional segmentation method for coronary angiographic image. Chinese Journal of Medical Physics, 38(7): 826-830
刘昊, 王瑜, 王怡宁, 徐橙. 2021. 冠状动脉血管造影图像三维分割方法. 中国医学物理学杂志, 38(7): 826-830 [DOI: 10.3969/j.issn.1005-202X.2021.07.007http://dx.doi.org/10.3969/j.issn.1005-202X.2021.07.007]
Lo P, Sporring J, Ashraf H, Pedersen J J H and de Bruijne M. 2010. Vessel-guided airway tree segmentation: a voxel classification approach. Medical Image Analysis, 14(4): 527-538 [DOI: 10.1016/j.media.2010.03.004http://dx.doi.org/10.1016/j.media.2010.03.004]
Lo P, van Ginneken B, Reinhardt J M, Yavarna T, de Jong P A, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza C S, Wiemker R, Lee J, Reeves A P, Born S, Weinheimer O, van Rikxoort E M, Tschirren J, Mori K, Odry B, Naidich D P, Hartmann I, Hoffman E A, Prokop M, Pedersen J H and de Bruijne M. 2012. Extraction of airways from CT (EXACT’09). IEEE Transactions on Medical Imaging, 31(11): 2093-2107 [DOI: 10.1109/tmi.2012.2209674http://dx.doi.org/10.1109/tmi.2012.2209674]
Madai V I, von Samson-Himmelstjerna F C, Bauer M, Stengl K L, Mutke M A, Tovar-Martinez E, Wuerfel J, Endres M, Niendorf T and Sobesky J. 2012. Ultrahigh-field MRI in human ischemic stroke—a 7 tesla study. PLoS One, 7(5): #e37631 [DOI: 10.1371/journal.pone.0037631http://dx.doi.org/10.1371/journal.pone.0037631]
Martin S Z, Madai V I, von Samson-Himmelstjerna F C, Mutke M A, Bauer M, Herzig C X, Hetzer S, Günther M and Sobesky J. 2015. 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 Tesla. Journal of Cerebral Blood Flow and Metabolism, 35(3): 392-401 [DOI: 10.1038/jcbfm.2014.200http://dx.doi.org/10.1038/jcbfm.2014.200]
Meng Q E, Kitasaka T, Nimura Y, Oda M, Ueno J and Mori K. 2017. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. International Journal of Computer Assisted Radiology and Surgery, 12(2): 245-261 [DOI: 10.1007/s11548-016-1492-2http://dx.doi.org/10.1007/s11548-016-1492-2]
Metz C, Schaap M, van Walsum T, van der Giessen A, Weustink A, Mollet N, Krestin G and Niessen W. 2011. 3D segmentation in the clinic: a grand challenge II-coronary artery tracking//Proceedings of the MICCAI 2008 Workshop. Virtual: MICCAI: 2-7 [DOI: 10.54294/65tyevhttp://dx.doi.org/10.54294/65tyev]
Meyer M I, Costa P, Galdran A, Mendonça A M and Campilho A. 2008. A deep neural network for vessel segmentation of scanning laser ophthalmoscopy images//Proceedings of the 14th International Conference on Image Analysis and Recognition. Cham: Springer International Publishing: 507-515 [DOI: 10.1007/978-3-319-59876-5_56http://dx.doi.org/10.1007/978-3-319-59876-5_56]
Milletari F, Navab N and Ahmadi S A. 2016. V-net: fully convolutional neural networks for volumetric medical image segmentation//Proceedings of the 4th International Conference on 3D Vision (3DV). Stanford, USA: IEEE: 565-571 [DOI: 10.1109/3DV.2016.79http://dx.doi.org/10.1109/3DV.2016.79]
Moccia S, De Momi E, El Hadji S and Mattos L S. 2018. Blood vessel segmentation algorithms — review of methods, datasets and evaluation metrics. Computer Methods and Programs in Biomedicine, 158: 71-91 [DOI: 10.1016/j.cmpb.2018.02.001http://dx.doi.org/10.1016/j.cmpb.2018.02.001]
Mookiah M R K, Hogg S, MacGillivray T J, Prathiba V, Pradeepa R, Mohan V, Anjana R M, Doney A S, Palmer C N A and Trucco E. 2021. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Medical Image Analysis, 68: #101905 [DOI: 10.1016/j.media.2020.101905http://dx.doi.org/10.1016/j.media.2020.101905]
Nadeem S A, Hoffman E A, Sieren J C, Comellas A P, Bhatt S P, Barjaktarevic I Z, Abtin F and Saha P K. 2021. A CT-based automated algorithm for airway segmentation using freeze-and-grow propagation and deep learning. IEEE Transactions on Medical Imaging, 40(1): 405-418 [DOI: 10.1109/tmi.2020.3029013http://dx.doi.org/10.1109/tmi.2020.3029013]
Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr S M R, Ward K, Jafari M H, Felfeliyan B, Nallamothu B and Najarian K. 2016. Vessel extraction in X-ray angiograms using deep learning//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, USA: IEEE: 643-646 [DOI: 10.1109/EMBC.2016.7590784http://dx.doi.org/10.1109/EMBC.2016.7590784]
Nazir A, Cheema M N, Sheng B, Li H T, Li P, Yang P, Jung Y, Qin J, Kim J and Feng D D. 2020. OFF-eNET: an optimally fused fully end-to-end network for automatic dense volumetric 3D intracranial blood vessels segmentation. IEEE Transactions on Image Processing, 29: 7192-7202 [DOI: 10.1109/tip.2020.2999854http://dx.doi.org/10.1109/tip.2020.2999854]
Nguyen U T V, Bhuiyan A, Park L A F and Ramamohanarao K. 2013. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition, 46(3): 703-715 [DOI: 10.1016/j.patcog.2012.08.009http://dx.doi.org/10.1016/j.patcog.2012.08.009]
Niemeijer M, van Ginneken B, Cree M J, Mizutani A, Quellec G, Sanchez C I, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X Q, Cazuguel G, You J, Mayo A, Li Q, Hatanaka Y, Cochener B, Roux C, Karray F, Garcia M, Fujita H and Abramoff M D. 2010. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Transactions on Medical Imaging, 29(1): 185-195 [DOI: 10.1109/tmi.2009.2033909http://dx.doi.org/10.1109/tmi.2009.2033909]
Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O and Angelopoulou E. 2013. Retinal vessel segmentation by improved matched filtering: evaluation on a new high‐resolution fundus image database. IET Image Processing, 7(4): 373-383 [DOI: 10.1049/iet-ipr.2012.0455http://dx.doi.org/10.1049/iet-ipr.2012.0455]
Orlando J I, Fu H Z, Barbosa Breda J, van Keer K, Bathula D R, Diaz-Pinto A, Fang R G, Heng P A, Kim J, Lee J, Lee J, Li X X, Liu P, Lu S, Murugesan B, Naranjo V, Phaye S S R, Shankaranarayana S M, Sikka A, Son J, van den Hengel A, Wang S J, Wu J Y, Wu Z F, Xu G H, Xu Y L, Yin P S, Li F, Zhang X L, Xu Y W and Bogunović H. 2020. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59: #101570 [DOI: 10.1016/j.media.2019.101570http://dx.doi.org/10.1016/j.media.2019.101570]
Owen C G, Rudnicka A R, Mullen R, Barman S A, Monekosso D, Whincup P H, Ng J and Paterson C. 2009. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Investigative Ophthalmology and Visual Science, 50(5): 2004-2010 [DOI: 10.1167/iovs.08-3018http://dx.doi.org/10.1167/iovs.08-3018]
Park K B, Choi S H and Lee J Y. 2020. M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access, 8: 146308-146322 [DOI: 10.1109/access.2020.3015108http://dx.doi.org/10.1109/access.2020.3015108]
Park T S, Lee J S, Seo J B, Hong Y, Yoo J W, Kang B J, Lee S W, Oh Y M and Lee S D. 2014. Study design and outcomes of Korean obstructive lung disease (KOLD) cohort study. Tuberculosis and Respiratory Diseases, 76(4): 169-174 [DOI: 10.4046/trd.2014.76.4.169http://dx.doi.org/10.4046/trd.2014.76.4.169]
Parker D L, Chapman B E, Roberts J A, Alexander A L and Tsuruda J S. 2000. Enhanced image detail using continuity in the MIP Z‐buffer: applications to magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 11(4): 378-388 [DOI: 10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-http://dx.doi.org/10.1002/(SICI)1522-2586(200004)11:4<378::AID-JMRI5>3.0.CO;2-%23]
Passat N, Ronse C, Baruthio J, Armspach J P and Maillot C. 2006. Magnetic resonance angiography: from anatomical knowledge modeling to vessel segmentation. Medical Image Analysis, 10(2): 259-274 [DOI: 10.1016/j.media.2005.11.002http://dx.doi.org/10.1016/j.media.2005.11.002]
Pedersen J H, Ashraf H, Dirksen A, Bach K, Hansen H, Toennesen P, Thorsen H, Brodersen J, Skov B G, Døssing M, Mortensen J, Richter K, Clementsen P and Seersholm N. 2009. The Danish randomized lung cancer CT screening trial — overall design and results of the prevalence round. Journal of Thoracic Oncology, 4(5): 608-614 [DOI: 10.1097/jto.0b013e3181a0d98fhttp://dx.doi.org/10.1097/jto.0b013e3181a0d98f]
Pu J T, Fuhrman C, Good W F, Sciurba F C and Gur D. 2011. A differential geometric approach to automated segmentation of human airway tree. IEEE Transactions on Medical Imaging, 30(2): 266-278 [DOI: 10.1109/tmi.2010.2076300http://dx.doi.org/10.1109/tmi.2010.2076300]
Qin Y L, Chen M J, Zheng H, Gu Y, Shen M L, Yang J, Huang X L, Zhu Y M and Yang G Z. 2019. AirwayNet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Shenzhen, China: Springer International Publishing: 212-220 [DOI: 10.1007/978-3-030-32226-7_24http://dx.doi.org/10.1007/978-3-030-32226-7_24]
Qin Y L, Zheng H, Gu Y, Huang X L, Yang J, Wang L H and Zhu Y M. 2020. Learning bronchiole-sensitive airway segmentation CNNs by feature recalibration and attention distillation//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2020. Lima, Peru: Springer International Publishing: 221-231 [DOI: 10.1007/978-3-030-59710-8_22http://dx.doi.org/10.1007/978-3-030-59710-8_22]
Qin Y L, Zheng H, Gu Y, Huang X L, Yang J, Wang L H, Yao F, Zhu Y M and Yang G Z. 2021. Learning tubule-sensitive CNNS for pulmonary airway and artery-vein segmentation in CT. IEEE Transactions on Medical Imaging, 40(6): 1603-1617 [DOI: 10.1109/tmi.2021.3062280http://dx.doi.org/10.1109/tmi.2021.3062280]
Rahman M A and Wang Y. 2016. Optimizing intersection-over-union in deep neural networks for image segmentation//Proceedings of the 12th International Symposium on Advances in Visual Computing. Las Vegas, USA: Springer International Publishing: 234-244 [DOI: 10.1007/978-3-319-50835-1_22http://dx.doi.org/10.1007/978-3-319-50835-1_22]
Regan E A, Hokanson J E, Murphy J R, Make B, Lynch D A, Beaty T H, Curran-Everett D, Silverman E K and Crapo J D. 2011. Genetic epidemiology of COPD (COPDGene) study design. COPD: Journal of Chronic Obstructive Pulmonary Disease, 7(1): 32-43 [DOI: 10.3109/15412550903499522http://dx.doi.org/10.3109/15412550903499522]
Rickmann A M, Roy A G, Sarasua I, Navab N and Wachinger C. 2019. ‘Project and excite’ modules for segmentation of volumetric medical scans//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Shenzhen, China: Springer: 39-47 [DOI: 10.1007/978-3-030-32245-8_5http://dx.doi.org/10.1007/978-3-030-32245-8_5]
Roychowdhury S, Koozekanani D D and Parhi K K. 2015. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE Journal of Biomedical and Health Informatics, 19(3): 1118-1128 [DOI: 10.1109/jbhi.2014.2335617http://dx.doi.org/10.1109/jbhi.2014.2335617]
Sabry H M, Farag A A, Hushek S and Moriarty T. 2006. Cerebrovascular segmentation from TOF using stochastic models. Medical Image Analysis, 10(1): 2-18 [DOI: 10.1016/j.media.2004.11.009http://dx.doi.org/10.1016/j.media.2004.11.009]
Schaap M, Metz C T, van Walsum T, van der Giessen A G, Weustink A C, Mollet N R, Bauer C, Bogunović H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hoyos M H, Kitslaar P H, Krissian K, Kühnel C, Luengo-Oroz M A, Orkisz M, Smedby Ö, Styner M, Szymczak A, Tek H, Wang C L, Warfield S K, Zambal S, Zhang Y, Krestin G P and Niessen W J. 2009a. Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis, 13(5): 701-714 [DOI: 10.1016/j.media.2009.06.003http://dx.doi.org/10.1016/j.media.2009.06.003]
Schaap M, Neefjes L, Metz C, van der Giessen A, Weustink A, Mollet N, Wentzel J, van Walsum T and Niessen W. 2009b. Coronary lumen segmentation using graph cuts and robust kernel regression//Proceedings of the 21st International Conference on Information Processing in Medical Imaging. Williamsburg, USA: Springer: 528-539 [DOI: 10.1007/978-3-642-02498-6_44http://dx.doi.org/10.1007/978-3-642-02498-6_44]
Schaap M, van Walsum T, Neefjes L, Metz C, Capuano E, de Bruijne M and Niessen W. 2011. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA. IEEE Transactions on Medical Imaging, 30(11): 1974-1986 [DOI: 10.1109/tmi.2011.2160556http://dx.doi.org/10.1109/tmi.2011.2160556]
Selvan R, Kipf T, Welling M, Juarez A G U, Pedersen J H, Petersen J and de Bruijne M. 2020. Graph refinement based airway extraction using mean-field networks and graph neural networks. Medical Image Analysis, 64: #101751 [DOI: 10.1016/j.media.2020.101751http://dx.doi.org/10.1016/j.media.2020.101751]
Shannon C E. 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1): 3-55 [DOI: 10.1145/584091.584093http://dx.doi.org/10.1145/584091.584093]
Shit S, Paetzold J C, Sekuboyina A, Ezhov I, Unger A, Zhylka A, Pluim J P W, Bauer U and Menze B H. 2021. clDice—a novel topology-preserving loss function for tubular structure segmentation//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 16560-16569 [DOI: 10.1109/CVPR46437.2021.01629http://dx.doi.org/10.1109/CVPR46437.2021.01629]
Soares J V B, Leandro J J G, Cesar R M, Jelinek H F and Cree M J. 2006. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9): 1214-1222 [DOI: 10.1109/tmi.2006.879967http://dx.doi.org/10.1109/tmi.2006.879967]
Staal J, Abramoff M D, Niemeijer M, Viergever M A and van Ginneken B. 2004. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4): 501-509 [DOI: 10.1109/tmi.2004.825627http://dx.doi.org/10.1109/tmi.2004.825627]
Tang S Y and Yu F F. 2021. Construction and verification of retinal vessel segmentation algorithm for color fundus image under BP neural network model. The Journal of Supercomputing, 77(4): 3870-3884 [DOI: 10.1007/s11227-020-03422-8http://dx.doi.org/10.1007/s11227-020-03422-8]
Tetteh G, Efremov V, Forkert N D, Schneider M, Kirschke J, Weber B, Zimmer C, Piraud M and Menze B H. 2020. DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Frontiers in Neuroscience, 14: #592352 [DOI: 10.3389/fnins.2020.592352http://dx.doi.org/10.3389/fnins.2020.592352]
Tschirren J, Hoffman E A, McLennan G and Sonka M. 2005. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Transactions on Medical Imaging, 24(12): 1529-1539 [DOI: 10.1109/tmi.2005.857654http://dx.doi.org/10.1109/tmi.2005.857654]
Wang M Y, Jin R C, Jiang N C, Liu H, Jiang S, Li K and Zhou X X. 2020. Automated labeling of the airway tree in terms of lobes based on deep learning of bifurcation point detection. Medical and Biological Engineering and Computing, 58(9): 2009-2024 [DOI: 10.1007/s11517-020-02184-yhttp://dx.doi.org/10.1007/s11517-020-02184-y]
Weston J, Ratle F and Collobert R. 2008. Deep learning via semi-supervised embedding//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: Association for Computing Machinery: 1168-1175 [DOI: 10.1145/1390156.1390303http://dx.doi.org/10.1145/1390156.1390303]
Wilson N M, Ortiz A K and Johnson A B. 2013. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. Journal of Medical Devices, 7(4): #0409231 [DOI: 10.1115/1.4025983http://dx.doi.org/10.1115/1.4025983]
Worz S and Rohr K. 2007. Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Transactions on Image Processing, 16(8): 1994-2004 [DOI: 10.1109/tip.2007.901204http://dx.doi.org/10.1109/tip.2007.901204]
Xia S Y, Zhu H G, Liu X L, Gong M, Huang X Y, Xu L, Zhang H J and Guo J L. 2020. Vessel segmentation of X-ray coronary angiographic image sequence. IEEE Transactions on Biomedical Engineering, 67(5): 1338-1348 [DOI: 10.1109/tbme.2019.2936460http://dx.doi.org/10.1109/tbme.2019.2936460]
Xu X Y, Ding W X, Wang X M, Cao R F, Zhang M Y, Lyu P L and Xu F. 2016. Smartphone-based accurate analysis of retinal vasculature towards point-of-care diagnostics. Scientific Reports, 6(1): #34603 [DOI: 10.1038/srep34603http://dx.doi.org/10.1038/srep34603]
Yang L, Wang H, Zeng Q, Liu Y and Bian G. 2021. A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing, 448: 168-178 [DOI: 10.1016/j.neucom.2021.03.085http://dx.doi.org/10.1016/j.neucom.2021.03.085]
Yang Y, Tannenbaum A, Giddens D and Stillman A. 2007. Automatic segmentation of coronary arteries using Bayesian driven implicit surfaces//2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Arlington, USA: IEEE: 189-192 [DOI: 10.1109/ISBI.2007.356820http://dx.doi.org/10.1109/ISBI.2007.356820]
Yun J, Park J, Yu D, Yi J, Lee M, Park H J, Lee J G, Seo J B and Kim N. 2019. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Medical Image Analysis, 51: 13-20 [DOI: 10.1016/j.media.2018.10.006http://dx.doi.org/10.1016/j.media.2018.10.006]
Zagoruyko S and Komodakis N. 2016. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer [EB/OL]. [2023-10-01]. http://arxiv.org/pdf/161203928.pdfhttp://arxiv.org/pdf/161203928.pdf
Zhang B, Zhang L, Zhang L and Karray F. 2010. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine, 40(4): 438-445 [DOI: 10.1016/j.compbiomed.2010.02.008http://dx.doi.org/10.1016/j.compbiomed.2010.02.008]
Zhang B C, Liu S T, Zhou S J, Yang J, Wang C, Li N, Wu Z H and Xia J. 2020a. Cerebrovascular segmentation from TOF-MRA using model- and data-driven method via sparse labels. Neurocomputing, 380: 162-179 [DOI: 10.1016/j.neucom.2019.10.092http://dx.doi.org/10.1016/j.neucom.2019.10.092]
Zhang D, Yang G, Zhao S, Zhang Y P, Ghista D, Zhang H Y and Li S. 2020b. Direct quantification of coronary artery stenosis through hierarchical attentive multi-view learning. IEEE Transactions on Medical Imaging, 39(12): 4322-4334 [DOI: 10.1109/tmi.2020.3017275http://dx.doi.org/10.1109/tmi.2020.3017275]
Zhang D, Yang G, Zhao S, Zhang Y P, Zhang H Y and Li S. 2019. Direct quantification for coronary artery stenosis using multiview learning//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Shenzhen, China: Springer International Publishing: 449-457 [DOI: 10.1007/978-3-030-32245-8_50http://dx.doi.org/10.1007/978-3-030-32245-8_50]
Zhang J, Dashtbozorg B, Bekkers E, Pluim J P W, Duits R and ter Haar Romeny B M. 2016. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Transactions on Medical Imaging, 35(12): 2631-2644 [DOI: 10.1109/tmi.2016.2587062http://dx.doi.org/10.1109/tmi.2016.2587062]
Zhang M H, Wu Y Q, Zhang H X, Qin Y L, Zheng H, Tang W, Arnold C, Pei C H, Yu P X, Nan Y, Yang G, Walsh S, Marshall D C, Komorowski M, Wang P Y, Guo D Z, Jin D K, Wu Y N, Zhao S Q, Chang R S, Zhang B Y, Lyu X, Qayyum A, Mazher M, Su Q, Wu Y H, Liu Y A, Zhu Y F, Yang J C, Pakzad A, Rangelov B, Estepar R S J, Espinosa C C, Sun J Y, Yang G Z and Gu Y. 2023. Multi-site, multi-domain airway tree modeling (ATM’22): a public benchmark for pulmonary airway segmentation [EB/OL]. [2023-10-21]. http://arxiv.org/pdf/2303.05745.pdfhttp://arxiv.org/pdf/2303.05745.pdf
Zhang M L and Yang X P. 2017. Segmentation of CT angiographic images of the coronary artery based on an improved active narrow band model. Chinese Journal of Medical Physics, 34(2): 170-174
张梦璐, 杨孝平. 2017. 基于改进活动窄带模型的冠状动脉CT血管造影图像分割. 中国医学物理学杂志, 34(2): 170-174 [DOI: 10.3969/j.issn.1005-202X.2017.02.012http://dx.doi.org/10.3969/j.issn.1005-202X.2017.02.012]
Zhao H L, Qiu X Q, Lu W L, Huang H and Jin X G. 2020. High‐quality retinal vessel segmentation using generative adversarial network with a large receptive field. International Journal of Imaging Systems and Technology, 30(3): 828-842 [DOI: 10.1002/ima.22428http://dx.doi.org/10.1002/ima.22428]
Zhao T Y, Yin Z Z, Wang J, Gao D S, Chen Y Q and Mao Y X. 2019. Bronchus segmentation and classification by neural networks and linear programming//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Shenzhen, China: Springer International Publishing: 230-239 [DOI: 10.1007/978-3-030-32226-7_26http://dx.doi.org/10.1007/978-3-030-32226-7_26]
Zheng H, Qin Y L, Gu Y, Xie F F, Yang J, Sun J Y and Yang G Z. 2021. Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Transactions on Medical Imaging, 40(9): 2452-2462 [DOI: 10.1109/tmi.2021.3078828http://dx.doi.org/10.1109/tmi.2021.3078828]
Zhou K, Chen N, Xu X Y, Wang Z H, Guo J X, Liu L X and Yi Z. 2021a. Automatic airway tree segmentation based on multi-scale context information. International Journal of Computer Assisted Radiology and Surgery, 16(2): 219-230 [DOI: 10.1007/s11548-020-02293-xhttp://dx.doi.org/10.1007/s11548-020-02293-x]
Zhou Y K, Chen Z L, Shen H L, Zheng X X, Zhao R C and Duan X C. 2021b. A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 437: 118-130 [DOI: 10.1016/j.neucom.2020.06.143http://dx.doi.org/10.1016/j.neucom.2020.06.143]
Zhu W T, Huang Y F, Zeng L, Chen X M, Liu Y, Qian Z, Du N, Fan W and Xie X H. 2019. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Medical Physics, 46(2): 576-589 [DOI:10.1002/mp.13300http://dx.doi.org/10.1002/mp.13300]
相关作者
相关机构