行人再识别技术研究进展
Recent progress in person re-ID
- 2023年28卷第6期 页码:1829-1862
纸质出版日期: 2023-06-16
DOI: 10.11834/jig.230022
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-16 ,
移动端阅览
张永飞, 杨航远, 张雨佳, 豆朝鹏, 廖胜才, 郑伟诗, 张史梁, 叶茫, 晏轶超, 李俊杰, 王生进. 2023. 行人再识别技术研究进展. 中国图象图形学报, 28(06):1829-1862
Zhang Yongfei, Yang Hangyuan, Zhang Yujia, Dou Zhaopeng, Liao Shengcai, Zheng Weishi, Zhang Shiliang, Ye Mang, Yan Yichao, Li Junjie, Wang Shengjin. 2023. Recent progress in person re-ID. Journal of Image and Graphics, 28(06):1829-1862
行人再识别通过大时空范围内跨摄像机目标行人图像的检索与匹配,可实现人脸等生物特征失效情况下的行人关联,已成为智能视频监控系统的关键环节和支撑技术,并在智慧公安、智慧城市等国民经济建设中发挥了重要作用。近年行人再识别技术吸引了越来越多的关注,并取得了快速发展与进步。本文在对行人再识别技术进行简介的基础上,面向行人再识别的技术发展和落地应用需求与挑战,总结分析遮挡行人再识别、无监督行人再识别、虚拟数据生成、域泛化行人再识别、换装行人再识别、跨模态行人再识别和行人搜索等热点方向的前沿进展,归纳其发展现状和存在问题,最后对行人再识别技术的发展趋势进行展望。希望通过总结和分析,能够为研究人员开展行人再识别相关研究、推动行人再识别技术进步提供参考。
Person re-Identification (person re-ID) technique aims to solve the problem of association and matching of target person images across multiple cameras within a camera network of a surveillance system, especially in the case of face, iris and other biometrics recognition failure under non-cooperative application scenarios, and has become one of the key component and supporting technique for intelligent video surveillance systems and applications in intelligent public security and smart cities. Recently, person re-ID has attracted more and more attention from both academia and industry, and has made rapid development and progress. To meet the requirement of its technical challenges and application needs of person re-ID in practical scenarios, this paper will first give a brief introduction to the development history, commonly used datasets and evaluation metrics. Then, the recent progress in hot research topics of person re-ID is extensively reviewed and analyzed, which includes: occluded person re-ID, unsupervised person re-ID, virtual data generation, domain generalization, cloth-changing person re-ID, cross-modal person re-ID and person search. First, to address the problem of impact of possible occlusions on the performance of person re-ID, recent progress in occluded person re-ID is first reviewed, in which the popular datasets for occluded person re-ID are briefly introduced, and the two major categories of occluded person re-ID models are then further reviewed. Second, facing the challenges of low-efficiency and high-cost data annotation and great impact of training data on the performance of person re-ID, unsupervised person re-ID and virtual data generation for person re-ID emerges as two hot topics in person re-ID. The paper elaborates the recent advances of unsupervised person re-ID, which can be classified into three major categories: pseudo label generation-based models, domain transfer-based models, and other related models, which take into consideration of the extra information like time-stamps, camera labels besides person image. Third, the-state-of-the-art works on virtual data generation for person re-ID are reviewed, with detailed introduction and performance comparisons of major virtual datasets. Fourth, recent researches on domain generalization person re-ID will be reviewed,which are classified into five categories: batch/instance normalization models, domain invariant feature learning models, deep-learning-based explicit image matching models, models based on mixture of experts and meta-learning-based models. Fifth, since most current person re-ID models largely depend on the color appearance of persons’ clothes, clothes-changing person re-ID becomes a challenging setting, in which person images can exhibit large intra-class variation and small inter-class variation. Typical cloth-changing person re-ID datasets are introduced and the recent researches will then be reviewed, in which models in the first category explicitly introduces extra cloth-appearance-independent features like contour and face while the second try to decouple the cloth features and person ID features. Sixth, to compensate the drawbacks of conventional person re-ID of visible light/RGB images in natural complex scenes like poor lighting conditions in the night, the-state-of-the-art of cross-modal person re-ID, which aims to resolve the problem through other visible RGB images-excluded heterogeneous data, are reviewed, with a brief introduction of commonly used cross-modal person re-ID datasets first and then four sub-categories models according to the different modalities employed, including: RGB-infrared image person re-ID, RGB image-text person re-ID, RGB image-sketch person re-ID, and RGB-depth image person re-ID, respectively. Seventh, since existing person re-ID benchmarks and methods mainly focus on matching cropped person images between queries and candidates and is different from practical scenarios where the bounding box annotations of persons are often unavailable, person search, which jointly considers person detection and person re-ID in a single framework, becomes a new hot research topic. The typical datasets and recent progress on person search are reviewed. Finally, the existing challenges and development trend of person re-ID techniques are discussed. It is hoped that the summary and analysis can provide reference for relevant researchers to carry out research on person re-ID and promote the progress of person re-ID techniques and applications.
智能视频监控遮挡行人再识别无监督行人再识别虚拟数据生成域泛化行人再识别换装行人再识别跨模态行人再识别行人搜索
intelligent video surveillanceoccluded person re-IDunsupervised person re-IDvirtual data generationdomain generalization person re-IDcloth-changing person re-IDcross-modal person re-IDperson search
Ang E P, Shan L and Kot A C. 2021. DEX: domain embedding expansion for generalized person re-identification [EB/OL]. [2023-01-13]. https://arxiv.org/pdf/2110.11391v1.pdfhttps://arxiv.org/pdf/2110.11391v1.pdf
Bai Y, Jiao J L, Ce W, Liu J, Lou Y H, Feng X T and Duan L Y. 2021. Person30K: a dual-meta generalization network for person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 2123-2132 [DOI: 10.1109/CVPR46437.2021.00216http://dx.doi.org/10.1109/CVPR46437.2021.00216]
Bak S, Corvee E, Brémond F and Thonnat M. 2010. Person re-identification using haar-based and DCD-based signature//Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. Boston, USA: IEEE: #68 [DOI: 10.1109/AVSS.2010.68http://dx.doi.org/10.1109/AVSS.2010.68]
Bak S, Carr P and Lalonde J F. 2018. Domain adaptation through synthesis for unsupervised person re-identification//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 193-209 [DOI: 10.1007/978-3-030-01261-8_12http://dx.doi.org/10.1007/978-3-030-01261-8_12]
Barbosa I B, Cristani M, Caputo B, Rognhaugen A and Theoharis T. 2018. Looking beyond appearances: synthetic training data for deep cnns in re-identification. Computer Vision and Image Understanding, 167: 50-62 [DOI: 10.1016/j.cviu.2017.12.002http://dx.doi.org/10.1016/j.cviu.2017.12.002]
Cai Q and Aggarwal J K. 1996. Tracking human motion using multiple cameras//Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria: IEEE: 68-72 [DOI: 10.1109/ICPR.1996.546796http://dx.doi.org/10.1109/ICPR.1996.546796]
Cai Y W, Zhang Y J and Zhang Y F. 2023. Generation and selection of virtual data for cross-domain person re-identification[J/OL]. [2023-02-22].http://kns.cnki.net/kcms/detail/10.1034.T.20221229http://kns.cnki.net/kcms/detail/10.1034.T.20221229.
Cao J, Pang Y, Anwer R M, Cholakkal H, Xie J, Shah M and Khan F S. 2022. PSTR: end-to-end one-step person search with transformers//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 9448-9457 [DOI: 10.1109/CVPR52688.2022.00924http://dx.doi.org/10.1109/CVPR52688.2022.00924]
Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A and Zagoruyko S. 2020. End-to-end object detection with transformers//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 213-229 [DOI: 10.1007/978-3-030-58452-8_13http://dx.doi.org/10.1007/978-3-030-58452-8_13]
Chen D P, Li H S, Liu X H, Shen Y T, Shao J, Yuan Z J and Wang X G. 2018. Improving deep visual representation for person re-identification by global and local image-language association//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 56-73 [DOI: 10.1007/978-3-030-01270-0_4http://dx.doi.org/10.1007/978-3-030-01270-0_4]
Chen Y B, Zhu X T and Gong S G. 2019. Instance-guided context rendering for cross-domain person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 232-242 [DOI: 10.1109/ICCV.2019.00032http://dx.doi.org/10.1109/ICCV.2019.00032]
Chen D, Zhang S S, Yang J and Schiele B. 2020a. Norm-aware embedding for efficient person search//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 12612-12621 [DOI: 10.1109/CVPR42600.2020.01263http://dx.doi.org/10.1109/CVPR42600.2020.01263]
Chen P X, Dai P Y, Liu J Z, Zheng F, Xu M L, Tian Q and Ji R R. 2021a. Dual distribution alignment network for generalizable person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 35(2): 1054-1062 [DOI: 10.1609/aaai.v35i2.16190http://dx.doi.org/10.1609/aaai.v35i2.16190]
Chen P X, Liu W F, Dai P Y, Liu J Z, Ye Q X, Xu M L, Chen Q and Ji R R. 2021b. Occlude them all: occlusion-aware attention network for occluded person Re-ID//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 11813-11822 [DOI: 10.1109/iccv48922.2021.01162http://dx.doi.org/10.1109/iccv48922.2021.01162]
Chen J X, Jiang X Y, Wang F D, Zhang J, Zheng F, Sun X and Zheng W S. 2021c. Learning 3D shape feature for texture-insensitive person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 8142-8151 [DOI: 10.1109/CVPR46437.2021.00805http://dx.doi.org/10.1109/CVPR46437.2021.00805]
Chen C Q, Ye M, Qi M B and Du B. 2022a. Sketch transformer: asymmetrical disentanglement learning from dynamic synthesis//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: ACM: 4012-4020 [DOI: 10.1145/3503161.3547993http://dx.doi.org/10.1145/3503161.3547993]
Chen C Q, Ye M, Qi M B, Wu J J, Jiang J G and Lin C W. 2022b. Structure-aware positional transformer for visible-infrared person re-identification. IEEE Transactions on Image Processing, 31: 2352-2364 [DOI: 10.1109/TIP.2022.3141868http://dx.doi.org/10.1109/TIP.2022.3141868]
Chen K F, Pan Z S, Wang J B, Shi L and Zhang J. 2022. Moderate clothes-changing person re-identification based on bionics of binocular summation. Computer Science, 49(8): 165-171
陈坤峰, 潘志松, 王家宝, 施蕾, 张锦. 2022. 基于双目叠加仿生的微换衣行人再识别. 计算机科学, 49(8): 165-171 [DOI: 10.11896/jsjkx.210600140http://dx.doi.org/10.11896/jsjkx.210600140]
Chen L, Gao Z, Song X M, Wang Y L and Nie L Q. 2022. A cross-modal pedestrian Re-ID algorithm based on dual attribute information. Journal of Beijing University of Aeronautics and Astronautics, 48(4): 647-656
陈琳, 高赞, 宋雪萌, 王英龙, 聂礼强. 2022. 基于双重属性信息的跨模态行人重识别算法. 北京航空航天大学学报, 48(4): 647-656 [DOI: 10.13700/j.bh.1001-5965.2020.0614http://dx.doi.org/10.13700/j.bh.1001-5965.2020.0614]
Cheng Z Y, Zhu X T and Gong S G. 2018. Low-resolution face recognition//Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: Springer: 605-621 [DOI: 10.1007/978-3-030-20893-6_38http://dx.doi.org/10.1007/978-3-030-20893-6_38]
Cheng X H, Jia M X, Wang Q and Zhang J. 2022. More is better: multi-source dynamic parsing attention for occluded person re-identification//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: ACM: 6840-6849 [DOI: 10.1145/3503161.3547819http://dx.doi.org/10.1145/3503161.3547819]
Choi S, Lee S, Kim Y, Kim T and Kim C. 2020. Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 10254-10263 [DOI: 10.1109/CVPR42600.2020.01027http://dx.doi.org/10.1109/CVPR42600.2020.01027]
Choi S, Kim T, Jeong M, Park H and Kim C. 2022. Meta batch-instance normalization for generalizable person re-identification//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 3424-3434 [DOI: 10.1109/CVPR46437.2021.00343http://dx.doi.org/10.1109/CVPR46437.2021.00343]
Dai Y X, Li X T, Liu J, Tong Z K and Duan L Y. 2021. Generalizable person re-identification with relevance-aware mixture of experts//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 16140-16149 [DOI: 10.1109/CVPR46437.2021.01588http://dx.doi.org/10.1109/CVPR46437.2021.01588]
Dai Z Z, Wang G Y, Yuan W H, Liu X L, Zhu S Y and Tan P. 2023. Cluster contrast for unsupervised person re-identification [EB/OL]. [2023-02-10]. https://arxiv.org/pdf/2103.11568.pdfhttps://arxiv.org/pdf/2103.11568.pdf
Ding G D, Khan S H and Tang Z M. 2019. Dispersion based clustering for unsupervised person re-identification//Proceedings of the 30th British Machine Vision Conference (BMVC). Cardiff, UK: BMVA Press
Ding Z F, Ding C X, Shao Z Y and Tao D C. 2021. Semantically self-aligned network for text-to-image part-aware person re-identification [EB/OL]. [2022-10-02]. https://arxiv.org/pdf/2107.12666v2.pdfhttps://arxiv.org/pdf/2107.12666v2.pdf
Dou Z P, Wang Z D, Li Y L and Wang S J. 2022. Progressive-granularity retrieval via hierarchical feature alignment for person re-identification//Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Singapore, Singapore: IEEE: 2714-2718 [DOI: 10.1109/ICASSP43922.2022.9747234http://dx.doi.org/10.1109/ICASSP43922.2022.9747234]
Ester M, Kriegel H P, Sander J and Xu X W. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: AAAI Press: 226-231
Farenzena M, Bazzani L, Perina A, Murino V and Cristani M. 2010. Person re-identification by symmetry-driven accumulation of local features//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 2360-2367 [DOI: 10.1109/CVPR.2010.5539926http://dx.doi.org/10.1109/CVPR.2010.5539926]
Fu Y, Wei Y C, Wang G S, Zhou Y Q, Shi H H, Uiuc U and Huang T. 2019. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 6111-6120 [DOI: 10.1109/ICCV.2019.00621http://dx.doi.org/10.1109/ICCV.2019.00621]
Ge Y, Chen D and Li H. 2020. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification//Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia: IMLS: #1526 [DOI: 10.48550/arXiv.2001.01526http://dx.doi.org/10.48550/arXiv.2001.01526]
Gheissari N, Sebastian T B and Hartle R. 2006. Person reidentification using spatiotemporal appearance//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE: 1528-1535 [DOI: 10.1109/CVPR.2006.223http://dx.doi.org/10.1109/CVPR.2006.223]
Gong S G, Cristani M, Yan S C and Loy C C. 2014. Person Re-Identification. London: Springer [DOI: 10.1007/978-1-4471-6296-4http://dx.doi.org/10.1007/978-1-4471-6296-4]
Gou M. 2022. Person re-identification datasets [EB/OL]. [2022-10-02].https://github.com/NEU-Gou/awesome-reid-datasethttps://github.com/NEU-Gou/awesome-reid-dataset
Gray D and Tao H. 2008. Viewpoint invariant pedestrian recognition with an ensemble of localized features//Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer: 262-275 [DOI: 10.1007/978-3-540-88682-2_21http://dx.doi.org/10.1007/978-3-540-88682-2_21]
Grill J B, Strub F, Altche F. 2020. Bootstrap your own latent: a new approach to self supervised learning//Proceedings of the Conference on Neural Information Processing Systems (NeurIPS). Vancouver, Canada: NIPSF: 1-28 [DOI: 10.48550/arXiv.2006.07733http://dx.doi.org/10.48550/arXiv.2006.07733]
Gu X Q, Chang H, Ma B P, Bai S T, Shan S G and Chen X L. 2022. Clothes-changing person re-identification with RGB modality only//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Oleans, USA: IEEE: 1050-1059 [DOI: 10.1109/CVPR52688.2022.00113http://dx.doi.org/10.1109/CVPR52688.2022.00113]
Gui S J, Zhu Y, Qin X X and Ling X F. 2020. Learning multi-level domain invariant features for sketch re-identification. Neurocomputing, 403: 294-303 [DOI: 10.1016/j.neucom.2020.04.060http://dx.doi.org/10.1016/j.neucom.2020.04.060]
Guo Y D, Zhang L, Hu Y X, He X D and Gao J F. 2016. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 87-102 [DOI: 10.1007/978-3-319-46487-9_6http://dx.doi.org/10.1007/978-3-319-46487-9_6]
Hafner F M, Bhuiyan A, Kooij J F P and Granger E. 2019. RGB-depth cross-modal person re-identification//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Taipei, China: IEEE: 1-8 [DOI: 10.1109/AVSS.2019.8909838http://dx.doi.org/10.1109/AVSS.2019.8909838]
Han B, Yao Q M, Yu X R, Niu G, Xu M, Hu W H, Tsang I W and Sugiyama M. 2018. Co-teaching: robust training of deep neural networks with extremely noisy labels//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc.: 8536-8546
Han C C, Ye J C, Zhong Y S, Tan X, Zhang C, Gao C X and Sang N. 2019. Re-ID driven localization refinement for person search//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 9813-9822 [DOI: 10.1109/ICCV.2019.00991http://dx.doi.org/10.1109/ICCV.2019.00991]
Han C C, Su K, Yu D D, Yuan Z H, Gao C X, Sang N, Yang Y and Wang C H. 2021. Weakly supervised person search with region siamese networks//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 11986-11995 [DOI: 10.1109/ICCV48922.2021.01179http://dx.doi.org/10.1109/ICCV48922.2021.01179]
He L X, Liang J, Li H Q and Sun Z N. 2018. Deep spatial feature reconstruction for partial person re-identification: alignment-free approach//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7073-7082 [DOI: 10.1109/cvpr.2018.00739http://dx.doi.org/10.1109/cvpr.2018.00739]
He K M, Fan H Q, Wu Y X, Xie S N and Girshick R. 2020. Momentum contrast for unsupervised visual representation learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, Washington, USA: IEEE: 9729-9738 [DOI: 10.1109/CVPR42600.2020.00975http://dx.doi.org/10.1109/CVPR42600.2020.00975]
Hong P X, Wu T, Wu A, Han X T and Zheng W S. 2021. Fine-grained shape-appearance mutual learning for cloth-changing person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 10508-10517 [DOI: 10.1109/CVPR46437.2021.01037http://dx.doi.org/10.1109/CVPR46437.2021.01037]
Hou R B, Ma B P, Chang H, Gu X Q, Shan S G and Chen X L. 2019. VRSTC: occlusion-free video person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 7176-7185 [DOI: 10.1109/cvpr.2019.00735http://dx.doi.org/10.1109/cvpr.2019.00735]
Hou R B, Ma B P, Chang H, Gu X Q, Shan S G and Chen X L. 2022. Feature completion for occluded person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 4894-4912 [DOI: 10.1109/tpami.2021.3079910http://dx.doi.org/10.1109/tpami.2021.3079910]
Hu Y, Yi D, Liao S C, Lei Z and Li S Z. 2014. Cross dataset person re-identification//Proceedings of 2014 Asian Conference on Computer Vision. Singapore, Singapore: Springer: 650-664 [DOI: 10.1007/978-3-319-16634-6_47http://dx.doi.org/10.1007/978-3-319-16634-6_47]
Huang T and Russell S. 1997. Object identification in a Bayesian context//Proceedings of the 15th International Joint Conference on Artifical Intelligence. Nagoya, Japan: Morgan Kaufmann Publishers Inc.: 1276-1282
Huang Y R, Peng P X, Jin Y, Xing J L, Lang C Y and Feng S H. 2019a. Domain adaptive attention model for unsupervised cross-domain person re-identification [EB/OL]. [2022-10-22]. https://arxiv.org/pdf/1905.10529.pdfhttps://arxiv.org/pdf/1905.10529.pdf
Huang Y, Xu J S, Wu Q, Zhong Y, Zhang P and Zhang Z X. 2019b. Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10): 3459-3471 [DOI: 10.1109/TCSVT.2019.2948093http://dx.doi.org/10.1109/TCSVT.2019.2948093]
Huang Y, Wu Q, Xu J S, Zhong Y and Zhang Z X. 2021. Clothing status awareness for long-term person re-identification//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE: 11875-11884 [DOI: 10.1109/ICCV48922.2021.01168http://dx.doi.org/10.1109/ICCV48922.2021.01168]
Huang B C, Li F and Wang S J. 2023. Cross-classification-based sketch person re-identification in inconsistent cross-modal identity scenes. Laser and Optoelectronics Progress, 60(4): #0410006
黄勃淳, 李凡, 汪淑娟. 2023. 跨模态身份不一致的交叉分类素描行人重识别. 激光与光电子学进展, 60(4): #0410006 [DOI: 10.3788/LOP212820http://dx.doi.org/10.3788/LOP212820]
Iodice S and Mikolajczyk K. 2018. Partial person re-identification with alignment and hallucination//Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: Springer: 101-116 [DOI: 10.1007/978-3-030-20876-9_7http://dx.doi.org/10.1007/978-3-030-20876-9_7]
Jia J R, Ruan Q Q and Hospedales T M. 2019. Frustratingly easy person re-identification: generalizing person re-id in practice [EB/OL]. [2022-10-22]. https://arxiv.org/pdf/1905.03422.pdfhttps://arxiv.org/pdf/1905.03422.pdf.
Jia C Y, Luo M N, Yan C X, Chang X J and Zheng Q H. 2022a. CGUA: context-guided and unpaired-assisted weakly supervised person search [EB/OL]. [2022-03-27]. https://arxiv.org/pdf/2203.14307.pdfhttps://arxiv.org/pdf/2203.14307.pdf
Jia M X, Cheng X H, Lu S J and Zhang J. 2022b. Learning disentangled representation implicitly via transformer for occluded person re-identification. IEEE Transactions on Multimedia, 25(1): 1294-1305 [DOI: 10.1109/tmm.2022.3141267http://dx.doi.org/10.1109/tmm.2022.3141267]
Jia X M, Zhong X, Ye M, Liu W X and Huang W X. 2022c. Complementary data augmentation for cloth-changing person re-identification. IEEE Transactions on Image Processing, 31: 4227-4239 [DOI: 10.1109/TIP.2022.3183469http://dx.doi.org/10.1109/TIP.2022.3183469]
Jiang L, Zhou Z Y, Leung T, Li L J and Li F F. 2018. MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: [s.n.]: 2304-2313 [DOI: 10.48550/arXiv.1712.05055http://dx.doi.org/10.48550/arXiv.1712.05055]
Jiang D and Ye M. 2022. Transformer network for cross-modal text-to-image person re-identification. Journal of Image and Graphics, 28(05): 1384-1395
姜定, 叶茫. 2022. 面向跨模态文本到图像行人重识别的Transformer网络. 中国图象图形学报, 28(05): 1384-1395 [DOI: 10.11834/jig.220620http://dx.doi.org/10.11834/jig.220620]
Jiao B L, Liu L Q, Gao L Y, Lin G S, Yang L, Zhang S Z, Wang P and Zhang Y N. 2022. Dynamically transformed instance normalization network for generalizable person re-identification//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 285-301 [DOI: 10.1007/978-3-031-19781-9_17http://dx.doi.org/10.1007/978-3-031-19781-9_17]
Jin X, Lan C L, Zeng W J, Chen Z B and Zhang L. 2020. Style normalization and restitution for generalizable person re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3140-3149 [DOI: 10.1109/CVPR42600.2020.00321http://dx.doi.org/10.1109/CVPR42600.2020.00321]
Jin X, He T Y, Zheng K C, Yin Z H, Shen X, Huang Z, Feng R Y, Huang J Q, Chen Z B and Hua X S. 2022. Cloth-changing person re-identification from a single image with gait prediction and regularization//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 14258-14267 [DOI: 10.1109/CVPR52688.2022.01388http://dx.doi.org/10.1109/CVPR52688.2022.01388]
Kai J, Bodensteiner C and Arens M. 2011. Person re-identification in multi-camera networks//Proceedings of 2011 Computer Vision and Pattern Recognition Workshops. Colorado Springs, USA: IEEE: 55-61 [DOI: 10.1109/CVPRW.2011.5981771http://dx.doi.org/10.1109/CVPRW.2011.5981771]
Kang C C. 2022. Is synthetic dataset reliable for benchmarking generalizable person re-identification? [EB/OL]. [2022-09-12]. https://arxiv.org/pdf/2209.05047.pdfhttps://arxiv.org/pdf/2209.05047.pdf
Ke Z H, Wang D Y, Yan Q, Ren J and Lau R. 2019. Dual student: breaking the limits of the teacher in semi-supervised learning//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6727-6735 [DOI: 10.1109/ICCV.2019.00683http://dx.doi.org/10.1109/ICCV.2019.00683]
Kim H, Joung S, Kim I J and Sohn K. 2022. Prototype-guided saliency feature learning for person search//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 4863-4872 [DOI: 10.1109/CVPR46437.2021.00483http://dx.doi.org/10.1109/CVPR46437.2021.00483]
Köstinger M, Hirzer M, Wohlhart P, Roth P M and Bischof H. 2012. Large scale metric learning from equivalence constraints//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 2288-2295 [DOI: 10.1109/CVPR.2012.6247939http://dx.doi.org/10.1109/CVPR.2012.6247939]
Krizhevsky A, Sutskever I and Hinton G E. 2017. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90 [DOI: 10.1145/3065386http://dx.doi.org/10.1145/3065386]
Lan X, Zhu X T and Gong S G. 2018. Person search by multi-scale matching//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 553-569 [DOI: 10.1007/978-3-030-01246-5_33http://dx.doi.org/10.1007/978-3-030-01246-5_33]
Layne R, Hospedales T and Gong S G. 2012. Person re-identification by attributes//Proceedings of 2012 British Machine Vision Conference. Surrey, UK: BMVA Press: #24 [DOI: 10.5244/C.26.24http://dx.doi.org/10.5244/C.26.24]
Li W, Zhao R, Xiao T and Wang X G. 2014. DeepReID: deep filter pairing neural network for person re-identification//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 152-159 [DOI: 10.1109/CVPR.2014.27http://dx.doi.org/10.1109/CVPR.2014.27]
Li S, Xiao T, Li H S, Zhou B L, Yue D Y and Wang X G. 2017. Person search with natural language description//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5187-5196 [DOI: 10.1109/CVPR.2017.551http://dx.doi.org/10.1109/CVPR.2017.551]
Li J N and Zhang S L. 2020. Joint visual and temporal consistency for unsupervised domain adaptive person re-identification//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 483-499 [DOI: 10.1007/978-3-030-58586-0_29http://dx.doi.org/10.1007/978-3-030-58586-0_29]
Li H, Ye M and Du B. 2021a. WePerson: learning a generalized re-identification model from all-weather virtual data//Proceedings of the 29th ACM International Conference on Multimedia. Virtual, China: ACM: 3115-3123 [DOI: 10.1145/3474085.3475455http://dx.doi.org/10.1145/3474085.3475455]
Li Y J, Weng X S and Kitani K M. 2021b. Learning shape representations for person re-identification under clothing change//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE: 2431-2440 [DOI: 10.1109/WACV48630.2021.00248http://dx.doi.org/10.1109/WACV48630.2021.00248]
Li J L. 2021. Research on Adaptive Occluded Person Re-Identification Method based on Human Pose. Chengdu: Xihua University
李吉林. 2021. 基于人体姿态的自适应遮挡行人再识别方法研究. 成都: 西华大学 [DOI: 10.27411/d.cnki.gscgc.2021.000452http://dx.doi.org/10.27411/d.cnki.gscgc.2021.000452]
Li Z J and Miao D Q. 2021. Sequential end-to-end network for efficient person search. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3): 2011-2019 [DOI: 10.1609/aaai.v35i3.16297http://dx.doi.org/10.1609/aaai.v35i3.16297]
Li J J, Yan Y C, Wang G S, Yu F F, Jia Q and Ding S H. 2022a. Domain adaptive person search//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 302-318 [DOI: 10.1007/978-3-031-19781-9_18http://dx.doi.org/10.1007/978-3-031-19781-9_18]
Li S H, Chen H B, Yu S J, He Z Q, Zhu F, Zhao R, Chen J and Qiao Y. 2022b. COCAS+: large-scale clothes-changing person re-identification with clothes templates. IEEE Transactions on Circuits and Systems for Video Technology, 33(4): 1839-1853. [DOI: 10.1109/TCSVT.2022.3216769http://dx.doi.org/10.1109/TCSVT.2022.3216769]
Liao S C and Shao L. 2020. Interpretable and generalizable person re-identification with query-adaptive convolution and temporal lifting//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 456-474 [DOI: 10.1007/978-3-030-58621-8_27http://dx.doi.org/10.1007/978-3-030-58621-8_27]
Liao S C and Shao L. 2021. TransMatcher: deep image matching through transformers for generalizable person re-identification. [EB/OL]. [2022-12-07]. https://arxiv.org/pdf/2105.14432.pdfhttps://arxiv.org/pdf/2105.14432.pdf
Liao S C and Shao L. 2022. Graph sampling based deep metric learning for generalizable person re-identification//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 7349-7358 [DOI: 10.1109/CVPR52688.2022.00721http://dx.doi.org/10.1109/CVPR52688.2022.00721]
Lin Y T, Dong X Y, Zheng L, Yan Y and Yang Y. 2019. A bottom-up clustering approach to unsupervised person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1): 8738-8745 [DOI: 10.1609/aaai.v33i01.33018738http://dx.doi.org/10.1609/aaai.v33i01.33018738]
Lin Y T, Xie L X, Wu Y, Yan C G and Tian Q. 2020. Unsupervised person re-identification via softened similarity learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3387-3396 [DOI: 10.1109/CVPR42600.2020.00345http://dx.doi.org/10.1109/CVPR42600.2020.00345]
Lin S, Li C T and Kot A C. 2021. Multi-domain adversarial feature generalization for person re-identification. IEEE Transactions on Image Processing, 30: 1596-1607 [DOI: 10.1109/TIP.2020.3046864http://dx.doi.org/10.1109/TIP.2020.3046864]
Liu H, Liang H and Ma L Q. 2017. Online RGB-D person re-identification based on metric model update. CAAI Transactions on Intelligence Technology, 2(1): 48-55 [DOI: 10.1016/j.trit.2017.04.001http://dx.doi.org/10.1016/j.trit.2017.04.001]
Liu J W, Zha Z J, Chen D, Hong R C and Wang M. 2019a. Adaptive transfer network for cross-domain person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 7195-7204 [DOI: 10.1109/CVPR.2019.00737http://dx.doi.org/10.1109/CVPR.2019.00737]
Liu J W, Zha Z J, Hong R C, Wang M and Zhang Y D. 2019b. Deep adversarial graph attention convolution network for text-based person search//Proceedings of the 27th ACM International Conference on Multimedia. Nice, France: ACM: 665-673 [DOI: 10.1145/3343031.3350991http://dx.doi.org/10.1145/3343031.3350991]
Liu X B and Zhang S L. 2020. Domain adaptive person re-identification via coupling optimization//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 547-555 [DOI: 10.1145/3394171.3413904http://dx.doi.org/10.1145/3394171.3413904]
Liu H J, Tan X H and Zhou X C. 2021. Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification. IEEE Transactions on Multimedia, 23: 4414-4425 [DOI: 10.1109/TMM.2020.3042080http://dx.doi.org/10.1109/TMM.2020.3042080]
Liu Q, Wang H Y, Cao L, Sun B Y, Xiao Y and Zhang J. 2021. Cloth-changing person re-identification based on joint loss capsule network. Journal of Computer Applications, 41(12): 3596-3601
刘乾, 王洪元, 曹亮, 孙博言, 肖宇, 张继. 2021. 基于联合损失胶囊网络的换衣行人重识别. 计算机应用, 41(12): 3596-3601 [DOI: 10.11772/j.issn.1001-9081.2021061090http://dx.doi.org/10.11772/j.issn.1001-9081.2021061090]
Liu J Q, Huang Z P, Li L, Zheng K C and Zha Z J. 2022. Debiased batch normalization via gaussian process for generalizable person re-identification [EB/OL]. [2022-10-22]. https://arxiv.org/pdf/2203.01723.pdfhttps://arxiv.org/pdf/2203.01723.pdf
Mekhazni D, Bhuiyan A, Ekladious G and Granger E. 2020. Unsupervised domain adaptation in the dissimilarity space for person re-identification//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 159-174 [DOI: 10.1007/978-3-030-58583-9_10http://dx.doi.org/10.1007/978-3-030-58583-9_10]
Miao J X, Wu Y, Liu P, Ding Y H and Yang Y. 2019. Pose-guided feature alignment for occluded person re-identification//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 542-551 [DOI: 10.1109/iccv.2019.00063http://dx.doi.org/10.1109/iccv.2019.00063]
Mo C J. 2022. Text pedestrian cross-modal retrieval based on two-way convolutional local alignment. Video Engineering, 46(4): 25-30
莫承见. 2022. 基于双路卷积局部对齐的文本行人跨模态检索. 电视技术, 46(4): 25-30 [DOI: 10.16280/j.videoe.2022.04.006http://dx.doi.org/10.16280/j.videoe.2022.04.006]
Moon H and Phillips P J. 2001. Computational and performance aspects of PCA-based face-recognition algorithms. Perception, 30(3): 303-321 [DOI: 10.1068/p2896http://dx.doi.org/10.1068/p2896]
Munaro M, Basso A, Fossati A, van Gool L and Menegatti E. 2014. 3D reconstruction of freely moving persons for re-identification with a depth sensor//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE: 4512-4519 [DOI: 10.1109/ICRA.2014.6907518http://dx.doi.org/10.1109/ICRA.2014.6907518]
Nguyen D T, Hong H G, Kim K W and Park K R. 2017. Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors, 17(3): #605 [DOI: 10.3390/s17030605http://dx.doi.org/10.3390/s17030605]
Oreifej O, Mehran R and Shah M. 2010. Human identity recognition in aerial images//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 709-716 [DOI: 10.1109/CVPR.2010.5540147http://dx.doi.org/10.1109/CVPR.2010.5540147]
Pang L, Wang Y W, Song Y Z, Huang T J and Tian Y H. 2018. Cross-domain adversarial feature learning for sketch re-identification//Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea (South): ACM: 609-617 [DOI: 10.1145/3240508.3240606http://dx.doi.org/10.1145/3240508.3240606]
Qian X L, Wang W X, Zhang L, Zhu F R, Fu Y W, Xiang T, Jiang Y G and Xue X Y. 2020. Long-term cloth-changing person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and the 15th Asian Conference on Computer Vision. Kyoto, Japan: Springer: 71-88 [DOI: 10.1007/978-3-030-69535-4_5http://dx.doi.org/10.1007/978-3-030-69535-4_5]
Qin J, Zheng P, Yan Y C, Quan R, Cheng X G and Ni B B. 2023. MovieNet-PS: a large-scale person search dataset in the wild [EB/OL]. [2022-04-12]. https://arxiv.org/pdf/2112.02500.pdfhttps://arxiv.org/pdf/2112.02500.pdf
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Ren X N, Zhang D M, Bao X G and Li B. 2021. Semantic guidance attention network for occluded person re-identification. Journal on Communications, 42(10): 106-116
任雪娜, 张冬明, 包秀国, 李冰. 2021. 语义引导的遮挡行人再识别注意力网络. 通信学报, 42(10): 106-116 [DOI: 10.11959/j.issn.1000-436x.2021184http://dx.doi.org/10.11959/j.issn.1000-436x.2021184]
Ristani E, Solera F, Zou R, Cucchiara R and Tomasi C. 2016. Performance measures and a data set for multi-target, multi-camera tracking//Proceedings of 2016 European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 17-35 [DOI: 10.1007/978-3-319-48881-3_2http://dx.doi.org/10.1007/978-3-319-48881-3_2]
Shao Z Y, Zhang X Y, Fang M, Lin Z F, Wang J and Ding C X. 2022. Learning granularity-unified representations for text-to-image person re-identification//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: ACM: 5566-5574 [DOI: 10.1145/3503161.3548028http://dx.doi.org/10.1145/3503161.3548028]
Shen X W. 2021. Research on Domain Generalized Feature Learning Network for Pedestrian Recognition. Nanjing: Nanjing University of Science and Technology
沈贤文. 2021. 面向行人再识别的域泛化特征学习网络研究. 南京: 南京理工大学 [DOI: 10.27241/d.cnki.gnjgu.2021.001178http://dx.doi.org/10.27241/d.cnki.gnjgu.2021.001178]
Shi W D, Zhang Y Z, Liu S W, Zhu S D and Bao J N. 2020. Person re-identification based on deformation and occlusion mechanisms. Journal of Image and Graphics, 25(12): 2530-2540
史维东, 张云洲, 刘双伟, 朱尚栋, 暴吉宁. 2020. 针对形变与遮挡问题的行人再识别. 中国图象图形学报, 25(12): 2530-2540 [DOI: 10.11834/jig.200016http://dx.doi.org/10.11834/jig.200016]
Shu X J, Wang X, Zang X H, Zhang S L, Chen Y Q, Li G and Tian Q. 2022. Large-scale spatio-temporal person re-identification: algorithms and benchmark. IEEE Transactions on Circuits and Systems for Video Technology, 32(7): 4390-4403 [DOI: 10.1109/TCSVT.2021.3128214http://dx.doi.org/10.1109/TCSVT.2021.3128214]
Song J F, Yang Y X, Song Y Z, Xiang T and Hospedales T M. 2019. Generalizable person re-identification by domain-invariant mapping network//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 719-728 [DOI: 10.1109/CVPR.2019.00081http://dx.doi.org/10.1109/CVPR.2019.00081]
Sun X X and Zheng L. 2019. Dissecting person re-identification from the viewpoint of viewpoint//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 608-617 [DOI: 10.1109/CVPR.2019.00070http://dx.doi.org/10.1109/CVPR.2019.00070]
Tan H C, Liu X P, Yin B C and Li X. 2022. MHSA-Net: multihead self-attention network for occluded person re-identification [J/OL]. [2022-08-30]. IEEE Transactions on Neural Networks and Learning SystemsIEEETransactionsonNeuralNetworksandLearningSystems. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9738731https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9738731
Tarvainen A and Valpola H. 2017. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.: 1195-1204
Tian Z, Shen C H, Chen H and He T. 2019. FCOS: fully convolutional one-stage object detection//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 9626-9635 [DOI: 10.1109/ICCV.2019.00972http://dx.doi.org/10.1109/ICCV.2019.00972]
Tian W Y. 2021. Improving Occluded Person Re-identification by Pixel-wise Semantic Annotation and Feature Uncertainty. Wuhan: Huazhong University of Science and Technology
田维怡. 2021. 基于像素语义注释与特征不确定性的遮挡行人再识别框架. 武汉: 华中科技大学 [DOI: 10.27157/d.cnki.ghzku.2021.003156http://dx.doi.org/10.27157/d.cnki.ghzku.2021.003156]
Wan F B, Wu Y, Qian X L, Chen Y X and Fu Y W. 2020. When person re-identification meets changing clothes//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE: 3620-3628 [DOI: 10.1109/CVPRW50498.2020.00423http://dx.doi.org/10.1109/CVPRW50498.2020.00423]
Wang F S, Yan T, Liu F R, Qian Y P and Xu Y. 2023. Multi-scale cross-modality person re-identification method based on shared subspace features. Journal of Electronics and Information Technology, 45(1): 325-334
王凤随, 闫涛, 刘芙蓉, 钱亚萍, 许月. 2023. 融合子空间共享特征的多尺度跨模态行人重识别方法. 电子与信息学报, 45(1): 325-334 [DOI: 10.11999/JEIT211212http://dx.doi.org/10.11999/JEIT211212]
Wang G A, Zhang T Z, Cheng J, Liu S, Yang Y and Hou Z G. 2019a. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 3622-3631 [DOI: 10.1109/ICCV.2019.00372http://dx.doi.org/10.1109/ICCV.2019.00372]
Wang Z X, Wang Z, Zheng Y Q, Chuang Y Y and Satoh S. 2019b. Learning to reduce dual-level discrepancy for infrared-visible person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 618-626 [DOI: 10.1109/CVPR.2019.00071http://dx.doi.org/10.1109/CVPR.2019.00071]
Wang C, Ma B P, Chang H, Shan S G and Chen X L. 2020a. TCTS: a task-consistent two-stage framework for person search//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 11949-11958 [DOI: 10.1109/CVPR42600.2020.01197http://dx.doi.org/10.1109/CVPR42600.2020.01197]
Wang G A, Yang S, Liu H Y, Wang Z C, Yang Y, Wang S L, Yu G, Zhou E J and Sun J. 2020b. High-order information matters: learning relation and topology for occluded person re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 6448-6457 [DOI: 10.1109/cvpr42600.2020.00648http://dx.doi.org/10.1109/cvpr42600.2020.00648]
Wang Y, Liao S C and Shao L. 2020c. Surpassing real-world source training data: random 3D characters for generalizable person re-identification//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 3422-3430 [DOI: 10.1145/3394171.3413815http://dx.doi.org/10.1145/3394171.3413815]
Wang W H, Liao S C, Zhao F, Kang C C and Shao L. 2021. DomainMix: learning generalizable person re-identification without human annotations [EB/OL]. [2022-08-30]. https://arxiv.org/pdf/2011.11953.pdfhttps://arxiv.org/pdf/2011.11953.pdf
Wang Y, Liang X Z and Liao S C. 2022. Cloning outfits from real-world images to 3D characters for generalizable person re-identification//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 4890-4899 [DOI: 10.1109/CVPR52688.2022.00485http://dx.doi.org/10.1109/CVPR52688.2022.00485]
Wei L H, Zhang S L, Gao W and Tian Q. 2018. Person transfer GAN to bridge domain gap for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 79-88 [DOI: 10.1109/CVPR.2018.00016http://dx.doi.org/10.1109/CVPR.2018.00016]
Wu A C, Lin C Z and Zheng W S. 2022. Single-modality self-supervised information mining for cross-modality person re-identification. Journal of Image and Graphics, 27(10): 2843-2859
吴岸聪, 林城梽, 郑伟诗. 2022. 面向跨模态行人重识别的单模态自监督信息挖掘. 中国图象图形学报, 27(10): 2843-2859 [DOI: 10.11834/jig.211050http://dx.doi.org/10.11834/jig.211050]
Wu A C, Zheng W S, Yu H X, Gong S G and Lai J H. 2017. RGB-infrared cross-modality person re-identification//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 5390-5399 [DOI: 10.1109/ICCV.2017.575http://dx.doi.org/10.1109/ICCV.2017.575]
Wu J J, Jiang J G, Qi M B, Chen C Q and Zhang J J. 2022. An end-to-end heterogeneous restraint network for RGB-D cross-modal person re-identification. ACM Transactions on Multimedia Computing, Communications, and Applications, 18(4): #109 [DOI: 10.1145/3506708http://dx.doi.org/10.1145/3506708]
Xiang Z J, Chen Q R and Liu Y C. 2014. Person re-identification by fuzzy space color histogram. Multimedia Tools and Applications, 73(1): 91-107 [DOI: 10.1007/s11042-012-1286-7http://dx.doi.org/10.1007/s11042-012-1286-7]
Xiao T, Li S, Wang B C, Lin L and Wang X G. 2017. Joint detection and identification feature learning for person search//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3376-3385 [DOI: 10.1109/CVPR.2017.360http://dx.doi.org/10.1109/CVPR.2017.360]
Xiong F, Gou M R, Camps O and Sznaier M. 2014. Person re-identification using kernel-based metric learning methods//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 1-16 [DOI: 10.1007/978-3-319-10584-0_1http://dx.doi.org/10.1007/978-3-319-10584-0_1]
Xu W L, Liu H, Shi W, Miao Z L, Lu Z S and Chen F H. 2021. Adversarial feature disentanglement for long-term person re-identification//Proceedings of the 13th International Joint Conference on Artificial Intelligence. Montreal, Canada: AAAI: 1201-1207 [DOI: 10.24963/ijcai.2021/166http://dx.doi.org/10.24963/ijcai.2021/166]
Xu B Q, He L X, Liang J and Sun Z N. 2022a. Learning feature recovery transformer for occluded person re-identification. IEEE Transactions on Image Processing, 31: 4651-4662 [DOI: 10.1109/tip.2022.3186759http://dx.doi.org/10.1109/tip.2022.3186759]
Xu B Q, Liang J, He L X and Sun Z N. 2022b. Mimic embedding via adaptive aggregation: learning generalizable person re-identification//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 372-388 [DOI: 10.1007/978-3-031-19781-9_22http://dx.doi.org/10.1007/978-3-031-19781-9_22]
Xu P and Zhu X T. 2022. Deepchange: a large long-term person re-identification benchmark with clothes change [EB/OL]. [2022-10-22]. https://arxiv.org/pdf/2105.14685.pdfhttps://arxiv.org/pdf/2105.14685.pdf
Xuan S Y and Zhang S L. 2021. Intra-inter camera similarity for unsupervised person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 11921-11930 [DOI: 10.1109/CVPR46437.2021.01175http://dx.doi.org/10.1109/CVPR46437.2021.01175]
Yan Y C, Li J P, Qin J, Bai S, Liao S C, Liu L, Zhu F and Shao L. 2021. Anchor-free person search//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 7686-7695 [DOI: 10.1109/CVPR46437.2021.00760http://dx.doi.org/10.1109/CVPR46437.2021.00760]
Yan S L, Tang H, Zhang L Y and Tang J H. 2022a. Image-specific information suppression and implicit local alignment for text-based person search [EB/OL]. [2022-08-30]. https://arxiv.org/pdf/2208.14365.pdfhttps://arxiv.org/pdf/2208.14365.pdf
Yan Y C, Li J P, Liao S C, Qin J, Ni B B, Lu K and Yang X K. 2022b. Exploring visual context for weakly supervised person search. Proceedings of the AAAI Conference on Artificial Intelligence, 36(3): 3027-3035 [DOI: 10.1609/aaai.v36i3.20209http://dx.doi.org/10.1609/aaai.v36i3.20209]
Yan Y M, Yu H M, Li S Z, Lu Z H, He J F, Zhang H Z and Wang R F. 2022c. Weakening the influence of clothing: universal clothing attribute disentanglement for person re-identification//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna, Austria: AAAI: 1523-1529 [DOI: 10.24963/ijcai.2022/212http://dx.doi.org/10.24963/ijcai.2022/212]
Yang Y, Yang J M, Yan J J, Liao S C, Yi D and Li S Z. 2014. Salient color names for person re-identification//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 536-551 [DOI: 10.1007/978-3-319-10590-1_35http://dx.doi.org/10.1007/978-3-319-10590-1_35]
Yang F, Wu Y, Wang Z, Li X, Sakti S and Nakamura S. 2021a. Instance-level heterogeneous domain adaptation for limited-labeled sketch-to-photo retrieval. IEEE Transactions on Multimedia, 23: 2347-2360 [DOI: 10.1109/TMM.2020.3009476http://dx.doi.org/10.1109/TMM.2020.3009476]
Yang J R, Zhang J W, Yu F F, Jiang X Y, Zhang M D, Sun X, Chen Y C and Zheng W S. 2021b. Learning to know where to see: a visibility-aware approach for occluded person re-identification//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: 11865-11874 [DOI: 10.1109/iccv48922.2021.01167http://dx.doi.org/10.1109/iccv48922.2021.01167]
Yang Q Z, Wu A C and Zheng W S. 2021c. Person re-identification by contour sketch under moderate clothing change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(6): 2029-2046 [DOI: 10.1109/TPAMI.2019.2960509http://dx.doi.org/10.1109/TPAMI.2019.2960509]
Yang X F, Zhang L F, Wang Z P, Sa D M, Deng H X and Li H F. 2021. Cross-domain pedestrian re-identification based on capsule network. Computer Engineering and Science, 43(9): 1591-1599
杨晓峰, 张来福, 王志鹏, 萨旦姆, 邓红霞, 李海芳. 2021. 基于胶囊网络的跨域行人再识别. 计算机工程与科学, 43(9): 1591-1599 [DOI: 10.3969/j.issn.1007-130X.2021.09.009http://dx.doi.org/10.3969/j.issn.1007-130X.2021.09.009]
Yang S, Kang B and Lee Y. 2022. Sampling agnostic feature representation for long-term person re-identification. IEEE Transactions on Image Processing, 31: 6412-6423 [DOI: 10.1109/TIP.2022.3207024http://dx.doi.org/10.1109/TIP.2022.3207024]
Ye H R, Liu H, Meng F Y and Li X. 2021a. Bi-directional exponential angular triplet loss for rgb-infrared person re-identification. IEEE Transactions on Image Processing, 30: 1583-1595 [DOI: 10.1109/TIP.2020.3045261http://dx.doi.org/10.1109/TIP.2020.3045261]
Ye M, Lan X Y, Li J W and Yuen P. 2018. Hierarchical discriminative learning for visible thermal person re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1): 7501-7508 [DOI: 10.1609/aaai.v32i1.12293http://dx.doi.org/10.1609/aaai.v32i1.12293]
Ye M, Shen J B, Crandall D J, Shao L and Luo J B. 2020a. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 229-247 [DOI: 10.1007/978-3-030-58520-4_14http://dx.doi.org/10.1007/978-3-030-58520-4_14]
Ye M, Lan X Y, Wang Z and Yuen P C. 2020b. Bi-directional center-constrained top-ranking for visible thermal person re- identification. IEEE Transactions on Information Forensics and Security, 15: 407-419 [DOI: 10.1109/TIFS.2019.2921454http://dx.doi.org/10.1109/TIFS.2019.2921454]
Ye M, Ruan W J, Du B and Shou M Z. 2021b. Channel augmented joint learning for visible-infrared recognition//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 13547-13556 [DOI: 10.1109/ICCV48922.2021.01331http://dx.doi.org/10.1109/ICCV48922.2021.01331]
Ye M, Shen J B, Lin G J, Xiang T, Shao L and Hoi S C H. 2022. Deep learning for person re-identification: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6): 2872-2893 [DOI: 10.1109/TPAMI.2021.3054775http://dx.doi.org/10.1109/TPAMI.2021.3054775]
Yi D, Lei Z, Liao S C and Li S Z. 2014. Deep metric learning for person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and the 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE: 34-39 [DOI: 10.1109/ICPR.2014.16http://dx.doi.org/10.1109/ICPR.2014.16]
Yin J H, Wu A C and Zheng W S. 2020. Fine-grained person re-identification. International Journal of Computer Vision, 128(6): 1654-1672 [DOI: 10.1007/s11263-019-01259-0http://dx.doi.org/10.1007/s11263-019-01259-0]
Yu H X, Zheng W S, Wu A C, Guo X W, Gong S G and Lai J H. 2019a. Unsupervised person re-identification by soft multilabel learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 2143-2152 [DOI: 10.1109/CVPR.2019.00225http://dx.doi.org/10.1109/CVPR.2019.00225]
Yu X R, Han B, Yao J C, Niu G, Tsang I and Sugiyama M. 2019b. How does disagreement help generalization against label corruption?//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: [s.n.]: 7164-7173
Yu S J, Li S H, Chen D P, Zhao R, Yan J J and Qiao Y. 2020. COCAS: a large-scale clothes changing person dataset for re-identification//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3397-3406 [DOI: 10.1109/CVPR42600.2020.00346http://dx.doi.org/10.1109/CVPR42600.2020.00346]
Yu R, Du D W, LaLonde R, Davila D, Funk C, Hoogs A and Clipp B. 2022a. Cascade transformers for end-to-end person search//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 7257-7266 [DOI: 10.1109/CVPR52688.2022.00712http://dx.doi.org/10.1109/CVPR52688.2022.00712]
Yu M, Li X B and Guo Y C. 2022. Domain generalization person re-identification based on attention mechanism. Control and Decision, 37(7): 1721-1728
于明, 李学博, 郭迎春. 2022. 融合注意力机制的域泛化行人再识别. 控制与决策, 37(7): 1721-1728 [DOI: 10.13195/j.kzyjc.2020.1844http://dx.doi.org/10.13195/j.kzyjc.2020.1844]
Yu S J. 2022. General Person Re-Identification: Methods and Application. Shenzhen: University of Chinese Academy of Sciences
余世杰. 2022c. 通用行人重识别方法与应用. 深圳: 中国科学院大学 [DOI: 10.27822/d.cnki.gszxj.2022.000135http://dx.doi.org/10.27822/d.cnki.gszxj.2022.000135]
Zajdel W, Zivkovic Z and Krose B J A. 2005. Keeping track of humans: have I seen this person before?//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE: 2081-2086 [DOI: 10.1109/ROBOT.2005.1570420http://dx.doi.org/10.1109/ROBOT.2005.1570420]
Zhai Y P, Ye Q X, Lu S J, Jia M X, Ji R R and Tian Y H. 2020. Multiple expert brainstorming for domain adaptive person re-identification//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 594-611 [DOI: 10.1007/978-3-030-58571-6_35http://dx.doi.org/10.1007/978-3-030-58571-6_35]
Zhang Y and Lu H C. 2018. Deep cross-modal projection learning for image-text matching//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 707-723 [DOI: 10.1007/978-3-030-01246-5_42http://dx.doi.org/10.1007/978-3-030-01246-5_42]
Zhang P, Xu J S, Wu Q, Huang Y and Zhang J. 2020. Top-push constrained modality-adaptive dictionary learning for cross-modality person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 30(12): 4554-4566 [DOI: 10.1109/TCSVT.2019.2939564http://dx.doi.org/10.1109/TCSVT.2019.2939564]
Zhang S , Long D, Gao Y T, Gao L Y, Zhang Q, Niu K and Zhang Y N. 2021a. Text-based person search in full images via semantic-driven proposal generation[EB/OL]. [2022-09-27]. https://arxiv.org/pdf/2109.12965.pdfhttps://arxiv.org/pdf/2109.12965.pdf
Zhang T Y, Xie L X, Wei L H, Zhuang Z J, Zhang Y F, Li B and Tian Q. 2021b. UnrealPerson: an adaptive pipeline towards costless person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 11501-11510 [DOI: 10.1109/CVPR46437.2021.01134http://dx.doi.org/10.1109/CVPR46437.2021.01134]
Zhao R, Ouyang W L and Wang X G. 2013. Unsupervised salience learning for person re-identification//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 3586-3593 [DOI: 10.1109/CVPR.2013.460http://dx.doi.org/10.1109/CVPR.2013.460]
Zhao Y, Zhao X, Luo R T and Liu Y C. 2016. Person re-identification by encoding free energy feature maps. Multimedia Tools and Applications, 75(8): 4795-4813 [DOI: 10.1007/s11042-015-2503-yhttp://dx.doi.org/10.1007/s11042-015-2503-y]
Zhao Y Y, Zhong Z, Yang F X, Luo Z M, Lin Y J, Li S Z and Sebe N. 2021a. Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 6277-6286 [DOI: 10.1109/CVPR46437.2021.00621http://dx.doi.org/10.1109/CVPR46437.2021.00621]
Zhao C R, Qi D, Dou S G, Tu Y P, Sun T L, Bai S, Jiang X Y, Bai X and Miao D Q. 2021. Key technology for intelligent video surveillance: a review of person re-identification. Scientia Sinica Informationis, 51(12): 1979-2015
赵才荣, 齐鼎, 窦曙光, 涂远鹏, 孙添力, 柏松, 蒋忻洋, 白翔, 苗夺谦. 2021. 智能视频监控关键技术: 行人再识别研究综述. 中国科学: 信息科学, 51(12): 1979-2015 [DOI: 10.1360/ssi-2021-0211http://dx.doi.org/10.1360/ssi-2021-0211]
Zhao J J, Zhao Y F, Chen X W and Li J. 2022. Revisiting stochastic learning for generalizable person re-identification//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: ACM: 1758-1768 [DOI: 10.1145/3503161.3547812http://dx.doi.org/10.1145/3503161.3547812]
Zheng W S, Gong S G and Xiang T. 2011. Person re-identification by probabilistic relative distance comparison//Proceedings of the CVPR 2011. Colorado Springs, USA: IEEE: 649-656 [DOI: 10.1109/cvpr.2011.5995598http://dx.doi.org/10.1109/cvpr.2011.5995598]
Zheng L, Shen L Y, Tian L, Wang S J, Wang J D and Tian Q. 2015a. Scalable person re-identification: a benchmark//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1116-1124 [DOI: 10.1109/ICCV.2015.133http://dx.doi.org/10.1109/ICCV.2015.133]
Zheng W S, Li X, Xiang T, Liao S C, Lai J H and Gong S G. 2015b. Partial person re-identification//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 4678-4686 [DOI: 10.1109/ICCV.2015.531http://dx.doi.org/10.1109/ICCV.2015.531]
Zheng L, Zhang H H, Sun S Y, Chandraker M, Yang Y and Tian Q. 2017. Person re-identification in the wild//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3346-3355 [DOI: 10.1109/CVPR.2017.357http://dx.doi.org/10.1109/CVPR.2017.357]
Zheng Z D, Zheng L, Garrett M, Yang Y, Xu M L and Shen Y D. 2020. Dual-path convolutional image-text embeddings with instance loss. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(2): #51 [DOI: 10.1145/3383184http://dx.doi.org/10.1145/3383184]
Zheng K C, Lan C L, Zeng W J, Liu J W, Zhang Z Z and Zha Z J. 2022. Pose-guided feature learning with knowledge distillation for occluded person re-identification//Proceedings of the 29th ACM International Conference on Multimedia. Virtual, China: ACM: 4537-4545 [DOI: 10.1145/3474085.3475610http://dx.doi.org/10.1145/3474085.3475610]
Zhong Z, Zheng L, Luo Z M, Li S Z and Yang Y. 2019. Invariance matters: exemplar memory for domain adaptive person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 598-607 [DOI: 10.1109/CVPR.2019.00069http://dx.doi.org/10.1109/CVPR.2019.00069]
Zhong Z, Zheng L, Luo Z M, Li S Z and Yang Y. 2021. Learning to adapt invariance in memory for person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8): 2723-2738 [DOI: 10.1109/TPAMI.2020.2976933http://dx.doi.org/10.1109/TPAMI.2020.2976933]
Zhou K Y, Yang Y X, Cavallaro A and Xiang T. 2022. Learning generalisable omni-scale representations for person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 5056-5069 [DOI: 10.1109/TPAMI.2021.3069237http://dx.doi.org/10.1109/TPAMI.2021.3069237]
Zhu Y X, Yang Z, Wang L, Zhao S, Hu X and Tao D P. 2020. Hetero-center loss for cross-modality person re-identification. Neurocomputing, 386: 97-109 [DOI: 10.1016/j.neucom.2019.12.100http://dx.doi.org/10.1016/j.neucom.2019.12.100]
Zhu A C, Wang Z J, Li Y F, Wan X L, Jin J, Wang T, Hu F Q and Hua G. 2022. DSSL: deep Surroundings-person separation learning for text-based person retrieval//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event, China: ACM: 209-217 [DOI: 10.1145/3474085.3475369http://dx.doi.org/10.1145/3474085.3475369]
Zhuo J X, Chen Z Y, Lai J H and Wang G C. 2018. Occluded person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and 2018 IEEE International Conference on Multimedia and Expo. San Diego, USA: IEEE: #8486568 [DOI: 10.1109/icme.2018.8486568http://dx.doi.org/10.1109/icme.2018.8486568]