遥感影像小目标检测研究进展
Progress in small object detection for remote sensing images
- 2023年28卷第6期 页码:1662-1684
纸质出版日期: 2023-06-16
DOI: 10.11834/jig.221202
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-16 ,
移动端阅览
袁翔, 程塨, 李戈, 戴威, 尹文昕, 冯瑛超, 姚西文, 黄钟泠, 孙显, 韩军伟. 2023. 遥感影像小目标检测研究进展. 中国图象图形学报, 28(06):1662-1684
Yuan Xiang, Cheng Gong, Li Ge, Dai Wei, Yin Wenxin, Feng Yingchao, Yao Xiwen, Huang Zhongling, Sun Xian, Han Junwei. 2023. Progress in small object detection for remote sensing images. Journal of Image and Graphics, 28(06):1662-1684
独特的拍摄视角和多变的成像高度使得遥感影像中包含大量尺寸极其有限的目标,如何准确有效地检测这些小目标对于构建智能的遥感图像解译系统至关重要。本文聚焦于遥感场景,对基于深度学习的小目标检测进行全面调研。首先,根据小目标的内在特质梳理了遥感影像小目标检测的3个主要挑战,包括特征表示瓶颈、前背景混淆以及回归分支敏感。其次,通过深入调研相关文献,全面回顾了基于深度学习的遥感影像小目标检测算法。选取3种代表性的遥感影像小目标检测任务,即光学遥感图像小目标检测、SAR图像小目标检测和红外图像小目标检测,系统性总结了3个领域内的代表性方法,并根据每种算法使用的技术思路进行分类阐述。再次,总结了遥感影像小目标检测常用的公开数据集,包括光学遥感图像、SAR图像及红外图像3种数据类型,借助于3种领域的代表性数据集SODA-A(small object detection datasets)、AIR-SARShip和NUAA-SIRST(Nanjing University of Aeronautics and Astronautics, single-frame infrared small target),进一步对主流的遥感影像目标检测算法在面对小目标时的性能表现进行横向对比及深入评估。最后,对遥感影像小目标检测的应用现状进行总结,并展望了遥感场景下小目标检测的发展趋势。
Remote sensing images are often captured from multiview and multiple altitudes, thereby comprising a mass of objects with limited sizes which significantly challenge current detection methods that can achieve outstanding performance on natural images. Moreover, how to precisely detect these small objects plays a crucial role in developing an intelligent interpretation system for remote sensing images. Focusing on the remote sensing images, this paper conducts a comprehensive survey for deep learning-based small object detection (SOD) can be reviewed and analyzed literately, including 1) features-represent bottlenecks, 2) background confusion, and 3) branching-regressed sensitivity. Specially, one of the major bottlenecks is for objective’s representation. It refers that the down-sample operations in the prevailing feature extractors can suppress the signals of small objects unavoidably, and the following detection is impaired further in terms of the weak representations. The detection of size-limited instances is also interference of the confusion between the objects and backgrounds and the sensitivity of regression branch. For the former, the representations of small objects tend to be contaminated in related to feature extraction-contextual factors, which may erase the discriminative information that plays a significant role in head network. And the sensitivity of regression branch in small object detection is derived from the low tolerance for bounding box perturbation, in which a slight deviation of a predicted box will cause a drastic drop on the intersection-over-union (IoU), which is generally adopted to evaluate the accuracy of localization. Furthermore, we review and analyze the literature of small object detection for remote sensing images in the deep-learning era. In detail, by systematically reviewing corresponding methods of three small object detection tasks, i.e., SOD for optical remote sensing images, SOD for synthetic aperture radar (SAR) images and SOD for infrared images, an understandable taxonomy of the reviewed algorithms for each task is given. Specifically, we rigorously split the representative methods into several categories according to the major techniques used. In addition to the algorithm survey, considering the deep learning-based methods are hungry for data and to provide a comprehensive survey about small object detection, we also retrospect several publicly available datasets which are commonly used in these three SOD tasks. For each concrete field, we list the prevailing benchmarks in accordance with the published papers, and a brief introduction and some example images about these datasets are illustrated: small size. What is more, other related features about small object detection are highlighted as well, such as image resolution, data source, the number of images and annotated instances, and some proper statistics of each task, etc. Additionally, to better investigate the performance of generic detection methods on small objects, we analyze an in-depth evaluation and comparison of main-stream detection algorithms and several SOD methods for remote sensing images, namely SODA-A(small object detection datasets), AIR-SARShip and NUAA-SIRST(Nanjing University of Aeronautics and Astronautics, single-frame infrared small target). Afterwards, current situation in applications of small object detection for remote sensing images are analyzed, including SOD-based intelligent transportation system and scene-related understanding. Such harbor-targeted recognition is based on SAR image analysis, the precision-guided weapons based on the detection and recognition techniques of infrared images, and the tracking of moving targets at sea on top of multimodal remote sensing data. In the end, to enlighten the further research of small object detection in remote sensing images, we discuss four promising directions in the future. Concretely, it is required that an efficient backbone network can avoid the information loss of small objects while capturing the discriminative features to optimize the down-stream tasks about small objects. Large-scale benchmarks with well annotated small instances play an irreplaceable role linked to small object detection in remote sensing images further. Moreover, a multimodal remote sensing data-collaborated SOD algorithm is also preferred. A proper evaluation metric can not only guide the training and inference of small object detection methods under some specific scenes, but also rich its domain-related development.
小目标检测(SOD)深度学习光学遥感图像SAR图像红外图像公开数据集
small object detection(SOD)deep learningoptical remote sensing imagesSAR imagesinfrared imagespublic datasets
Bai X Z and Bi Y G. 2018. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2452-2466 [DOI: 10.1109/TGRS.2017.2781143http://dx.doi.org/10.1109/TGRS.2017.2781143]
Bai X Z and Zhou F G. 2010. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognition, 43(6): 2145-2156 [DOI: 10.1016/j.patcog.2009.12.023http://dx.doi.org/10.1016/j.patcog.2009.12.023]
Bashir S M A and Wang Y. 2021. Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network. Remote Sensing, 13(9): #1854 [DOI: 10.3390/rs13091854http://dx.doi.org/10.3390/rs13091854]
Cao L Y, Zhang X L, Wang Z S and Ding G Y. 2021. Multi angle rotation object detection for remote sensing image based on modified feature pyramid networks. International Journal of Remote Sensing, 42(14): 5253-5276 [DOI: 10.1080/01431161.2021.1910371http://dx.doi.org/10.1080/01431161.2021.1910371]
Chen C L P, Li H, Wei Y T, Xia T and Tang Y Y. 2014. A local contrast method for small infrared target detection. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 574-581 [DOI: 10.1109/TGRS.2013.2242477http://dx.doi.org/10.1109/TGRS.2013.2242477]
Chen C R, Zhang Y, Lyu Q X, Wei S, Wang X R, Sun X and Dong J Y. 2019. RRNet: a hybrid detector for object detection in drone-captured images//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE: 100-108 [DOI: 10.1109/ICCVW.2019.00018http://dx.doi.org/10.1109/ICCVW.2019.00018]
Chen F, Gao C Q, Liu F C, Zhao Y, Zhou Y X, Meng D Y and Zuo W M. 2022. Local patch network with global attention for infrared small target detection. IEEE Transactions on Aerospace and Electronic Systems, 58(5): 3979- 3991 [DOI: 10.1109/TAES.2022.3159308http://dx.doi.org/10.1109/TAES.2022.3159308]
Chen Y W and Xin Y H. 2016. An efficient infrared small target detection method based on visual contrast mechanism. IEEE Geoscience and Remote Sensing Letters, 13(7): 962-966 [DOI: 10.1109/LGRS.2016.2556218http://dx.doi.org/10.1109/LGRS.2016.2556218]
Cheng G, Wang J B, Li K, Xie X X, Lang C B, Yao Y Q and Han J W. 2022b. Anchor-free oriented proposal generator for object detection. IEEE Transactions on Geoscience and Remote Sensing, 60: #5625411 [DOI: 10.1109/TGRS.2022.3183022http://dx.doi.org/10.1109/TGRS.2022.3183022]
Cheng G, Yao Y Q, Li S Y, Li K, Xie X X, Wang J B, Yao X W and Han J W. 2022a. Dual-aligned oriented detector. IEEE Transactions on Geoscience and Remote Sensing, 60: #5618111 [DOI: 10.1109/TGRS.2022.3149780http://dx.doi.org/10.1109/TGRS.2022.3149780]
Cheng G, Yuan X, Yao X W, Yan K B, Zeng Q H and Han J W. 2022c. Towards large-scale small object detection: survey and benchmarks [EB/OL]. [2023-03-25]. https://arxiv.org/pdf/2207.14096.pdfhttps://arxiv.org/pdf/2207.14096.pdf
Courtrai L, Pham M T and Lefèvre S. 2020. Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks. Remote Sensing, 12(19): #3152 [DOI: 10.3390/rs12193152http://dx.doi.org/10.3390/rs12193152]
Cui Z Y, Wang X Y, Liu N Y, Cao Z J and Yang J Y. 2021. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 379-391[DOI: 10.1109/TGRS.2020.2997200http://dx.doi.org/10.1109/TGRS.2020.2997200]
Dai W X, Mao Y Q, Yuan R G, Liu Y J, Pu X M and Li C. 2020. A novel detector based on convolution neural networks for multiscale SAR ship detection in complex background. Sensors, 20(9): #2547 [DOI: 10.3390/s20092547http://dx.doi.org/10.3390/s20092547]
Dai Y M and Wu Y Q. 2017. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3752-3767 [DOI: 10.1109/JSTARS.2017.2700023http://dx.doi.org/10.1109/JSTARS.2017.2700023]
Dai Y M, Wu Y Q, Zhou F and Barnard K. 2021a. Attentional local contrast networks for infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 59(11): 9813-9824 [DOI: 10.1109/TGRS.2020.3044958http://dx.doi.org/10.1109/TGRS.2020.3044958]
Dai Y M, Wu Y Q, Zhou F and Barnard K. 2021b. Asymmetric contextual modulation for infrared small target detection//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE: 949-958 [DOI: 10.1109/WACV48630.2021.00099http://dx.doi.org/10.1109/WACV48630.2021.00099]
Ding J, Xue N, Long Y, Xia G S and Lu Q K. 2019. Learning RoI transformer for oriented object detection in aerial images//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 2844-2853 [DOI: 10.1109/CVPR.2019.00296http://dx.doi.org/10.1109/CVPR.2019.00296]
Ding J, Xue N, Xia G S, Bai X, Yang W, Yang M Y, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2022. Object detection in aerial images: a large-scale benchmark and challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11): 7778-7796 [DOI: 10.1109/TPAMI.2021.3117983http://dx.doi.org/10.1109/TPAMI.2021.3117983]
Du L, Wei D, Li L and Guo Y C. 2020. SAR target detection network via semi-supervised learning. Journal of Electronics and Information Technology, 42(1): 154-163
杜兰, 魏迪, 李璐, 郭昱辰. 2020. 基于半监督学习的SAR目标检测网络. 电子与信息学报, 42(1): 154-163 [DOI: 10.11999/JEIT190783http://dx.doi.org/10.11999/JEIT190783]
Du Y A, Du L and Li L. 2022. An SAR target detector based on gradient harmonized mechanism and attention mechanism. IEEE Geoscience and Remote Sensing Letters, 19: #4017005 [DOI: 10.1109/LGRS.2021.3103378http://dx.doi.org/10.1109/LGRS.2021.3103378]
Duan C Z, Wei Z W, Zhang C, Qu S Y and Wang H P. 2021. Coarse-grained density map guided object detection in aerial images//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal, Canada: IEEE: 2789-2798 [DOI: 10.1109/ICCVW54120.2021.00313http://dx.doi.org/10.1109/ICCVW54120.2021.00313]
Fu J M, Sun X, Wang Z R and Fu K. 2021a. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1331-1344 [DOI: 10.1109/TGRS.2020.3005151http://dx.doi.org/10.1109/TGRS.2020.3005151]
Fu K, Chang Z H, Zhang Y and Sun X. 2021b. Point-based estimator for arbitrary-oriented object detection in aerial images. IEEE Transactions on Geoscience and Remote Sensing, 59(5): 4370-4387 [DOI: 10.1109/TGRS.2020.3020165http://dx.doi.org/10.1109/TGRS.2020.3020165]
Fu K, Chang Z H, Zhang Y, Xu G L, Zhang K S and Sun X. 2020. Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 161: 294-308 [DOI: 10.1016/j.isprsjprs.2020.01.025http://dx.doi.org/10.1016/j.isprsjprs.2020.01.025]
Fu R G, Fan H Q, Zhu Y F, Hui B W, Zhang Z L, Zhong P, Li D D, Zhang S L, Chen G and Wang L. 2022. A dataset for infrared time-sensitive target detection and tracking for air-ground application. China Scientific Data, 7(2): 206-221
傅瑞罡, 范红旗, 朱永锋, 回丙伟, 张志龙, 钟平, 李冬冬, 张少良, 陈刚, 王雒. 2022. 面向空地应用的红外时敏目标检测跟踪数据集. 中国科学数据, 7(2): 206-221 [DOI: 10.11922/11-6035.csd.2021.0085.zhhttp://dx.doi.org/10.11922/11-6035.csd.2021.0085.zh]
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2020. Generative adversarial networks. Communications of the ACM, 63(11): 139-144 [DOI: 10.1145/3422622http://dx.doi.org/10.1145/3422622]
Gu F, Zhang H, Wang C and Zhang B. 2020. Weakly supervised ship detection from SAR images based on a three-component CNN-CAM-CRF model. Journal of Applied Remote Sensing, 14(2): #026506 [DOI: 10.1117/1.JRS.14.026506http://dx.doi.org/10.1117/1.JRS.14.026506]
Guo Q, Wang H P and Xu F. 2020. Research progress on aircraft detection and recognition in SAR imagery. Journal of Radars, 9(3): 497-513
郭倩, 王海鹏, 徐丰. 2020. SAR图像飞机目标检测识别进展. 雷达学报, 9(3): 497-513 [DOI: 10.12000/JR20020http://dx.doi.org/10.12000/JR20020]
Guo Q, Wang H P and Xu F. 2021. Scattering enhanced attention pyramid network for aircraft detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7570-7587 [DOI: 10.1109/TGRS.2020.3027762http://dx.doi.org/10.1109/TGRS.2020.3027762]
Guo Y S, Li H C, Hu W S and Wang W Y. 2022. SAR image data augmentation via residual and attention-based generative adversarial network for ship detection//IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE: 439-442 [DOI: 10.1109/IGARSS46834.2022.9884798http://dx.doi.org/10.1109/IGARSS46834.2022.9884798]
Han J M, Ding J, Li J and Xia G S. 2022. Align deep features for oriented object detection. IEEE Transactions on Geoscience and Remote Sensing, 60: #5602511 [DOI: 10.1109/TGRS.2021.3062048http://dx.doi.org/10.1109/TGRS.2021.3062048]
Han J H, Liang K, Zhou B, Zhu X Y, Zhao J and Zhao L L. 2018. Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geoscience and Remote Sensing Letters, 15(4): 612-616 [DOI: 10.1109/LGRS.2018.2790909http://dx.doi.org/10.1109/LGRS.2018.2790909]
Han J H, Moradi S, Faramarzi I, Liu C Y, Zhang H H and Zhao Q. 2020. A local contrast method for infrared small-target detection utilizing a tri-layer window. IEEE Geoscience and Remote Sensing Letters, 17(10): 1822-1826 [DOI: 10.1109/LGRS.2019.2954578http://dx.doi.org/10.1109/LGRS.2019.2954578]
Han L, Ye W, Li J W and Ran D. 2019. Small ship detection in SAR images based on modified SSD//Proceedings of 2019 IEEE International Conference on Signal, Information and Data Processing. Chongqing, China: IEEE: #9173268 [DOI: 10.1109/ICSIDP47821.2019.9173268http://dx.doi.org/10.1109/ICSIDP47821.2019.9173268]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He X W, Cheng R, Zheng Z L and Wang Z J. 2021. Small object detection in traffic scenes based on YOLO-MXANet. Sensors, 21(21): #7422 [DOI: 10.3390/s21217422http://dx.doi.org/10.3390/s21217422]
Hong M B, Li S W, Yang Y C, Zhu F Y, Zhao Q J and Lu L. 2022. SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geoscience and Remote Sensing Letters, 19: #8018505 [DOI: 10.1109/LGRS.2021.3103069http://dx.doi.org/10.1109/LGRS.2021.3103069]
Hsieh M R, Lin Y L and Hsu W H. 2017. Drone-based object counting by spatially regularized regional proposal network//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 4165-4173 [DOI: 10.1109/ICCV.2017.446http://dx.doi.org/10.1109/ICCV.2017.446]
Huang S Q, Liu Y H, He Y M, Zhang T F and Peng Z M. 2019. Structure-adaptive clutter suppression for infrared small target detection: chain-growth filtering. Remote Sensing, 12(1): #47 [DOI: 10.3390/rs12010047http://dx.doi.org/10.3390/rs12010047]
Huang Z L, Datcu M, Pan Z X and Lei B. 2020. Deep SAR-Net: learning objects from signals. ISPRS Journal of Photogrammetry and Remote Sensing, 161: 179-193 [DOI: 10.1016/j.isprsjprs.2020.01.016http://dx.doi.org/10.1016/j.isprsjprs.2020.01.016]
Hui B W, Song Z Y, Fan H Q, Zhong P, Hu W D, Zhang X F, Ling J G, Su H Y, Jin W, Zhang Y J and Bai Y X. 2020. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background. China Scientific Data, 5(3): 291-302
回丙伟, 宋志勇, 范红旗, 钟平, 胡卫东, 张晓峰, 凌建国, 苏宏艳, 金威, 张永杰, 白亚茜. 2020. 地/空背景下红外图像弱小飞机目标检测跟踪数据集. 中国科学数据, 5(3): 291-302 [DOI: 10.11922/csdata.2019.0074.zhhttp://dx.doi.org/10.11922/csdata.2019.0074.zh]
Jiao J, Zhang Y, Sun H, Yang X, Gao X, Hong W, Fu K and Sun X. 2018. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection. IEEE Access, 6: 20881-20892 [DOI: 10.1109/ACCESS.2018.2825376http://dx.doi.org/10.1109/ACCESS.2018.2825376]
Jin K, Chen Y L, Xu B, Yin J J, Wang X S and Yang J. 2020. A patch-to-pixel convolutional neural network for small ship detection with PolSAR images. IEEE Transactions on Geoscience and Remote Sensing, 58(9): 6623-6638 [DOI: 10.1109/TGRS.2020.2978268http://dx.doi.org/10.1109/TGRS.2020.2978268]
Kang Y Z, Wang Z R, Fu J M, Sun X and Fu K. 2022. SFR-Net: scattering feature relation network for aircraft detection in complex SAR images. IEEE Transactions on Geoscience and Remote Sensing, 60: #5218317 [DOI: 10.1109/TGRS.2021.3130899http://dx.doi.org/10.1109/TGRS.2021.3130899]
Kim M, Jeong J and Kim S. 2021. ECAP-YOLO: efficient channel attention pyramid YOLO for small object detection in aerial image. Remote Sensing, 13(23): #4851 [DOI: 10.3390/rs13234851http://dx.doi.org/10.3390/rs13234851]
Lei S L, Lu D D, Qiu X L and Ding C B. 2021. SRSDD-v1.0: a high-resolution SAR rotation ship detection dataset. Remote Sensing, 13(24): #5104 [DOI: 10.3390/rs13245104http://dx.doi.org/10.3390/rs13245104]
Li B Y, Xiao C, Wang L G, Wang Y Q, Lin Z P, Li M, An W and Guo Y L. 2022a. Dense nested attention network for infrared small target detection. IEEE Transactions on Image Processing [DOI: 10.1109/TIP.2022.3199107http://dx.doi.org/10.1109/TIP.2022.3199107]
Li C L, Yang T J N, Zhu S J, Chen C and Guan S Y. 2020. Density map guided object detection in aerial images//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE: 737-746 [DOI: 10.1109/CVPRW50498.2020.00103http://dx.doi.org/10.1109/CVPRW50498.2020.00103]
Li J H, Zhang P, Wang X W and Huang S Z. 2020. Infrared small-target detection algorithms: a survey. Journal of Image and Graphics, 25(9): 1739-1753
李俊宏, 张萍, 王晓玮, 黄世泽. 2020. 红外弱小目标检测算法综述. 中国图象图形学报, 25(9): 1739-1753 [DOI: 10.11834/jig.190574http://dx.doi.org/10.11834/jig.190574]
Li J W, Qu C W and Shao J Q. 2017. Ship detection in SAR images based on an improved faster R-CNN//Proceedings of 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). Beijing, China: IEEE: #8124934 [DOI: 10.1109/BIGSARDATA.2017.8124934http://dx.doi.org/10.1109/BIGSARDATA.2017.8124934]
Li L, Wang C, Zhang H and Zhang B. 2022b. SAR image ship object generation and classification with improved residual conditional generative adversarial network. IEEE Geoscience and Remote Sensing Letters, 19: 1-5 [DOI: 10.1109/LGRS.2020.3016692http://dx.doi.org/10.1109/LGRS.2020.3016692]
Li W T, Chen Y J, Hu K X and Zhu J K. 2022c. Oriented RepPoints for aerial object detection//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 1819-1828 [DOI: 10.1109/CVPR52688.2022.00187http://dx.doi.org/10.1109/CVPR52688.2022.00187]
Li Y S, Li Z Z, Xu B T, Dang C J and Deng J Q. 2022d. Low-contrast infrared target detection based on multiscale dual morphological reconstruction. IEEE Geoscience and Remote Sensing Letters, 19: #7001905 [DOI: 10.1109/LGRS.2021.3080986http://dx.doi.org/10.1109/LGRS.2021.3080986]
Liang X, Zhang J, Zhuo L, Li Y Z and Tian Q. 2020. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1758-1770 [DOI: 10.1109/TCSVT.2019.2905881http://dx.doi.org/10.1109/TCSVT.2019.2905881]
Liao L Y, Du L and Guo Y C. 2022. Semi-supervised SAR target detection based on an improved faster R-CNN. Remote Sensing, 14(1): #143 [DOI: 10.3390/rs14010143http://dx.doi.org/10.3390/rs14010143]
Lin T Y, Dollr P, Girshick R, He K M, Hariharan B and Belongie S. 2017. Feature pyramid networks for object detection//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 936-944 [DOI: 10.1109/CVPR.2017.106http://dx.doi.org/10.1109/CVPR.2017.106]
Lin T Y, Goyal P, Girshick R, He K M and Dollr P. 2020. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2): 318-327 [DOI: 10.1109/TPAMI.2018.2858826http://dx.doi.org/10.1109/TPAMI.2018.2858826]
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollr P and Zitnick C L. 2014. Microsoft COCO: common objects in context//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 740-755 [DOI: 10.1007/978-3-319-10602-1_48http://dx.doi.org/10.1007/978-3-319-10602-1_48]
Liu L, Ouyang W L, Wang X G, Fieguth P, Chen J, Liu X W and Pietikäinen M. 2020. Deep learning for generic object detection: a survey. International Journal of Computer Vision, 128(2): 261-318 [DOI: 10.1007/s11263-019-01247-4http://dx.doi.org/10.1007/s11263-019-01247-4]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Lu X C, Ji J, Xing Z Q and Miao Q G. 2021. Attention and feature fusion SSD for remote sensing object detection. IEEE Transactions on Instrumentation and Measurement, 70: #5501309 [DOI: 10.1109/TIM.2021.3052575http://dx.doi.org/10.1109/TIM.2021.3052575]
Mhalla A, Chateau T, Gazzah S and Amara N E B. 2019. An embedded computer-vision system for multi-object detection in traffic surveillance. IEEE Transactions on Intelligent Transportation Systems, 20(11): 4006-4018 [DOI: 10.1109/TITS.2018.2876614http://dx.doi.org/10.1109/TITS.2018.2876614]
Nie G T and Huang H. 2023. Multi-oriented object detection in aerial images with double horizontal rectangles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4): 4923-4944 [DOI: 10.1109/TPAMI.2022.3191753http://dx.doi.org/10.1109/TPAMI.2022.3191753]
Noh H, Hong S and Han B. 2015. Learning deconvolution network for semantic segmentation//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1520-1528 [DOI: 10.1109/ICCV.2015.178http://dx.doi.org/10.1109/ICCV.2015.178]
Pang J M, Li C, Shi J P, Xu Z H and Feng H J. 2019. R2 -CNN: fast tiny object detection in large-scale remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5512-5524 [DOI: 10.1109/TGRS.2019.2899955http://dx.doi.org/10.1109/TGRS.2019.2899955]
Rabbi J, Ray N, Schubert M, Chowdhury S and Chao D. 2020. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sensing, 12(9): #1432 [DOI: 10.3390/rs12091432http://dx.doi.org/10.3390/rs12091432]
Ran Q, Wang Q, Zhao B Y, Wu Y F, Pu S L and Li Z J. 2021. Lightweight oriented object detection using multiscale context and enhanced channel attention in remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5786-5795 [DOI: 10.1109/JSTARS.2021.3079968http://dx.doi.org/10.1109/JSTARS.2021.3079968]
Redmon J and Farhadi A. 2018. Yolov3: an incremental improvement [EB/OL]. [2023-03-25]. https://arxiv.org/ped/1804.02767.pdfhttps://arxiv.org/ped/1804.02767.pdf
Ren K, Gao Y, Wan M J, Gu G H and Chen Q. 2022. Infrared small target detection via region super resolution generative adversarial network. Applied Intelligence, 52(10): 11725-11737 [DOI: 10.1007/s10489-021-02955-6http://dx.doi.org/10.1007/s10489-021-02955-6]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Ren Y, Zhu C R and Xiao S P. 2018. Small object detection in optical remote sensing images via modified faster R-CNN. Applied Sciences, 8(5): #813 [DOI: 10.3390/app8050813http://dx.doi.org/10.3390/app8050813]
Sun T, Xiong Z Q, Yin J, Wu Y H and Wang Z X. 2023. Gradient-constraint super-resolution reconstruction method serving for infrared target detection. IEEE Consumer Electronics Magazine, 12(2): 14-25 [DOI: 10.1109/MCE.2021.3116440http://dx.doi.org/10.1109/MCE.2021.3116440]
Sun W, Dai L, Zhang X R, Chang P S and He X Z. 2022a. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Applied Intelligence, 52(8): 8448-8463 [DOI: 10.1007/s10489-021-02893-3http://dx.doi.org/10.1007/s10489-021-02893-3]
Sun W H and Huang X Y. 2021. Semantic attention-based network for inshore SAR ship detection//Proceedings of the SPIE 11878, the 13th International Conference on Digital Image Processing. Singapore, Singapore: SPIE: #2600839 [DOI: 10.1117/12.2600839http://dx.doi.org/10.1117/12.2600839]
Sun X, Lyu Y X, Wang Z R and Fu K. 2022d. SCAN: scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 60: #5226517 [DOI: 10.1109/TGRS.2022.3166174http://dx.doi.org/10.1109/TGRS.2022.3166174]
Sun X, Meng Y, Diao W H, Huang L J, Zhang X, Luo J C, Gao L R, Wang P J, Yan Z Y, Gao L J, Dong W, Feng Y C, Li J H and Fu K. 2022. The review of AI-based intelligent remote sensing capabilities. Journal of Image and Graphics, 27(6): 1799-1822
孙显, 孟瑜, 刁文辉, 黄丽佳, 张新, 骆剑承, 高连如, 王佩瑾, 闫志远, 郜丽静, 董文, 冯瑛超, 李霁豪, 付琨. 2022. 智能遥感: AI赋能遥感技术. 中国图象图形学报, 27(6): 1799-1822 [DOI: 10.11834/jig.220161http://dx.doi.org/10.11834/jig.220161]
Sun X, Tian Y, Lu W X, Wang P J, Niu R G, Yu H F and Fu K. 2022b. From single- to multi-modal remote sensing imagery interpretation: a survey and taxonomy. Science China Information Sciences [DOI: 10.1007/s11432-022-3588-0http://dx.doi.org/10.1007/s11432-022-3588-0]
Sun X, Wang P J, Yan Z Y, Xu F, Wang R P, Diao W H, Chen J, Li J H, Feng Y C, Xu T, Weinmann M, Hinz S, Wang C and Fu K. 2022c. FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184: 116-130 [DOI: 10.1016/j.isprsjprs.2021.12.004http://dx.doi.org/10.1016/j.isprsjprs.2021.12.004]
Sun X, Wang Z R, Sun Y R, Diao W H, Zhang Y and Fu K. 2019. AIR-SARShip-1.0: high-resolution SAR ship detection dataset. Journal of Radars, 8(6): 852-862
孙显, 王智睿, 孙元睿, 刁文辉, 张跃, 付琨. 2019. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集. 雷达学报, 8(6): 852-862 [DOI: 10.12000/JR19097http://dx.doi.org/10.12000/JR19097]
Sun X L, Guo L C, Zhang W L, Wang Z, Hou Y J, Li Z and Teng X C. 2021. A dataset for small infrared moving target detection under clutter background. China Scientific Data
孙晓亮, 郭良超, 张文龙, 王梓, 侯艳杰, 李璋, 滕锡超. 2021. 复杂背景下红外弱小运动目标检测数据集. 中国科学数据[DOI: 10.11922/csdata.2021.0015.zhhttp://dx.doi.org/10.11922/csdata.2021.0015.zh]
Sun Y, Yang J G and An W. 2021. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model. IEEE Transactions on Geoscience and Remote Sensing, 59(5): 3737-3752 [DOI: 10.1109/TGRS.2020.3022069http://dx.doi.org/10.1109/TGRS.2020.3022069]
Sun Y R, Sun X, Wang Z R and Fu K. 2022f. Oriented ship detection based on strong scattering points network in large-scale SAR images. IEEE Transactions on Geoscience and Remote Sensing, 60: #5218018 [DOI: 10.1109/TGRS.2021.3130117http://dx.doi.org/10.1109/TGRS.2021.3130117]
Sun Y R, Wang Z R, Sun X and Fu K. 2022e. SPAN: strong scattering point aware network for ship detection and classification in large-scale SAR imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 1188-1204 [DOI: 10.1109/JSTARS.2022.3142025http://dx.doi.org/10.1109/JSTARS.2022.3142025]
Tian Z, Shen C H, Chen H and He T. 2022. FCOS: a simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4): 1922-1933 [DOI: 10.1109/TPAMI.2020.3032166http://dx.doi.org/10.1109/TPAMI.2020.3032166]
Wang C C, Su W M and Gu H. 2020. Two-stage ship detection in synthetic aperture radar images based on attention mechanism and extended pooling. Journal of Applied Remote Sensing, 14(4): #044522 [DOI: 10.1117/1.JRS.14.044522http://dx.doi.org/10.1117/1.JRS.14.044522]
Wang H, Zhou L P and Wang L. 2019a. Miss detection vs. false alarm: adversarial learning for small object segmentation in infrared images//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8508-8517 [DOI: 10.1109/ICCV.2019.00860http://dx.doi.org/10.1109/ICCV.2019.00860]
Wang J P, Lin Y Q, Guo J and Zhuang L. 2021. SSS-YOLO: towards more accurate detection for small ships in SAR image. Remote Sensing Letters, 12(2): 93-102 [DOI: 10.1080/2150704 X.2020.183 7988http://dx.doi.org/10.1080/2150704X.2020.1837988]
Wang Y Y, Wang C, Zhang H, Dong Y B and Wei S S. 2019b. A SAR dataset of ship detection for deep learning under complex backgrounds. Remote Sensing, 11(7): #765 [DOI: 10.3390/rs11070765http://dx.doi.org/10.3390/rs11070765]
Wang Z C, Du L, Mao J S, Liu B and Yang D W. 2019c. SAR target detection based on SSD with data augmentation and transfer learning. IEEE Geoscience and Remote Sensing Letters, 16(1): 150-154 [DOI: 10.1109/LGRS.2018.2867242http://dx.doi.org/10.1109/LGRS.2018.2867242]
Wei S J, Zeng X F, Qu Q Z, Wang M, Su H and Shi J. 2020a. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access, 8: 120234-120254 [DOI: 10.1109/ACCESS.2020.3005861http://dx.doi.org/10.1109/ACCESS.2020.3005861]
Wei Z W, Duan C Z, Song X H, Tian Y and Wang H P. 2020b. AMRNet: chips augmentation in aerial images object detection [EB/OL]. [2023-03-25]. https://arxiv.org/pdf/2009.07168.pdfhttps://arxiv.org/pdf/2009.07168.pdf
Wu J Q and Xu S B. 2021. From point to region: accurate and efficient hierarchical small object detection in low-resolution remote sensing images. Remote Sensing, 13(13): #2620 [DOI: 10.3390/rs13132620http://dx.doi.org/10.3390/rs13132620]
Wu J X, Pan Z X, Lei B and Hu Y X. 2022. FSANet: feature-and-spatial-aligned network for tiny object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60: #5630717 [DOI: 10.1109/TGRS.2022.3205052http://dx.doi.org/10.1109/TGRS.2022.3205052]
Xia C Q, Li X R, Zhao L Y and Shu R. 2020. Infrared small target detection based on multiscale local contrast measure using local energy factor. IEEE Geoscience and Remote Sensing Letters, 17(1): 157-161 [DOI: 10.1109/LGRS.2019.2914432http://dx.doi.org/10.1109/LGRS.2019.2914432]
Xia R F, Chen J, Huang Z X, Wan H Y, Wu B C, Sun L, Yao B D, Xiang H B and Xing M D. 2022. CRTransSar: a visual transformer based on contextual joint representation learning for SAR ship detection. Remote Sensing, 14(6): #1488 [DOI: 10.3390/rs14061488http://dx.doi.org/10.3390/rs14061488]
Xie X X, Cheng G, Wang J B, Yao X W and Han J W. 2021. Oriented R-CNN for object detection//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE: 3500-3509 [DOI: 10.1109/ICCV48922.2021.00350http://dx.doi.org/10.1109/ICCV48922.2021.00350]
Xu C, Wang J W, Yang W and Yu L. 2021a. Dot distance for tiny object detection in aerial images//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 1192-1201 [DOI: 10.1109/CVPRW53098.2021.00130http://dx.doi.org/10.1109/CVPRW53098.2021.00130]
Xu C, Wang J W, Yang W, Yu H, Yu L and Xia G S. 2022a. RFLA: Gaussian receptive field based label assignment for tiny object detection//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 526-543 [DOI: 10.1007/978-3-031-20077-9_31http://dx.doi.org/10.1007/978-3-031-20077-9_31]
Xu C, Wang J W, Yang W, Yu H, Yu L and Xia G S. 2022b. Detecting tiny objects in aerial images: a normalized Wasserstein distance and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 190: 79-93 [DOI: 10.1016/j.isprsjprs.2022.06.002http://dx.doi.org/10.1016/j.isprsjprs.2022.06.002]
Xu C A, Su H, Li J W, Liu Y, Yao L B, Gao L, Yan W J and Wang T Y. 2022. RSDD-SAR: rotated ship detection dataset in SAR images. Journal of Radars, 11(4): 581-599
徐从安, 苏航, 李健伟, 刘瑜, 姚力波, 高龙, 闫文君, 汪韬阳. 2022. RSDD-SAR: SAR舰船斜框检测数据集. 雷达学报, 11(4): 581-599 [DOI: 10.12000/JR22007http://dx.doi.org/10.12000/JR22007]
Xu F, Wang H P and Jin Y Q. 2020. Synthetic Aperture Radar Image Intelligent Interpretation. Beijing: Science Press
徐丰, 王海鹏, 金亚秋. 2020. 合成孔径雷达图像智能解译. 北京: 科学出版社
Xu P, Li Q Y, Zhang B, Wu F, Zhao K, Du X, Yang C K and Zhong R F. 2021b. On-board real-time ship detection in HISEA-1 SAR images based on CFAR and lightweight deep learning. Remote Sensing, 13(10): #1995 [DOI: 10.3390/rs 13101995http://dx.doi.org/10.3390/rs13101995]
Xu Y C, Fu M T, Wang Q M, Wang Y K, Chen K, Xia G S and Bai X. 2021c. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4): 1452-1459 [DOI: 10.1109/TPAMI.2020.2974745http://dx.doi.org/10.1109/TPAMI.2020.2974745]
Yang F, Fan H, Chu P, Blasch E and Ling H B. 2019a. Clustered object detection in aerial images//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8310-8319 [DOI: 10.1109/ICCV.2019.00840http://dx.doi.org/10.1109/ICCV.2019.00840]
Yang X, Sun H, Fu K, Yang J R, Sun X, Yan M L and Guo Z. 2018. Automatic ship detection in remote sensing images from Google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sensing, 10(1): #132 [DOI: 10.3390/rs10010132http://dx.doi.org/10.3390/rs10010132]
Yang X, Yang J R, Yan J C, Zhang Y, Zhang T F, Guo Z, Sun X and Fu K. 2019b. SCRDet: towards more robust detection for small, cluttered and rotated objects//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 8231-8240 [DOI: 10.1109/ICCV.2019.00832http://dx.doi.org/10.1109/ICCV.2019.00832]
Yang Y F, Li Q, Yang C W, Fu Y N, Feng H J, Xu Z H and Chen Y T. 2020. Deep networks with detail enhancement for infrared image super-resolution. IEEE Access, 8: 158690-158701 [DOI: 10.1109/ACCESS.2020.3017819http://dx.doi.org/10.1109/ACCESS.2020.3017819]
Ying X Y, Wang Y Q, Wang L G, Sheng W D, Liu L, Lin Z P and Zhou S L. 2022. Local motion and contrast priors driven deep network for infrared small target superresolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 5480-5495 [DOI: 10.1109/JSTARS.2022.3183230http://dx.doi.org/10.1109/JSTARS.2022.3183230]
Yu L, Wu H Y, Zhong Z, Zheng L Y, Deng Q Y and Hu H C. 2021. TWC-Net: a SAR ship detection using two-way convolution and multiscale feature mapping. Remote Sensing, 13(13): #2558 [DOI: 10.3390/rs13132558http://dx.doi.org/10.3390/rs13132558]
Zand M, Etemad A and Greenspan M. 2022. Oriented bounding boxes for small and freely rotated objects. IEEE Transactions on Geoscience and Remote Sensing, 60: #4701715 [DOI: 10.1109/TGRS.2021.3076050http://dx.doi.org/10.1109/TGRS.2021.3076050]
Zhang C, Li D G, Qi J S, Liu J T and Wang Y. 2021. Infrared small target detection method with trajectory correction fuze based on infrared image sensor. Sensors, 21(13): #4522 [DOI: 10.3390/s21134522http://dx.doi.org/10.3390/s21134522]
Zhang H, Dana K, Shi J P, Zhang Z Y, Wang X G, Tyagi A and Agrawal A. 2018a. Context encoding for semantic segmentation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7151-7160 [DOI: 10.1109/CVPR.2018.00747http://dx.doi.org/10.1109/CVPR.2018.00747]
Zhang K, Wu Y L, Wang J Y, Wang Y Z and Wang Q. 2022a. Semantic context-aware network for multiscale object detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19: #8009705 [DOI: 10.1109/LGRS.2021.3067313http://dx.doi.org/10.1109/LGRS.2021.3067313]
Zhang L D, Peng L B, Zhang T F, Cao S Y and Peng Z M. 2018b. Infrared small target detection via non-convex rank approximation minimization joint l2,1 norm. Remote Sensing, 10(11): #1821 [DOI: 10.3390/rs10111821http://dx.doi.org/10.3390/rs10111821]
Zhang L D and Peng Z M. 2019. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sensing, 11(4): #382 [DOI: 10.3390/rs11040382http://dx.doi.org/10.3390/rs11040382]
Zhang M J, Zhang R, Yang Y X, Bai H C, Zhang J and Guo J. 2022b. ISNet: shape matters for infrared small target detection//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 867-876 [DOI: 10.1109/CVPR52688.2022.00095http://dx.doi.org/10.1109/CVPR52688.2022.00095]
Zhang T W, Zhang X L, Ke X, Zhan X, Shi J, Wei S J, Pan D C, Li J W, Su H, Zhou Y and Kumar D. 2020. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sensing, 12(18): #2997 [DOI: 10.3390/rs12182997http://dx.doi.org/10.3390/rs12182997]
Zhang W, Wang S H, Thachan S, Chen J Z and Qian Y T. 2018c. Deconv R-CNN for small object detection on remote sensing images//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 2483-2486 [DOI: 10.1109/IGARSS.2018.8517436http://dx.doi.org/10.1109/IGARSS.2018.8517436]
Zhao J P, Guo W W, Zhang Z H and Yu W X. 2019. A coupled convolutional neural network for small and densely clustered ship detection in SAR images. Science China Information Sciences, 62(4): #42301 [DOI: 1 0.1007/s11432-017-9405-6http://dx.doi.org/10.1007/s11432-017-9405-6]
Zhu C B, Zhao D P, Liu Z M and Mao Y N. 2020. Hierarchical attention for ship detection in SAR images//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE: 2145-2148 [DOI: 10.1109/IGARSS39084.2020.9324122http://dx.doi.org/10.1109/IGARSS39084.2020.9324122]
Zhu J W, Qiu X L, Pan Z X, Zhang Y T and Lei B. 2017. Projection shape template-based ship target recognition in TerraSAR-X images. IEEE Geoscience and Remote Sensing Letters, 14(2): 222-226 [DOI: 10.1109/LGRS.2016.2635699http://dx.doi.org/10.1109/LGRS.2016.2635699]
Zhu P F, Wen L Y, Du D W, Bian X, Fan H, Hu Q H and Ling H B. 2022. Detection and tracking meet drones challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11): 7380-7399 [DOI: 10.1109/TPAMI.2021.3119563http://dx.doi.org/10.1109/TPAMI.2021.3119563]
Zou L C, Zhang H, Wang C, Wu F and Gu F. 2020. MW-ACGAN: generating multiscale high-resolution SAR images for ship detection. Sensors, 20(22): #6673 [DOI: 10.3390/s20226673http://dx.doi.org/10.3390/s20226673]
相关作者
相关机构