染色体核型分析深度学习方法综述
Review of deep learning methods for karyotype analysis
- 2023年28卷第11期 页码:3363-3385
纸质出版日期: 2023-11-16
DOI: 10.11834/jig.221094
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-11-16 ,
移动端阅览
罗纯龙, 赵屹. 2023. 染色体核型分析深度学习方法综述. 中国图象图形学报, 28(11):3363-3385
Luo Chunlong, Zhao Yi. 2023. Review of deep learning methods for karyotype analysis. Journal of Image and Graphics, 28(11):3363-3385
染色体核型分析是细胞遗传学领域重要的实验技术,并逐步在包括生殖医学在内的诸多现代临床领域和科学研究方面得到广泛应用,但即使是经验丰富的细胞遗传学家也需要大量时间才能完成染色体核型分析。基于传统方法的染色体核型自动化分析方法精度较低,仍需要细胞遗传学家花费大量时间、精力校正。目前基于深度学习的染色体核型自动分析方法成果较多,但缺乏对该领域现状的总结、对未来发展的展望等。因此,本文对基于深度学习的染色体核型自动分析方法进行综述,归纳总结了现有的研究分析任务,挑选了具有代表性的方法并梳理解决方案,展望了未来发展方向。通过整理发现,基于深度学习的染色体核型自动化分析方法取得了很多成果,但仍存在一些问题。首先,已有的中文综述性工作仅集中于某一子领域或者调研不够全面和深入。其次,染色体核型分析任务与临床紧密结合,受各种因素制约,任务类型繁多,解决方案复杂,难以窥斑见豹。最后,现有方法主要集中于染色体分类和染色体分割任务,而诸如染色体计数、染色体预处理等任务研究成果较少,需要厘清问题,吸引更多研究人员关注。综上所述,基于深度学习的染色体核型自动分析方法仍有较大发展空间。
Chromosomal abnormalities can lead to serious diseases, such as chronic myeloid leukemia and down syndrome. Karyotyping can count chromosomes in metaphase images, segment them from the background, arrange them according to certain rules, and observe and issue diagnostic results. Therefore, karyotype analysis has been widely used in many modern clinical fields and scientific research. However, even an experienced cytogeneticist requires much time to complete karyotyping. Although machine learning or traditional geometric methods have tried to automate karyotype analysis, most of them have shown poor performance and do not satisfy clinical requirements, which means that cytogeneticists still require much time for manual intervention. While many deep-learning-based methods have been proposed, systematic reviews are lacking. This paper reviews the recent literature and summarizes them into chromosome counting, chromosome segmentation, chromosome cluster classification, chromosome preprocessing, chromosome classification, and chromosome anomaly. First, the chromosome counting methods are summarized based on bounding box detection to accurately identify each chromosome on the metaphase images. Specifically, these methods need to find candidate object proposals, classify them into different classes, and refine the locations. However, they must solve self-similarity problems, over-deletion problems, and inaccurate localization problems resulting from overlapping chromosomes. Researchers have also attempted to accelerate model inference speed through lightweight backbones. Methods for the chromosome segmentation task can be divided into semantic and instance segmentation methods. On the one hand, semantic segmentation methods can only solve the problem of segmenting chromosome clusters formed by two or more overlapping chromosomes, and some post-processing should be introduced to splice chromosomes. On the other hand, instance segmentation methods can automate chromosome segmentation, and additional supervision information, such as key points or orientation information, can further improve its performance. Given that some chromosome segmentation methods can only solve a specific type of chromosome cluster, the types of clusters should be identified. Existing methods roughly classify chromosome clusters according to two criteria, namely, based on the number of overlapping chromosomes and based on the interrelationship between the touching and overlapping chromosomes. However, from the methodological perspective, previous studies are mostly based on simple convolution neural networks (CNNs). Therefore, further innovative studies on chromosome cluster classification are required. As for the chromosome preprocessing task, existing methods mainly address the two preprocessing tasks of metaphase image denoising and chromosome straightening. The metaphase image denoising task is solved in a segmentation manner, where the chromosomes are regarded as a whole area that needs to be segmented from the background and impurities present in an image. The existing chromosome straightening methods rely on generative adversarial networks to straighten curved chromosomes and generally follow the image translation or motion transformation framework. Benefiting from the booming development of deep-learning-based image classification networks, the chromosome classification task has also received much attention and development in karyotype-analysis-related tasks. According to their properties, the available methods can be divided into 1) simple CNN-based methods, which redesign the network aiming at chromosome instances instead of directly using the famous CNN model proposed for the ImageNet dataset; 2) feature-contrastive-based methods, which extract representative features in a contrastive manner and then classify them through a simple classifier; 3) image-preprocessing-based methods, where super-resolution methods are applied before classification to unify the size of chromosome images or enhance the banding pattern features using different filters; 4) global- and local-feature-fusion-based methods, which explicitly crop and extract features of the local but important image parts and then fuse them for final classification; and 5) complex-strategy-based methods, which solve the chromosome classification task by detecting chromosomes from metaphase images and improve performance using the ensemble learning framework. The final reviewed task is chromosome anomaly that includes detection and generation subtasks. Despite being a subject of concern for clinical experts, previous studies can only detect a specific type of chromosome anomaly through basic CNN or roughly discriminate between normal and abnormal chromosomes using the generative adversarial network framework. Meanwhile, the available approaches for generation subtasks are based on generative adversarial networks. At the end of this paper, the various tasks and main methodologies are summarized and reviewed, and then feasible future developments are proposed. First, to fulfill these tasks, multiple advanced solution paradigms, such as multi-modality and image question answering, should be introduced. Second, chromosomal abnormality diagnosis has not been addressed because it involves the extraction of band-level features and relational reasoning. Third, pretraining models in a self-supervised learning manner are worth further research. Despite the unavailability of high-quality labeled data for chromosomes, a large amount of clinically unlabeled data can still reduce the cost of data labeling and improve the performance of downstream tasks through the self-supervised learning paradigm. In sum, deep-learning-based automatic karyotyping methods should be reviewed further to draw additional research interest.
深度学习计算机辅助诊断染色体核型分析染色体分类染色体分割
deep learningcomputer aided diagnosischromosome karyotypechromosome classificationchromosome segmentation
Abid F and Hamami L. 2018. A survey of neural network based automated systems for human chromosome classification. Artificial Intelligence Review, 49(1): 41-56 [DOI: 10.1007/s10462-016-9515-5http://dx.doi.org/10.1007/s10462-016-9515-5]
Al-Kharraz M, Elrefaei L A and Fadel M. 2021. Classifying chromosome images using ensemble convolutional neural networks//Proceedings of 2021 Applications of Artificial Intelligence in Engineering. Singapore, Singapore: Springer: 751-764 [DOI: 10.1007/978-981-33-4604-8_58http://dx.doi.org/10.1007/978-981-33-4604-8_58]
Altinsoy E, Yang J and Tu E M. 2022. An improved denoising of G-banding chromosome images using cascaded CNN and binary classification network. The Visual Computer, 38(6): 2139-2152 [DOI: 10.1007/s00371-021-02273-5http://dx.doi.org/10.1007/s00371-021-02273-5]
Altinsoy E, Yilmaz C, Wen J, Wu L Q, Yang J and Zhu Y M. 2019. Raw G-band chromosome image segmentation using U-Net based neural network//Proceedings of the 18th International Conference on Artificial Intelligence and Soft Computing. Zakopane, Poland: Springer: 117-126 [DOI: 10.1007/978-3-030-20915-5_11http://dx.doi.org/10.1007/978-3-030-20915-5_11]
Badrinarayanan V, Kendall A and Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495 [DOI: 10.1109/TPAMI.2016.2644615http://dx.doi.org/10.1109/TPAMI.2016.2644615]
Bai H, Zhang T H, Lu C H, Chen W, Xu F Y and Han Z B. 2020. Chromosome Extraction Based on U-Net and YOLOv3. IEEE Access, 8: 178563-178569 [DOI: 10.1109/ACCESS.2020.3026483http://dx.doi.org/10.1109/ACCESS.2020.3026483]
Berman M, Triki A R and Blaschko M B. 2018. The lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4413-4421 [DOI: 10.1109/CVPR.2018.00464http://dx.doi.org/10.1109/CVPR.2018.00464]
Cao X, Lan F Z, Liu C M, Lam T W and Luo R B. 2020. ChromSeg: two-stage framework for overlapping chromosome segmentation and reconstruction//Proceedings of 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Seoul, Korea (South): IEEE: 2335-2342 [DOI: 10.1109/BIBM49941.2020.9313458http://dx.doi.org/10.1109/BIBM49941.2020.9313458]
Chang L, Wu K J, Gu C C and Chen C L. 2021. Automatic segmentation of the whole G-band chromosome images based on mask R-CNN and geometric features//Proceedings of the 5th International Conference on Advances in Image Processing. Chengdu, China: Association for Computing Machinery: 56-61 [DOI: 10.1145/3502827.3502834http://dx.doi.org/10.1145/3502827.3502834]
Chawla N V, Bowyer K W, Hall L O and Kegelmeyer W P. 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16: 321-357 [DOI: 10.1613/jair.953http://dx.doi.org/10.1613/jair.953]
Chen S J, Zhao G S, Lin C C, Peng J, Huang K X, Li Z W, Huang R H, Du J H and Fan X M. 2021. Survey of application of deep learning in chromosome segmentation. Computer Engineering and Applications, 57(11): 46-56
陈少洁, 赵淦森, 林成创, 彭璟, 黄凯信, 李壮伟, 黄润桦, 杜嘉华, 樊小毛. 2021. 深度学习在染色体分割中的应用综述. 计算机工程与应用, 57(11): 46-56 [DOI: 10.3778/j.issn.1002-8331.2102-0137http://dx.doi.org/10.3778/j.issn.1002-8331.2102-0137]
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 1800-1807 [DOI: 10.1109/CVPR.2017.195http://dx.doi.org/10.1109/CVPR.2017.195]
Ding W, Chang L, Gu C C and Wu K J. 2019. Classification of chromosome karyotype based on faster-RCNN with the segmatation and enhancement preprocessing model//Proceedings of the 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Suzhou, China: IEEE: 1-5 [DOI: 10.1109/CISP-BMEI48845.2019.8965713http://dx.doi.org/10.1109/CISP-BMEI48845.2019.8965713]
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J and Houlsby N. 2021. An image is worth 16 × 16 words: Transformers for image recognition at scale//Proceedings of the 9th International Conference on Learning Representations. [s.l.]:OpenReview.net
Dou X J. 2012. Research and progress of karyotype analysis method in plants. Anhui Agricultural Science Bulletin, 18(13): 32-34
窦笑菊. 2012. 核型分析方法研究及进展. 安徽农学通报, 18(13): 32-34 [DOI: 10.16377/j.cnki.issn1007-7731.2012.13.003http://dx.doi.org/10.16377/j.cnki.issn1007-7731.2012.13.003]
Feng T, Chen B and Zhang Y F. 2020. Chromosome image segmentation framework based on improved Mask R-CNN. Journal of Computer Applications, 40(11): 3332-3339
冯涛, 陈斌, 张跃飞. 2020. 基于改进的Mask R-CNN的染色体图像分割框架. 计算机应用, 40(11): 3332-3339 [DOI: 10.11772/j.issn.1001-9081.2020030355http://dx.doi.org/10.11772/j.issn.1001-9081.2020030355]
Gajjar P, Shah P, Vegada A and Savalia J. 2022. Triplet loss for chromosome classification. Journal of Innovative Image Processing, 4(1): 1-15 [DOI: 10.36548/jiip.2022.1.001http://dx.doi.org/10.36548/jiip.2022.1.001]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
Howard A, Sandler M, Chen B, Wang W J, Chen L C, Tan M X, Chu G, Vasudevan V, Zhu Y K, Pang R M, Adam H and Le Q. 2019. Searching for MobileNetV3//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1314-1324 [DOI: 10.1109/ICCV.2019.00140http://dx.doi.org/10.1109/ICCV.2019.00140]
Hu J, Shen L and Sun G. 2018. Squeeze-and-excitation networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7132-7141 [DOI: 10.1109/CVPR.2018.00745http://dx.doi.org/10.1109/CVPR.2018.00745]
Hu R L, Karnowski J, Fadely R and Pommier J P. 2017. Image segmentation to distinguish between overlapping human chromosomes [EB/OL]. [2022-08-31]. http://arxiv.org/pdf/1712.07639.pdfhttp://arxiv.org/pdf/1712.07639.pdf
Hu X, Yi W L, Jiang L, Wu S J, Zhang Y, Du J Q, Ma T Y, Wang T and Wu X M. 2019. Classification of metaphase chromosomes using deep convolutional neural network. Journal of Computational Biology, 26(5): 473-484 [DOI: 10.1089/cmb.2018.0212http://dx.doi.org/10.1089/cmb.2018.0212]
Huang K X, Lin C C, Huang R H, Zhao G S, Yin A H, Chen H B, Guo L, Shan C, Nie R H and Li S Y. 2021. A novel chromosome instance segmentation method based on geometry and deep learning//Proceedings of 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen, China: IEEE: 1-8 [DOI: 10.1109/IJCNN52387.2021.9533523http://dx.doi.org/10.1109/IJCNN52387.2021.9533523]
Huang R H, Lin C C, Yin A H, Chen H B, Guo L, Zhao G S, Fan X M, Li S Y and Yang J J. 2022. A clinical dataset and various baselines for chromosome instance segmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(1): 31-39 [DOI: 10.1109/TCBB.2021.3089507http://dx.doi.org/10.1109/TCBB.2021.3089507]
Isola P, Zhu J Y, Zhou T H and Efros A A. 2017. Image-to-image translation with conditional adversarial networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 5967-5976 [DOI: 10.1109/CVPR.2017.632http://dx.doi.org/10.1109/CVPR.2017.632]
Kang S, Han J, Chu Y, Lee I, Joo H and Yang S. 2022. Automated chromosomes counting systems using deep neural network//Proceedings of 2022 International Conference on Electronics, Information, and Communication (ICEIC). Jeju, Korea (South): IEEE: 1-3 [DOI: 10.1109/ICEIC54506.2022.9748307http://dx.doi.org/10.1109/ICEIC54506.2022.9748307]
Lejeune J, Levan A, Böök J A, Chu E H Y, Ford C E, Fraccaro M, Harnden D G, Hsu T C, Hungerford D A, Jacobs P A, Makino S, Puck T, Robinson A, Tjio J H, Catcheside D G, Muller H J and Stern C. 1960. A proposed standard system of nomenclature of human mitotic chromosomes. The Lancet, 275(7133): 1063-1065 [DOI: 10.1016/S0140-6736(60)90948-Xhttp://dx.doi.org/10.1016/S0140-6736(60)90948-X]
Li J, Huang Y, Yang X, Bi L and Mei X. 2020. Karyotype analysis of children with birth defects and (or) growth retardation. Journal of Xinxiang Medical University, 37(2): 152-155
李静, 黄岩杰, 杨晓青, 毕亮亮, 梅晓峰. 2020. 出生缺陷和(或)发育迟缓儿童的染色体核型分析. 新乡医学院学报, 37(2): 152-155 [DOI: 10.7683/xxyxyxb.2020.02.012http://dx.doi.org/10.7683/xxyxyxb.2020.02.012]
Li Z W, Zhao G S, Yin A H, Wang T X, Chen H B, Guo L, Yang H, Yang J J and Lin C C. 2020. CS-GANomaly: a supervised anomaly detection approach with ancillary classifier GANs for chromosome images//Proceedings of the 3rd IEEE International Conference of Safe Production and Informatization (IICSPI). Chongqing, China: IEEE: 492-499 [DOI: 10.1109/IICSPI51290.2020.9332331http://dx.doi.org/10.1109/IICSPI51290.2020.9332331]
Lin C C, Zhao G S, Yin A H, Ding B C, Guo L and Chen H B. 2020. AS-PANet: a chromosome instance segmentation method based on improved path aggregation network architecture. Journal of Image and Graphics, 25(10): 2271-2280
林成创, 赵淦森, 尹爱华, 丁笔超, 郭莉, 陈汉彪. 2020. AS-PANet: 改进路径增强网络的重叠染色体实例分割. 中国图象图形学报, 25(10): 2271-2280 [DOI: 10.11834/jig.200236http://dx.doi.org/10.11834/jig.200236]
Lin C C, Zhao G S, Yin A H, Guo L, Chen H B and Zhao L. 2020a. MixNet: a better promising approach for chromosome classification based on aggregated residual architecture//Proceedings of 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). Chongqing, China: IEEE: 313-318 [DOI: 10.1109/CVIDL51233.2020.00-79http://dx.doi.org/10.1109/CVIDL51233.2020.00-79]
Lin C C, Yin A H, Wu Q L, Chen H B, Guo L, Zhao G S, Fan X M, Luo H Y and Tang H. 2020b. Chromosome cluster identification framework based on geometric features and machine learning algorithms//Proceedings of 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Seoul, Korea (South): IEEE: 2357-2363 [DOI: 10.1109/BIBM49941.2020.9313369http://dx.doi.org/10.1109/BIBM49941.2020.9313369]
Lin C C, Zhao G S, Yin A H, Yang Z R, Guo L, Chen H B, Zhao L, Li S Y, Luo H Y and Ma Z H. 2021. A novel chromosome cluster types identification method using ResNeXt WSL model. Medical Image Analysis, 69: #101943 [DOI: 10.1016/j.media.2020.101943http://dx.doi.org/10.1016/j.media.2020.101943]
Lin C C, Zhao G S, Yang Z R, Yin A H, Wang X M, Guo L, Chen H B, Ma Z H, Zhao L, Luo H Y, Wang T X, Ding B C, Pang X W and Chen Q R. 2022. CIR-Net: automatic classification of human chromosome based on inception-ResNet architecture. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(3): 1285-1293 [DOI: 10.1109/TCBB.2020.3003445http://dx.doi.org/10.1109/TCBB.2020.3003445]
Lin J, Deng X J, Zhang X and Zeng J. 2020. Chromosome karyotype analysis in chronic myelogenous leukemia cases and their clinical significance. Chinese Journal of Blood Transfusion, 33(6): 576-579
林娟, 邓小军, 张晓, 曾健. 2020. 慢性粒细胞白血病的骨髓染色体核型分析及其临床意义. 中国输血杂志, 33(6): 576-579 [DOI: 10.13303/j.cjbt.issn.1004-549x.2020.06.010http://dx.doi.org/10.13303/j.cjbt.issn.1004-549x.2020.06.010]
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B and Belongie S. 2017. Feature pyramid networks for object detection//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 936-944 [DOI: 10.1109/CVPR.2017.106http://dx.doi.org/10.1109/CVPR.2017.106]
Liu H, Wang G J, Song S F, Huang D Y and Lin Z. 2022a. RC-Net: regression correction for end-to-end chromosome instance segmentation. Frontiers in Genetics, 13: #895099 [DOI: 10.3389/fgene.2022.895099http://dx.doi.org/10.3389/fgene.2022.895099]
Liu S, Qi L, Qin H F, Shi J P and Jia J Y. 2018. Path aggregation network for instance segmentation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8759-8768 [DOI: 10.1109/CVPR.2018.00913http://dx.doi.org/10.1109/CVPR.2018.00913]
Liu X B, Wang S S, Lin J C W and Liu S. 2022b. An algorithm for overlapping chromosome segmentation based on region selection. Neural Computing and Applications [DOI: 10.1007/s00521-022-07317-yhttp://dx.doi.org/10.1007/s00521-022-07317-y]
Liu X B, Fu L J, Lin J C W and Liu S. 2022c. SRAS-net: low-resolution chromosome image classification based on deep learning. IET Systems Biology, 16(3/4): 85-97 [DOI: 10.1049/syb2.12042http://dx.doi.org/10.1049/syb2.12042]
Mahajan D, Girshick R, Ramanathan V, He K M, Paluri M, Li Y X, Bharambe A and Van Der Maaten L. 2018. Exploring the limits of weakly supervised pretraining//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 185-201 [DOI: 10.1007/978-3-030-01216-8_12http://dx.doi.org/10.1007/978-3-030-01216-8_12]
Mei L Y, Yu Y L, Shen H, Weng Y Y, Liu Y, Wang D, Liu S, Zhou F L and Lei C. 2022. Adversarial multiscale feature learning framework for overlapping chromosome segmentation. Entropy, 24(4): #522 [DOI: 10.3390/e24040522http://dx.doi.org/10.3390/e24040522]
Menaka D and Vaidyanathan S G. 2022. Chromenet: a CNN architecture with comparison of optimizers for classification of human chromosome images. Multidimensional Systems and Signal Processing, 33(3): 747-768 [DOI: 10.1007/s11045-022-00819-xhttp://dx.doi.org/10.1007/s11045-022-00819-x]
Mirza M and Osindero S. 2014. Conditional generative adversarial Nets [EB/OL]. [2022-09-01]. https://arxiv.org/pdf/1411.1784.pdfhttps://arxiv.org/pdf/1411.1784.pdf
Pijackova K, Gotthans T and Gotthans J. 2022. Deep learning pipeline for chromosome segmentation//Proceedings of the 32nd International Conference Radioelektronika (RADIOELEKTRONIKA). Kosice, Slovakia: IEEE: 1-5 [DOI: 10.1109/RADIOELEKTRONIKA 54537.2022.9764950http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764950]
Qin Y L, Wen J, Zheng H, Huang X L, Yang J, Song N, Zhu Y M, Wu L Q and Yang G Z. 2019. Varifocal-Net: a chromosome classification approach using deep convolutional networks. IEEE Transactions on Medical Imaging, 38(11): 2569-2581 [DOI: 10.1109/TMI.2019.2905841http://dx.doi.org/10.1109/TMI.2019.2905841]
Qiu J W and Sun P J. 2021. Research progress of chromosome karyotype analysis based on convolution neural network. Modern Computer, 2021(3): 22-25
邱俊玮, 孙频捷. 2021. 基于卷积神经网络的染色体核型分析方法研究进展. 现代计算机, 2021(3): 22-25 [DOI: 10.3969/j.issn.1007-1423.2021.03.005http://dx.doi.org/10.3969/j.issn.1007-1423.2021.03.005]
Redmon J and Farhadi A. 2018. YOLOv3: an incremental improvement [EB/OL]. [2022-08-31]. https://arxiv.org/pdf/1804.02767.pdfhttps://arxiv.org/pdf/1804.02767.pdf
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Saleh H M, Saad N H and Isa N A M. 2019. Overlapping chromosome segmentation using U-Net: convolutional networks with test time augmentation. Procedia Computer Science, 159: 524-533 [DOI: 10.1016/j.procs.2019.09.207http://dx.doi.org/10.1016/j.procs.2019.09.207]
Sharma M, Saha O, Sriraman A, Hebbalaguppe R, Vig L and Karande S. 2017. Crowdsourcing for chromosome segmentation and deep classification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE: 786-793 [DOI: 10.1109/CVPRW.2017.109http://dx.doi.org/10.1109/CVPRW.2017.109]
Sharma M, Swati and Vig L. 2018. Automatic chromosome classification using deep attention based sequence learning of chromosome bands//Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE: 1-8 [DOI: 10.1109/IJCNN.2018.8489321http://dx.doi.org/10.1109/IJCNN.2018.8489321]
Siarohin A, Woodford O J, Ren J, Chai M L and Tulyakov S. 2021. Motion representations for articulated animation//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 13648-13657 [DOI: 10.1109/CVPR46437.2021.01344http://dx.doi.org/10.1109/CVPR46437.2021.01344]
Smith L N. 2018. A disciplined approach to neural network hyper-parameters: Part 1 —— learning rate, batch size, momentum, and weight decay [EB/OL]. [2022-09-01]. http://arxiv.org/pdf/1803.09820.pdfhttp://arxiv.org/pdf/1803.09820.pdf
Somasundaram D. 2019. Machine learning approach for homolog chromosome classification. International Journal of Imaging Systems and Technology, 29(2): 161-167 [DOI: 10.1002/ima.22287http://dx.doi.org/10.1002/ima.22287]
Song S F, Bai T M, Zhao Y X, Zhang W B, Yang C X, Meng J, Ma F and Su J L. 2022a. A new convolutional neural network architecture for automatic segmentation of overlapping human chromosomes. Neural Processing Letters, 54(1): 285-301 [DOI: 10.1007/s11063-021-10629-0http://dx.doi.org/10.1007/s11063-021-10629-0]
Song S F, Huang D Y, Hu Y L, Yang C X, Meng J, Ma F, Coenen F, Zhang J M and Su J L. 2021. A novel application of image-to-image translation: chromosome straightening framework by learning from a single image//Proceedings of the 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Shanghai, China: IEEE [DOI: 10.1109/CISP-BMEI53629.2021.9624383http://dx.doi.org/10.1109/CISP-BMEI53629.2021.9624383]
Song S F, Wang J F, Cheng F R, Cao Q R, Zuo Y H, Lei Y T, Yang R M, Yang C X, Coenen F, Meng J, Dang K and Su J L. 2022b. A Robust framework of chromosome straightening with ViT-patch GAN [EB/OL]. [2022-09-01]. https://arxiv.org/pdf/2203.02901.pdfhttps://arxiv.org/pdf/2203.02901.pdf
Sun K, Xiao B, Liu D and Wang J D. 2019. Deep high-resolution representation learning for human pose estimation//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 5686-5696 [DOI: 10.1109/CVPR.2019.00584http://dx.doi.org/10.1109/CVPR.2019.00584]
Swati, Gupta G, Yadav M, Sharma M and Vig L. 2017. Siamese networks for chromosome classification//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy: IEEE: 72-81 [DOI: 10.1109/ICCVW.2017.17http://dx.doi.org/10.1109/ICCVW.2017.17]
Swati S, Sharma M and Vig L. 2018. Automatic classification of low-resolution chromosomal images//Proceedings of 2018 European Conference on Computer Vision. Munich, Germany: Springer: 315-325 [DOI: 10.1007/978-3-030-11024-6_21http://dx.doi.org/10.1007/978-3-030-11024-6_21]
Szegedy C, Ioffe S, Vanhoucke V and Alemi A A. 2016. Inception-v4, inception-resnet and the impact of residual connections on learning//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press
Uzolas L, Rico J, Coupé P, SanMiguel J C and Cserey G. 2022. Deep anomaly generation: an image translation approach of synthesizing abnormal banded chromosome images. IEEE Access, 10: 59090-59098 [DOI: 10.1109/ACCESS.2022.3178786http://dx.doi.org/10.1109/ACCESS.2022.3178786]
Wang C Y, Yu L M, Zhu X, Su J L and Ma F. 2020. Extended resNet and label feature vector based chromosome classification. IEEE Access, 8: 201098-201108 [DOI: 10.1109/ACCESS.2020.3034684http://dx.doi.org/10.1109/ACCESS.2020.3034684]
Wang C Y, Han M W, Wu Y L, Wang Z Y, Ma F and Su J L. 2021a. CNN based chromosome classification architecture for combined dataset//Proceedings of the 6th International Conference on Communication, Image and Signal Processing (CCISP). Chengdu, China: IEEE: 69-74 [DOI: 10.1109/CCISP52774.2021.9639263http://dx.doi.org/10.1109/CCISP52774.2021.9639263]
Wang G T, Li W Q, Ourselin S and Vercauteren T. 2019. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation//Proceedings of the 4th International MICCAI Brainlesion Workshop. Granada, Spain: Springer: 61-72 [DOI: 10.1007/978-3-030-11726-9_6http://dx.doi.org/10.1007/978-3-030-11726-9_6]
Wang G J, Liu H, Yi X P, Zhou J J and Zhang L. 2021b. ARMS Net: Overlapping chromosome segmentation based on adaptive receptive field multi-scale network. Biomedical Signal Processing and Control, 68: #102811 [DOI: 10.1016/j.bspc.2021.102811http://dx.doi.org/10.1016/j.bspc.2021.102811]
Wang P L, Hu W J, Zhang J P, Wen Y F, Xu C M and Qian D H. 2021c. Enhanced rotated mask R-CNN for chromosome segmentation//Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Mexico: IEEE: 2769-2772 [DOI: 10.1109/EMBC46164.2021.9630695http://dx.doi.org/10.1109/EMBC46164.2021.9630695]
Wang X L, Xiao T T, Jiang Y N, Shao S, Sun J and Shen C H. 2018. Repulsion loss: detecting pedestrians in a crowd//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7774-7783 [DOI: 10.1109/CVPR.2018.00811http://dx.doi.org/10.1109/CVPR.2018.00811]
Wei H, Gao W, Nie H T, Sun J Q and Zhu M. 2022. Classification of Giemsa staining chromosome using input-aware deep convolutional neural network with integrated uncertainty estimates. Biomedical Signal Processing and Control, 71: #103120 [DOI: 10.1016/j.bspc.2021.103120http://dx.doi.org/10.1016/j.bspc.2021.103120]
Xiao L and Luo C L. 2021. DEEPACC: automate chromosome classification based on metaphase images using deep learning framework fused with priori knowledge//Proceedings of the 18th IEEE International Symposium on Biomedical Imaging (ISBI). Nice, France: IEEE: 607-610 [DOI: 10.1109/ISBI48211.2021.9433943http://dx.doi.org/10.1109/ISBI48211.2021.9433943]
Xiao L, Luo C L, Luo Y F, Yu T Q, Tian C, Qiao J and Zhao Y. 2019. DeepACE: automated chromosome enumeration in metaphase cell images using deep convolutional neural networks//Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, China: Springer: 595-603 [DOI: 10.1007/978-3-030-32239-7_66http://dx.doi.org/10.1007/978-3-030-32239-7_66]
Xiao L, Luo C L, Yu T Q, Luo Y F, Wang M Q, Yu F H, Li Y H, Tian C and Qiao J. 2020. DeepACEv2: automated chromosome enumeration in metaphase cell images using deep convolutional neural networks. IEEE Transactions on Medical Imaging, 39(12): 3920-3932 [DOI: 10.1109/TMI.2020.3007642http://dx.doi.org/10.1109/TMI.2020.3007642]
Xie S N, Girshick R, Dollár P, Tu Z W and He K M. 2017. Aggregated residual transformations for deep neural networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 5987-5995 [DOI: 10.1109/CVPR.2017.634http://dx.doi.org/10.1109/CVPR.2017.634]
Yan J H, Tucci E and Jaffe N. 2019. Detection of t(9;22) chromosome translocation using deep residual neural network. Journal of Computer and Communications, 7(12): 102-111 [DOI: 10.4236/jcc.2019.712010http://dx.doi.org/10.4236/jcc.2019.712010]
You Y, Gitman I and Ginsburg B. 2017. Scaling SGD batch size to 32K for imageNet training [EB/OL]. [2022-09-01]. https://arxiv.org/pdf/1708.03888v1?2.pdfhttps://arxiv.org/pdf/1708.03888v1?2.pdf
Zhang J P, Hu W J, Li S Y, Wen Y F, Bao Y, Huang H F, Xu C M and Qian D H. 2021. Chromosome classification and straightening based on an interleaved and multi-task network. IEEE Journal of Biomedical and Health Informatics, 25(8): 3240-3251 [DOI: 10.1109/JBHI.2021.3062234http://dx.doi.org/10.1109/JBHI.2021.3062234]
Zhang R, Isola P, Efros A A, Shechtman E and Wang O. 2018a. The unreasonable effectiveness of deep features as a perceptual metric//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 586-595 [DOI: 10.1109/CVPR.2018.00068http://dx.doi.org/10.1109/CVPR.2018.00068]
Zhang W B, Song S F, Bai T M, Zhao Y X, Ma F, Su J L and Yu L M. 2018b. Chromosome classification with convolutional neural network based deep learning//Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Beijing, China: IEEE: 1-5 [DOI: 10.1109/CISP-BMEI.2018.8633228http://dx.doi.org/10.1109/CISP-BMEI.2018.8633228]
Zheng G B, Zhao J and Liang S X. 2020. Application of karyotype analysis in prenatal diagnosis and its value in the prevention of birth defects. Electronic Journal of Practical Gynecologic Endocrinology, 7(20): 3-4
郑国兵, 赵婧, 梁少霞. 2020. 染色体核型分析在产前诊断中的应用及对出生缺陷的预防价值分析. 实用妇科内分泌电子杂志, 7(20): 3-4 [DOI: 10.16484/j.cnki.issn2095-8803.2020.20.002http://dx.doi.org/10.16484/j.cnki.issn2095-8803.2020.20.002]
Zhou Z W, Siddiquee M M R, Tajbakhsh N and Liang J M. 2020. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 39(6): 1856-1867 [DOI: 10.1109/TMI.2019.2959609http://dx.doi.org/10.1109/TMI.2019.2959609]
相关作者
相关机构