智能遥感:AI赋能遥感技术
The review of AI-based intelligent remote sensing capabilities
- 2022年27卷第6期 页码:1799-1822
纸质出版日期: 2022-06-16 ,
录用日期: 2022-04-21
DOI: 10.11834/jig.220161
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-16 ,
录用日期: 2022-04-21
移动端阅览
孙显, 孟瑜, 刁文辉, 黄丽佳, 张新, 骆剑承, 高连如, 王佩瑾, 闫志远, 郜丽静, 董文, 冯瑛超, 李霁豪, 付琨. 智能遥感:AI赋能遥感技术[J]. 中国图象图形学报, 2022,27(6):1799-1822.
Xian Sun, Yu Meng, Wenhui Diao, Lijia Huang, Xin Zhang, Jiancheng Luo, Lianru Gao, Peijin Wang, Zhiyuan Yan, Lijing Gao, Wen Dong, Yingchao Feng, Jihao Li, Kun Fu. The review of AI-based intelligent remote sensing capabilities[J]. Journal of Image and Graphics, 2022,27(6):1799-1822.
随着人工智能的发展和落地应用,以地理空间大数据为基础,利用人工智能技术对遥感数据智能分析与解译成为未来发展趋势。本文以遥感数据转化过程中对观测对象的整体观测、分析解译与规律挖掘为主线,通过综合国内外文献和相关报道,梳理了该领域在遥感数据精准处理、遥感数据时空处理与分析、遥感目标要素分类识别、遥感数据关联挖掘以及遥感开源数据集和共享平台等方面的研究现状和进展。首先,针对遥感数据精准处理任务,从光学、合成孔径雷达等遥感数据成像质量提升和低质图像重建两个方面对精细化处理研究进展进行了回顾,并从遥感图像的局部特征匹配和区域特征匹配两个方面对定量化提升研究进展进行了回顾。其次,针对遥感数据时空处理与分析任务,从遥感影像时间序列修复和多源遥感时空融合两个方面对其研究进展进行了回顾。再次,针对遥感目标要素分类识别任务,从典型地物要素提取和多要素并行提取两个方面对其研究进展进行了回顾。最后,针对遥感数据关联挖掘任务,从数据组织关联、专业知识图谱构建两个方面对其研究进展进行了回顾。除此之外,面向大智能分析技术发展需求,本文还对遥感开源数据集和共享平台方面的研究进展进行了回顾。在此基础上,对遥感数据智能分析与解译的研究情况进行梳理、总结
给出了该领域的未来发展趋势与展望。
With the development and application of artificial intelligence
intelligent analysis and interpretation of big remotely sensed data using artificial intelligence technology has become a future development trend. By synthesizing domestic and foreign literature and related reports
it sorts out the fields of remote sensing data precision processing
remote sensing data spatio-temporal processing and analysis
remote sensing object classification and identification
remote sensing data association mining
remote sensing open source datasets and sharing platforms. Firstly
for the task of precise processing of remote sensing data
the purpose is to image process and calibrate the spectral reflection or radar scattering data obtained by the sensor
and restore them to image products accurately related to some information dimensions of ground objects. This paper reviews the research progress of refined processing from two aspects: the improvement of imaging quality of remote sensing data such as optics and SAR(synthetic aperture radar) and the reconstruction of low-quality images. The research progress of quantitative improvement is analyzed from two aspects: local feature matching and regional feature matching of remote sensing images. The exploration of existing technologies verifies the feasibility of high-precision remote sensing data processing through artificial intelligence technology. Secondly
for the task of spatio-temporal processing and analysis of remote sensing data
through the comprehensive analysis of multi temporal images
compared with single temporal remote sensing images
it can further show the dynamic changes of the earth's surface and reveal the evolution law of ground objects. For remote sensing applications of multi temporal images
such as monitoring of forest degradation
crop growth
urban expansion and wetland loss
the lack of data caused by clouds and their shadows will prolong the time interval of image acquisition
cause the problem of irregular time interval
and increase the difficulty of subsequent time series processing and analysis. This paper reviews its research progress from two aspects: remote sensing image time series restoration and multi-source remote sensing temporal and spatial fusion. Thirdly
for the task of remote sensing object classification and recognition
most of the existing processing and analysis methods do not make full use of the powerful autonomous learning ability of computers
rely on limited information acquisition and calculation methods
and are difficult to meet the performance requirements such as accuracy and false alarm rate. This paper reviews the research progress of typical feature element extraction and multi element parallel extraction. The existing technology explores how to combine artificial intelligence methods on the basis of traditional artificial mathematical analysis methods to quantitatively describe and analyze target models and mechanisms in remote sensing data to improve target interpretation accuracy. Finally
for the task of remote sensing data association mining
the research progress is reviewed from two aspects: data organization association and professional knowledge graph construction. It shows that there are still some problems in the field of remote sensing data
such as scattered application
difficult to form a knowledge graph and realize knowledge accumulation
updating and optimization. Based on massive multi-source heterogeneous remote sensing data
realizing the rapid association
organization and analysis of multi-dimensional information in time and space is an important direction in the future. In addition
facing the development needs of big intelligence analysis technology
this paper also reviews the research progress of remote sensing open source data set and sharing platform. On this basis
the research situation of intelligent analysis and interpretation of remote sensing data is combed and summarized
and the future development trend and prospect of this field are given.
遥感大数据数据处理时空处理与分析目标要素分类识别数据关联挖掘开源数据集共享平台
remote sensing big datadata processingspatio-temporal processing and analysistarget element classification and identificationdata association miningopen source datasetssharing platform
Auer S, Lehmann J and Hellmann S. 2009. LinkedGeoData: adding a spatial dimension to the web of data//Proceedings of the 8th International Semantic Web Conference on the Semantic Web. Chantilly, France: Springer: 731-746 [DOI: 10.1007/978-3-642-04930-9_46http://dx.doi.org/10.1007/978-3-642-04930-9_46]
Badrinarayanan V, Kendall A and Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495 [DOI: 10.1109/TPAMI.2016.2644615]
Bai Y Q and Di L P. 2013. Study of data sharing based on common infrastructure for global earth observation system. China Science and Technology Resources Review, (5): 105-110
白玉琪, 狄黎平. 2013. 基于全球综合对地观测系统通用基础设施的科学数据共享研究. 中国科技资源导刊, (5): 105-110 [DOI: 10.3772/j.issn.1674-1544.2013.05.019]
Bai Y Y, Zhu F Z and Wu H. 2021. An improved remote sensing images super-resolution method based on densely connected network. Chinese High Technology Letters, 31(10): 1037-1043
柏宇阳, 朱福珍, 巫红. 2021. 改进的密集连接网络遥感图像超分辨重建. 高技术通讯, 31(10): 1037-1043 [DOI: 10.3772/j.issn.1002-0470.2021.10.004]
Basu S, Ganguly S, Mukhopadhyay S, Dibiano R, Karki M and Nemani R. 2015. DeepSat: a learning framework for satellite imagery//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, USA: ACM: #37 [DOI: 10.1145/2820783.2820816http://dx.doi.org/10.1145/2820783.2820816]
Benson M, Pierce L and Sarabandi K. 2017. Estimating the three dimensional structure of the Harvard forest using a database driven multi-modal remote sensing technique//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, USA: IEEE: 5814-5817 [DOI: 10.1109/IGARSS.2017.8128330http://dx.doi.org/10.1109/IGARSS.2017.8128330]
Cao Z Y, Fu K, Lu X D, Diao W H, Sun H, Yan M L, Yu H F and Sun X. 2019. End-to-end DSM fusion networks for semantic segmentation in high-resolution aerial images. IEEE Geoscience and Remote Sensing Letters, 16(11): 1766-1770 [DOI: 10.1109/LGRS.2019.2907009]
Chen B, Huang B, Chen L F and Xu B. 2017a. Spatially and temporally weighted regression: a novel method to produce continuous cloud-free Landsat imagery. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 27-37 [DOI: 10.1109/TGRS.2016.2580576]
Chen H S. 2020. Application Research on Remote Sensing Image Registration based on Convolutional Neural Network. Shanghai: Shanghai Institute of Technology
陈恒实. 2020. 基于卷积神经网络的遥感图像配准在灾害勘测中的应用研究. 上海: 上海应用技术大学[DOI: 10.27801/d.cnki.gshyy.2020.000173http://dx.doi.org/10.27801/d.cnki.gshyy.2020.000173]
Chen J, Zhu X L, Vogelmann J E, Gao F and Jin S M. 2011. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 115(4): 1053-1064 [DOI: 10.1016/j.rse.2010.12.010]
Chen J Y, Deng S M and Chen H J. 2017b. CrowdGeoKG: crowdsourced geo-knowledge graph//Proceedings of the 2nd China Conference on Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence. Chengdu, China: Springer: 165-172 [DOI: 10.1007/978-981-10-7359-5_17http://dx.doi.org/10.1007/978-981-10-7359-5_17]
Chen K Q, Fu K, Gao X, Yan M L, Zhang W K, Zhang Y and Sun X. 2019. Effective fusion of multi-modal data with group convolutions for semantic segmentation of aerial imagery//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 3911-3914 [DOI: 10.1109/IGARSS.2019.8899217http://dx.doi.org/10.1109/IGARSS.2019.8899217]
Chen S P and Guo H D. 2000. Digital Earth and earth observation. Acta Geographica Sinica, 55(1): 9-14
陈述彭, 郭华东. 2000. "数字地球"与对地观测. 地理学报, 55(1): 9-14 [DOI: 10.3321/j.issn:0375-5444.2000.01.002]
Cheng G, Han J W and Lu X Q. 2017. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105(10): 1865-1883 [DOI: 10.1109/JPROC.2017.2675998]
Cheng G, Han J W, Zhou P C and Guo L. 2014. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 98: 119-132 [DOI: 10.1016/j.isprsjprs.2014.10.002]
Chopra S, Hadsell R and Lecun Y. 2005. Learning a similarity metric discriminatively, with application to face verification//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, USA: IEEE: 539-546 [DOI: 10.1109/CVPR.2005.202http://dx.doi.org/10.1109/CVPR.2005.202]
Daudt R C, Le Saux B, Boulch A and Gousseau Y. 2018. Urban change detection for multispectral earth observation using convolutional neural networks//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 2115-2118 [DOI: 10.1109/IGARSS.2018.8518015http://dx.doi.org/10.1109/IGARSS.2018.8518015]
Deng Q H, Guo S D, Cheng C Q and Pu G L. 2015. A method of spatial association for multi-sources remote sensing data based on global subdivision grid. Science of Surveying and Mapping, 40(5): 13-16
邓巧华, 郭仕德, 程承旗, 濮国梁. 2015. 一种基于全球剖分网格的多源遥感数据空间关联方法. 测绘科学, 40(5): 13-16 [DOI: 10.16251/j.cnki.1009-2307.2015.05.003]
Dessì D, Osborne F, Recupero D R, Buscaldi D and Motta E. 2021. Generating knowledge graphs by employing natural language processing and machine learning techniques within the scholarly domain. Future Generation Computer Systems, 116: 253-264 [DOI: 10.1016/j.future.2020.10.026]
Dong X Y, Xi Z H, Sun X and Yang L N. 2020. Remote sensing image super-resolution via enhanced back-projection networks//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE: 1480-1483 [DOI: 10.1109/IGARSS39084.2020.9323316http://dx.doi.org/10.1109/IGARSS39084.2020.9323316]
Du Z Q, Li Y, Zhang Y T, Tan Y Q and Zhao W H. 2020. Knowledge graph construction method on natural disaster emergency. Geomatics and Information Science of Wuhan University, 45(9): 1344-1355
杜志强, 李钰, 张叶廷, 谭玉琪, 赵文豪. 2020. 自然灾害应急知识图谱构建方法研究. 武汉大学学报(信息科学版), 45(9): 1344-1355 [DOI: 10.13203/j.whugis20200047]
Feng X B. 2020. Research on Deep-Learning Based Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Algorithm. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
冯旭斌. 2020. 基于深度学习的光学遥感图像去噪与超分辨率重建算法研究. 西安: 中国科学院西安光学精密机械研究所[DOI: 10.27605/d.cnki.gkxgs.2020.000015http://dx.doi.org/10.27605/d.cnki.gkxgs.2020.000015]
Fernandez-Beltran R, Haut J M, Paoletti M E, Plaza J, Plaza A and Pla F. 2018. Remote sensing image fusion using hierarchical multimodal probabilistic latent semantic analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12): 4982-4993 [DOI: 10.1109/JSTARS.2018.2881342]
Gao F, Masek J, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218 [DOI: 10.1109/TGRS.2006.872081]
Gao G M and Gu Y F. 2017. Multitemporal Landsat missing data recovery based on tempo-spectral angle model. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3656-3668 [DOI: 10.1109/TGRS.2017.2656162]
Gao J K, Ye Y, Li S Z, Qin Y L, Gao X Z and Li X. 2019. Fast super-resolution 3D SAR imaging using an unfolded deep network//Proceedings of 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). Chongqing, China: IEEE: 1-5 [DOI: 10.1109/ICSIDP47821.2019.9173392http://dx.doi.org/10.1109/ICSIDP47821.2019.9173392]
Gong H L, Zhao W J and Li J. 2005. The technological framework of data mining from the polygenetic remotely sensed data. Journal of Image and Graphics, 10(5): 620-623
宫辉力, 赵文吉, 李京. 2005. 多源遥感数据挖掘系统技术框架. 中国图象图形学报, 10(5): 620-623 [DOI: 10.3969/j.issn.1006-8961.2005.05.014]
Grohnfeldt C, Schmitt M and Zhu X X. 2018. A conditional generative adversarial network to fuse Sar and multispectral optical data for cloud removal from sentinel-2 images//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 1726-1729 [DOI: 10.1109/IGARSS.2018.8519215http://dx.doi.org/10.1109/IGARSS.2018.8519215]
Guo B. 2021. Research on cloud removal method based on sentinel-2 satellite remote sensing image. Geomatics and Spatial Information Technology, 44(10): 150-152
郭保. 2021. 基于Sentinel-2卫星遥感影像的去云方法研究. 测绘与空间地理信息, 44(10): 150-152 [DOI: 10.3969/j.issn.1672-5867.2021.10.039]
Guo Z S and Li S H. 2019. Remote sensing image matching method based on depth learning. Geomatics and Spatial Information Technology, 42(1): 138-141, 146
郭正胜, 李参海. 2019. 基于深度学习的遥感图像匹配方法. 测绘与空间地理信息, 42(1): 138-141, 146 [DOI: 10.3969/j.issn.1672-5867.2019.01.038]
Haklay M and Weber P. 2008. OpenStreetMap: user-generated street maps. IEEE Pervasive Computing, 7(4): 12-18 [DOI: 10.1109/MPRV.2008.80]
Han X F, Leung T, Jia Y Q, Sukthankar R and Berg A C. 2015. MatchNet: unifying feature and metric learning for patch-based matching//Proceedings of 2015 IEEE conference on computer vision and pattern recognition. Boston, USA: IEEE: 3279-3286 [DOI: 10.1109/CVPR.2015.7298948http://dx.doi.org/10.1109/CVPR.2015.7298948]
Helber P, Bischke B, Dengel A and Borth D. 2018. Introducing eurosat: a novel dataset and deep learning benchmark for land use and land cover classification//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 204-207 [DOI: 10.1109/IGARSS.2018.8519248http://dx.doi.org/10.1109/IGARSS.2018.8519248]
Hoffart J, Suchanek F M, Berberich K and Weikum G. 2013. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence, 194: 28-61 [DOI: 10.1016/j.artint.2012.06.001]
Hoffmann K and Fischer P. 2002. DOSAR: a multifrequency polarimetric and interferometric airborne SAR-system//IEEE International Geoscience and Remote Sensing Symposium. Toronto, Canada: IEEE: 1708-1710 [DOI: 10.1109/IGARSS.2002.1026228http://dx.doi.org/10.1109/IGARSS.2002.1026228]
Hong L, Chu S S, Peng S Y and Xu Q L. 2020. Multiscale segmentation-optimized algorithm for high-spatial remote sensing imagery considering global and local optimizations. Journal of Remote Sensing, 24(12): 1464-1475
洪亮, 楚森森, 彭双云, 许泉立. 2020. 顾及全局和局部最优的高分辨率遥感影像多尺度分割优化算法. 遥感学报, 24(12): 1464-1475 [DOI: 10.11834/jrs.20208496]
Hua Y S, Marcos D, Mou L C, Zhu X X and Tuia D. 2021. Semantic segmentation of remote sensing images with sparse annotations. IEEE Geoscience and Remote Sensing Letters, 19: #8006305 [DOI: 10.1109/LGRS.2021.3051053]
Huang B and Song H H. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10): 3707-3716 [DOI: 10.1109/TGRS.2012.2186638]
Jiang S, Qiu X L, Han B and Hu W L. 2018. A quality assessment method based on common distributed targets for GF-3 polarimetric SAR data. Sensors, 18(3): #807 [DOI: 10.3390/s18030807]
Kampffmeyer M, Salberg A B and Jenssen R. 2016. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE: 680-688 [DOI: 10.1109/CVPRW.2016.90http://dx.doi.org/10.1109/CVPRW.2016.90]
Karalis N, Mandilaras G and Koubarakis M. 2019. Extending the YAGO2 knowledge graph with precise geospatial knowledge//Proceedings of the 18th International Semantic Web Conference on The Semantic Web. Auckland, New Zealand: Springer: 181-197 [DOI: 10.1007/978-3-030-30796-7_12http://dx.doi.org/10.1007/978-3-030-30796-7_12]
Khalel A, Tasar O, Charpiat G and Tarabalka Y. 2019. Multi-task deep learning for satellite image pansharpening and segmentation//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 4869-4872 [DOI: 10.1109/IGARSS.2019.8899851http://dx.doi.org/10.1109/IGARSS.2019.8899851]
Kim J, Lee J K and Lee K M. 2016. Accurate image super-resolution using very deep convolutional networks//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1646-1654 [DOI: 10.1109/CVPR.2016.182http://dx.doi.org/10.1109/CVPR.2016.182]
Kong F J, Huang B H, Bradbury K and Malof J. 2020. The Synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, USA: IEEE: 1803-1812 [DOI: 10.1109/WACV45572.2020.9093339http://dx.doi.org/10.1109/WACV45572.2020.9093339]
Kusk A, Abulaitijiang A and Dall J. 2016. Synthetic SAR image generation using sensor, terrain and target models//Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar. Hamburg, Germany: VDE: 1-5
La Rosa L, Zortea M, Gemignani B H, Oliveira D A B and Feitosa R Q. 2020. FCRN-based multi-task learning for automatic citrus tree detection from UAV images//Proceedings of 2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference (LAGIRS). Santiago, Chile: IEEE: 403-408 [DOI: 10.1109/LAGIRS48042.2020.9165654http://dx.doi.org/10.1109/LAGIRS48042.2020.9165654]
Lam D, Kuzma R, McGee K, Dooley S, Laielli M, Klaric M, Bulatov Y and McCord B. 2018. xView: objects in context in overhead imagery [EB/OL]. [2022-02-15].https://arxiv.org/pdf/1802.07856.pdfhttps://arxiv.org/pdf/1802.07856.pdf
Li J Y, Zhang H Y and Zhang L P. 2015. Efficient superpixel-oriented multi-task joint sparse representation classification for hyperspectral imagery//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE: 2592-2595 [DOI: 10.1109/IGARSS.2015.7326342http://dx.doi.org/10.1109/IGARSS.2015.7326342]
Li K, Wan G, Cheng G, Meng L Q and Han J W. 2020. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 296-307 [DOI: 10.1016/j.isprsjprs.2019.11.023]
Li S, Pan Z X, Lei B and Ding C B. 2021. Remote sensing images super-resolution reconstruction algorithm based on few-shot learning. Techniques of Automation and Applications, 40(6): 1-5
李盛, 潘宗序, 雷斌, 丁赤飚. 2021. 基于少样本学习的遥感图像超分辨率重建算法. 自动化技术与应用, 40(6): 1-5 [DOI: 10.3969/j.issn.1003-7241.2021.06.001]
Li Y F, Ren J B and Huang Y F. 2021. Remote sensing image haze removal algorithm using deep learning. Application Research of Computers, 38(7): 2194-2199
李玉峰, 任静波, 黄煜峰. 2021. 基于深度学习的遥感图像去雾算法. 计算机应用研究, 38(7): 2194-2199 [DOI: 10.19734/j.issn.1001-3695.2020.07.0270]
Liao M Z, Wu J and Zhu L. 2020. Remote sensing images matching based on ResNet and RF-Net. Chinese Journal of Liquid Crystals and Displays, 35(9): 972-980
廖明哲, 吴谨, 朱磊. 2020. 基于ResNet和RF-Net的遥感影像匹配. 液晶与显示, 35(9): 972-980 [DOI: 10.37188/YJYXS20203509.0972]
Liao X, Miao J, Chu J and Zhang G M. 2019. Multi-image object semantic segmentation by fusing segmentation priors. Journal of Image and Graphics, 24(6): 890-901
廖旋, 缪君, 储珺, 张桂梅. 2019. 融合分割先验的多图像目标语义分割. 中国图象图形学报, 24(6): 890-901 [DOI: 10.11834/jig.180568]
Liebel L, Bittner K and Körner M. 2020. A generalized multi-task learning approach to stereo DSM filtering in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 166: 213-227 [DOI: 10.1016/j.isprsjprs.2020.03.005]
Liu K and Mattyus G. 2015. Fast multiclass vehicle detection on aerial images. IEEE Geoscience and Remote Sensing Letters, 12(9): 1938-1942 [DOI: 10.1109/LGRS.2015.2439517]
Liu L, Gao H L, Pan Z Q, Fu Q Y and Gu X F. 2017. On-orbit radiometric calibration method research based on deep learning theory. Spacecraft Recovery and Remote Sensing, 38(2): 64-71
刘李, 高海亮, 潘志强, 傅俏燕, 顾行发. 2017. 基于深度学习的在轨辐射定标方法研究. 航天返回与遥感, 38(2): 64-71 [DOI: 10.3969/j.issn.1009-8518.2017.02.009]
Liu M, Yi W C, Zhao Y J and Dong L Q. 2020. Research on remote sensing image dehazing based on generative adversarial networks. Spacecraft Recovery and Remote Sensing, 41(6): 14-20
刘明, 易伟超, 赵跃进, 董立泉. 2020. 基于生成对抗网络的遥感图像去雾研究. 航天返回与遥感, 41(6): 14-20 [DOI: 10.3969/j.issn.1009-8518.2020.06.002]
Liu Y, Nguyen D M, Deligiannis N, Ding W and Munteanu A. 2017. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sensing, 9(6): #522 [DOI: 10.3390/rs9060522]
Liu Y Y. 2021. Deep Learning Based SUAV Low-Altitude Remote-Sensing Image Registration. Kunming: Yunnan Normal University
刘宇雁. 2021. 基于深度学习的小型无人机低空遥感图像配准研究. 昆明: 云南师范大学[DOI: 10.27459/d.cnki.gynfc.2021.001195http://dx.doi.org/10.27459/d.cnki.gynfc.2021.001195]
Longbotham N, Pacifici F, Glenn T, Zare A, Volpi M, Tuia D, Christophe E, Michel J, Inglada J, Chanussot J and Du Q. 2012. Multi-modal change detection, application to the detection of flooded areas: outcome of the 2009-2010 data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 331-342 [DOI: 10.1109/JSTARS.2011.2179638]
Lowe D G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91-110 [DOI: 10.1023/B:VISI.0000029664.99615.94]
Luo C and Ma L. 2018. Manifold regularized distribution adaptation for classification of remote sensing images. IEEE Access, 6: 4697-4708 [DOI: 10.1109/ACCESS.2018.2789932]
Luo Z Y, Yu J P and Liu Z H. 2019. The super-resolution reconstruction of SAR image based on the improved FSRCNN. The Journal of Engineering, 2019(19): 5975-5978 [DOI: 10.1049/joe.2019.0324]
Ma D A, Tang P and Zhao L J. 2019a. SiftingGAN: generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16(7): 1046-1050 [DOI: 10.1109/LGRS.2018.2890413]
Ma H J, Liu Y L, Ren Y H and Yu J X. 2020. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sensing, 12(1):#44 [DOI: 10.3390/rs12010044]
Ma W P, Zhang J, Wu Y, Jiao L C, Zhu H and Zhao W. 2019b. A novel two-step registration method for remote sensing images based on deep and local features. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4834-4843 [DOI: 10.1109/TGRS.2019.2893310]
Malek S, Melgani F, Bazi Y and Alajlan N. 2018. Reconstructing cloud-contaminated multispectral images with contextualized autoencoder neural networks. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2270-2282 [DOI: 10.1109/tgrs.2017.2777886]
Malmgren-Hansen D, Kusk A, Dall J, Nielsen A A, Engholm R and Skriver H. 2017. Improving SAR automatic target recognition models with transfer learning from simulated data. IEEE Geoscience and Remote Sensing Letters, 14(9): 1484-1488 [DOI: 10.1109/LGRS.2017.2717486]
Marcos D, Volpi M, Kellenberger B and Tuia D. 2018. Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models. ISPRS Journal of Photogrammetry and Remote Sensing, 145: 96-107 [DOI: 10.1016/j.isprsjprs.2018.01.021]
Mishchuk A, Mishkin D, Radenovic F and Matas J. 2017. Working hard to know your neighbor's margins: local descriptor learning loss//Advances in Neural Information Processing Systems 30 (NIPS 2017). Long Beach, USA: NIPS: 4826-4837
Mou L C and Zhu X X. 2018. RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images[EB/OL]. [2022-02-15].https://arxiv.org/pdf/1805.0209.pdfhttps://arxiv.org/pdf/1805.0209.pdf
Ono Y, Trulls E, Fua P and Yi K M. 2018. LF-Net: learning local features from images//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal, Canada: ACM: 6237-6247 [DOI: 10.5555/3327345.3327521http://dx.doi.org/10.5555/3327345.3327521]
Papadomanolaki M, Karantzalos K and Vakalopoulou M. 2019. A multi-task deep learning framework coupling semantic segmentation and image reconstruction for very high resolution imagery//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 1069-1072 [DOI: 10.1109/IGARSS.2019.8898133http://dx.doi.org/10.1109/IGARSS.2019.8898133]
Peng Y, Sun S H, Wang Z, Pan Y N and Li R R. 2020. Robust semantic segmentation by dense fusion network on blurred VHR remote sensing images//Proceedings of the 6th International Conference on Big Data and Information Analytics (BigDIA). Shenzhen, China: IEEE: 142-145 [DOI: 10.1109/BigDIA51454.2020.00031http://dx.doi.org/10.1109/BigDIA51454.2020.00031]
Piplai A, Mittal S, Joshi A, Finin T, Holt J and Zak R. 2020. Creating cybersecurity knowledge graphs from malware after action reports. IEEE Access, 8: 211691-211703 [DOI: 10.1109/ACCESS.2020.3039234]
Pu W. 2021. Deep SAR imaging and motion compensation. IEEE Transactions on Image Processing, 30: 2232-2247 [DOI: 10.1109/TIP.2021.3051484]
Rao M B, Tang P and Zhang Z. 2019. Spatial-spectral relation network for hyperspectral image classification with limited training samples. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12): 5086-5100 [DOI: 10.1109/JSTARS.2019.2957047]
Rittenbach A and Walters J P. 2020. RDAnet: a deep learning based approach for synthetic aperture radar image formation [EB/OL]. [2022-02-15].https://arxiv.org/pdf/2001.08202.pdfhttps://arxiv.org/pdf/2001.08202.pdf
Ross T D, Bradley J J, Hudson L J and O'Connor M P. 1999. SAR ATR: so what's the problem? An MSTAR perspective//Proceedings of SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery Ⅵ. Orlando, USA: SPIE: 662-672 [DOI: 10.1117/12.357681http://dx.doi.org/10.1117/12.357681]
Roy D P, Ju J C, Lewis P, Schaaf C, Gao F, Hansen M and Lindquist E. 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6): 3112-3130 [DOI: 10.1016/j.rse.2008.03.009]
Savinov N, Seki A, Ladicky L, Sattler T and Pollefeys M. 2017. Quad-networks: unsupervised learning to rank for interest point detection//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3929-3937 [DOI: 10.1109/CVPR.2017.418http://dx.doi.org/10.1109/CVPR.2017.418]
Shangguan S T. 2021. Research on Stability Characteristics Extraction and System Parameters Estimation of Polarimetric SAR Data Based on Massive Data Facing SAR Calibration. Beijing: University of Chinese Academy of Sciences
上官松涛. 2021. 多极化SAR大数据稳定特性提取与极化误差标校方法研究. 北京: 中国科学院大学
Shen X L, Wang C, Li X,Yu Z L, Li J, Wen C L, Cheng M and He Z J. 2019. RF-Net: an end-to-end image matching network based on receptive field//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 8124-8132 [DOI: 10.1109/CVPR.2019.00832http://dx.doi.org/10.1109/CVPR.2019.00832]
Shi J, Shao T, Liu X D, Zhang X, Zhang Z P and Lei Y. 2021. Evolutionary multitask ensemble learning model for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 936-950 [DOI: 10.1109/JSTARS.2020.3037353]
Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P and Moreno-Noguer F. 2015. Discriminative learning of deep convolutional feature point descriptors//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 118-126 [DOI: 10.1109/ICCV.2015.22http://dx.doi.org/10.1109/ICCV.2015.22]
Song H H and Huang B. 2012. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Transactions on Geoscience and Remote Sensing, 51(4): 1883-1896 [DOI: 10.1109/TGRS.2012.2213095]
Song H H, Liu Q S, Wang G J, Hang R L and Huang B. 2018. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3): 821-829 [DOI: 10.1109/JSTARS.2018.2797894]
Su J M, Yang L X and Jing W P. 2019. U-Net based semantic segmentation method for high resolution remote sensing image. Computer Engineering and Applications, 55(7): 207-213
苏健民, 杨岚心, 景维鹏. 2019. 基于U-Net的高分辨率遥感图像语义分割方法. 计算机工程与应用, 55(7): 207-213 [DOI: 10.3778/j.issn.1002-8331.1806-0024]
Su Y F. 2018. Muti-Source Remote Sensing Image Registration Based on Convolutional Neural Network and SIFT. Nanchang: Nanchang University
苏燕飞. 2018. 基于卷积神经网络和SIFT的多源遥感图像配准研究. 南昌: 南昌大学
Sun C, Fu Y N, Cheng W L and Qian W N. 2018. Chinese named entity relation extraction for enterprise knowledge graph construction. Journal of East China Normal University (Natural Science), (3): 55-66
孙晨, 付英男, 程文亮, 钱卫宁. 2018. 面向企业知识图谱构建的中文实体关系抽取. 华东师范大学学报(自然科学版), (3): 55-66 [DOI: 10.3969/j.issn.1000-5641.2018.03.007]
Sun W W and Wang R S. 2018. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience and Remote Sensing Letters, 15(3): 474-478 [DOI: 10.1109/LGRS.2018.2795531]
SunX, Wang P J, Yan Z Y, Xu F, Wang R P, Diao W H, Chen J, Li J H, Feng Y C, Xu T, Weinmann M, Hinz S, Wang C and Fu K. 2022. FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184: 116-130 [DOI: 10.1016/j.isprsjprs.2021.12.004]
Sun X, Wang Z R, Sun Y R, Diao W H, Zhang Y and Fu K. 2019. AIR-SARShip-1.0: high-resolution SAR ship detection dataset. Journal of Radars, 8(6): 852-862
孙显, 王智睿, 孙元睿, 刁文辉, 张跃, 付琨. 2019. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集. 雷达学报, 8(6): 852-862 [DOI: 10.12000/JR19097]
Sun Y W, Luo J C, Wu T J, Zhou Y N, Liu H, Gao L J, Dong W, Liu W, Yang Y P, Hu X D, Wang L Y and Zhou Z F. 2019. Synchronous response analysis of features for remote sensing crop classification based on optical and SAR time-series data. Sensors, 19(19): #4227 [DOI: 10.3390/s19194227]
Tao H Y. 2020. Super-resolution of remote sensing images based on a deep plug-and-play framework//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE: 625-628 [DOI: 10.1109/IGARSS39084.2020.9324647http://dx.doi.org/10.1109/IGARSS39084.2020.9324647]
Tempelmeier N and Demidova E. 2021. Linking OpenStreetMap with knowledge graphs—link discovery for schema-agnostic volunteered geographic information. Future Generation Computer Systems, 116: 349-364 [DOI: 10.1016/j.future.2020.11.003]
Tian Y R, Fan B and Wu F C. 2017. L2-Net: deep learning of discriminative patch descriptor in Euclidean space//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6128-6136 [DOI: 10.1109/CVPR.2017.649http://dx.doi.org/10.1109/CVPR.2017.649]
Tong X Y, Xia G S, Lu Q K, Shen H F, Li S Y, You S C and Zhang L P. 2020. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 237: #111322 [DOI: 10.1016/j.rse.2019.111322]
Valada A, Mohan R and Burgard W. 2020. Self-supervised model adaptation for multimodal semantic segmentation. International Journal of Computer Vision, 128(5): 1239-1285 [DOI: 10.1007/s11263-019-01188-y]
Van Etten A, Lindenbaum D and Bacastow T M. 2018. SpaceNet: a remote sensing dataset and challenge series [EB/OL]. [2022-02-15].https://arxiv.org/pdf/1807.01232.pdfhttps://arxiv.org/pdf/1807.01232.pdf
Volpi M and Tuia D. 2018. Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 48-60 [DOI: 10.1016/j.isprsjprs.2018.06.007]
Wang J J, Sun Y and Li Y. 2021. Cloud removal method for the remote sensing image based on the GAN. Journal of Xidian University, 48(5): 23-29
王军军, 孙岳, 李颖. 2021. 一种生成对抗网络的遥感图像去云方法. 西安电子科技大学学报, 48(5): 23-29 [DOI: 10.19665/j.issn1001-2400.2021.05.004]
Wang M Y, Meng X C, Shao F and Fu R D. 2021. SAR-assisted optical remote sensing image cloud removal method based on deep learning. Acta Optica Sinica, 41(12): #1228002
王梦瑶, 孟祥超, 邵枫, 符冉迪. 2021. 基于深度学习的SAR辅助下光学遥感图像去云方法. 光学学报, 41(12): #1228002 [DOI: 10.3788/AOS202141.1228002]
Wang R W, Yuan Y and Yuan X P. 2016. Study on the construction of Chinese knowledge graph based on deep learning and graph database. Library and Information, (1): 110-117
王仁武, 袁毅, 袁旭萍. 2016. 基于深度学习与图数据库构建中文商业知识图谱的探索研究. 图书与情报, (1): 110-117 [DOI: 10.11968/tsyqb.1003-6938.2016017]
Wang S, Zhang X Y, Ye P, Du M, Lu Y X and Xue H N. 2019a. Geographic knowledge graph (GeoKG): a formalized geographic knowledge representation. ISPRS International Journal of Geo-Information, 8(4): #184 [DOI: 10.3390/ijgi8040184]
Wang S J, Wu W B and Xu Q Z. 2021. An accurate registration method for optical remote sensing images based on VGG and DoG. Spacecraft Recovery and Remote Sensing, 42(5): 76-84
王少杰, 武文波, 徐其志. 2021. VGG与DoG结合的光学遥感影像精确配准方法. 航天返回与遥感, 42(5): 76-84 [DOI: 10.3969/j.issn.1009-8518.2021.05.009]
Wang Y F, Ding W R, Zhang R Q and Li H G. 2020a. Boundary-aware multitask learning for remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 951-963 [DOI: 10.1109/JSTARS.2020.3043442]
Wang Y H, Chen C, Ding M and Li J Y. 2019b. Real-time dense semantic labeling with dual-Path framework for high-resolution remote sensing image. Remote Sensing, 11(24): #3020 [DOI: 10.3390/rs11243020]
Wang Y L, Gu J, Zhao L J, Zhang Y and Wang H Q. 2020b. Target detection based on simulated image domain migration. IEEE Access, 8: 79724-79733 [DOI: 10.1109/ACCESS.2020.2989458]
Wang Z N, Jiang M, Gao J L and Chen Y X. 2019. Chinese named entity recognition method based on BERT. Computer Science, 46(11A): 138-142
王子牛, 姜猛, 高建瓴, 陈娅先. 2019. 基于BERT的中文命名实体识别方法. 计算机科学, 46(11A): 138-142
Wei Y K, Li Y C, Ding Z G, Wang Y, Zeng T and Long T. 2021. SAR parametric super-resolution image reconstruction methods based on ADMM and deep neural network. IEEE Transactions on Geoscience and Remote Sensing, 59(12): 10197-10212 [DOI: 10.1109/TGRS.2021.3052793]
Wu B, Huang B and Zhang L P. 2015. An error-bound-regularized sparse coding for spatiotemporal reflectance fusion. IEEE Transactions on Geoscience and Remote Sensing, 53(12): 6791-6803 [DOI: 10.1109/TGRS.2015.2448100]
Wu L X, Yu J Q, Yang Y Z, Bo H G, Wang H, Xie L, Jia Y J and Li Z F. 2013. ESSG-based global big data spatially correlate and its share service. Journal of Geomatics Science and Technology, 30(4): 409-415, 438
吴立新, 余接情, 杨宜舟, 薄海光, 王鹤, 谢磊, 贾永基, 李志峰. 2013. 基于地球系统空间格网的全球大数据空间关联与共享服务. 测绘科学技术学报, 30(4): 409-415, 438 [DOI: 10.3969/j.issn.1673-6338.2013.04.013]
Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2018. DOTA: a large-scale dataset for object detection in aerial images//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3974-3983 [DOI: 10.1109/CVPR.2018.00418http://dx.doi.org/10.1109/CVPR.2018.00418]
Xia G S, Hu J W, Hu F, Shi B G, Bai X, Zhong Y F, Zhang L P and Lu X Q. 2017. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981 [DOI: 10.1109/TGRS.2017.2685945]
Xiong Y F. 2021. Super-Resolution of Remote Sensing Images Based on Generative Adversarial Network Across Locations and Sensors. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
熊鹰飞. 2021. 基于生成对抗网络的多源跨区域遥感图像超分辨. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院) [DOI: 10.27822/d.cnki.gszxj.2021.000028http://dx.doi.org/10.27822/d.cnki.gszxj.2021.000028]
Xu Z H, Liu Y, Quan J C and Wu C. 2019. Buildings segmentation of remote sensing images based on VGG16 pre-encoding. Science Technology and Engineering, 19(17): 250-255
徐昭洪, 刘宇, 全吉成, 吴晨. 2019. 基于VGG16预编码的遥感图像建筑物语义分割. 科学技术与工程, 19(17): 250-255 [DOI: 10.3969/j.issn.1671-1815.2019.17.037]
Yan Y M, Tan Z C and Su N. 2019. A data augmentation strategy based on simulated samples for ship detection in RGB remote sensing images. ISPRS International Journal of Geo-Information, 8(6): #276 [DOI: 10.3390/ijgi8060276]
Yang B and Liao Y M. 2021. Research on the construction and application of knowledge graph for enterprise dynamic risk. Modern Information, 41(3): 110-120
杨波, 廖怡茗. 2021. 面向企业动态风险的知识图谱构建与应用研究. 现代情报, 41(3): 110-120 [DOI: 10.3969/j.issn.1008-0821.2021.03.011]
Yang J T. 2018. Research on Analysis Method of Stability Characteristics Based on Massive SAR Data Facing Routine Radiometric Calibration. Beijing: University of Chinese Academy of Sciences
杨进涛. 2018. 面向常态化辐射定标的海量SAR数据稳定特性分析方法研究. 北京: 中国科学院大学
Yang J T, Qiu X L, Ding C B, Lei B and Lu X J. 2019. Analyzing andextracting stable feature of target backscattering for C-band SAR. Journal of University of Chinese Academy of Sciences, 36(1): 115-124
杨进涛, 仇晓兰, 丁赤飚, 雷斌, 卢晓军. 2019. C波段SAR地物散射稳定特性分析与提取方法. 中国科学院大学学报, 36(1): 115-124 [DOI: 10.7523/j.issn.2095-6134.2019.01.016]
Yang J Y, Zhou Z X, Du Z R, Xu Q Q, Yin H and Liu R. 2019. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model. Transactions of the Chinese Society of Agricultural Engineering, 35(5): 251-258
杨建宇, 周振旭, 杜贞容, 许全全, 尹航, 刘瑞. 2019. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取. 农业工程学报, 35(5): 251-258 [DOI:10.11975/j.issn.1002-6819.2019.05.031]
Yang Q Q, Wang G X, Zhao Y X, Zhang X Y, Dong G S and Ren P. 2020. Multi-scale deep residual learning for cloud removal//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE: 4967-4970 [DOI: 10.1109/IGARSS39084.2020.9323261http://dx.doi.org/10.1109/IGARSS39084.2020.9323261]
Yang Y and Newsam S. 2010. Bag-of-visual-words and spatial extensions for land-use classification//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, USA: ACM: 270-279 [DOI: 10.1145/1869790.1869829http://dx.doi.org/10.1145/1869790.1869829]
Yi K M, Trulls E, Lepetit V and Fua P. 2016. Lift: learned invariant feature transform//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 467-483 [DOI: 10.1007/978-3-319-46466-4_28http://dx.doi.org/10.1007/978-3-319-46466-4_28]
Yuan J B, Jin Z W, Guo H, Jin H X, Zhang X C, Smith T and Luo J B. 2020. Constructing biomedical domain-specific knowledge graph with minimum supervision. Knowledge and Information Systems, 62(1): 317-336 [DOI: 10.1007/s10115-019-01351-4]
Yue G H and Xing X L. 2021. Research on the registration method of remote sensing image based on the combination of convolution neural network and correction network. Computer Applications and Software, 38(11): 185-190
岳国华, 邢晓利. 2021. 基于卷积神经网络和校正网络相结合的遥感图像配准方法研究. 计算机应用与软件, 38(11): 185-190 [DOI: 10.3969/j.issn.1000-386x.2021.11.029]
Zagoruyko S and Komodakis N. 2015. Learning to compare image patches via convolutional neural networks//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 4353-4361 [DOI: 10.1109/CVPR.2015.7299064http://dx.doi.org/10.1109/CVPR.2015.7299064]
Zamir S W, Arora A, Gupta A, Khan S, Sun G L, Khan F S, Zhu F, Shao L, Xia G S and Bai X. 2019. iSAID: a large-scale dataset for instance segmentation in aerial images//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 28-37
Zhan Y, Hu D, Wang Y T and Yu X C. 2018. Semisupervised hyperspectral image classification based on generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 15(2): 212-216 [DOI: 10.1109/LGRS.2017.2780890]
Zhang H Q, Liu X Y, Yang S and Li Y. 2017. Retrieval of remote sensing images based on semisupervised deep learning. Journal of Remote Sensing, 21(3): 406-414
张洪群, 刘雪莹, 杨森, 李宇. 2017. 深度学习的半监督遥感图像检索. 遥感学报, 21(3): 406-414 [DOI: 10.11834/jrs.20176105]
Zhang L M, Dong H W and Zou B. 2019a. Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework. ISPRS Journal of Photogrammetry and Remote Sensing, 157: 59-72 [DOI: 10.1016/j.isprsjprs.2019.09.002]
Zhang Q, Yuan Q Q, Zeng C, Li X H and Wei Y C. 2018a. Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 56(8): 4274-4288 [DOI: 10.1109/TGRS.2018.2810208]
Zhang T W, Zhang X L, Shi J and Wei S J. 2019b. Depthwise separable convolution neural network for high-speed SAR ship detection. Remote Sensing, 11(21): #2483 [DOI: 10.3390/rs11212483]
Zhang Y, Lu X M, Liu G R, Liu S D and Sun Y M. 2021. Remote sensing image super-resolution reconstruction algorithm based on multi-path feature fusion. Remote Sensing Information, 36(2): 46-53
张艳, 卢宣铭, 刘国瑞, 刘树东, 孙叶美. 2021. 多路径特征融合的遥感图像超分辨率重建算法. 遥感信息, 36(2): 46-53 [DOI: 10.3969/j.issn.1000-3177.2021.02.007]
Zhang Y, Kan Z W, Shao Z M and Zhou J L. 2021. Remote sensing image denoising based on attention mechanism and perceptual loss. Journal of Sichuan University (Natural Science Edition), 58(4): 39-49
张意, 阚子文, 邵志敏, 周激流. 2021. 基于注意力机制和感知损失的遥感图像去噪. 四川大学学报(自然科学版), 58(4): 39-49 [DOI: 10.19907/j.0490-6756.2021.042001]
Zhang Y H, Sun H, Zuo J W, Wang H Q, Xu G L and Sun X. 2018b. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversarial networks. Remote Sensing, 10(7): #1123 [DOI: 10.3390/rs10071123]
Zhang Y X, Du B, Zhang L P and Liu T L. 2017. Joint sparse representation and multitask learning for hyperspectral target detection. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 894-906 [DOI: 10.1109/TGRS.2016.2616649]
Zhao H X, Pan Y L and Yang F. 2020a. Research on information extraction of technical documents and construction of domain knowledge graph. IEEE Access, 8: 168087-168098 [DOI: 10.1109/ACCESS.2020.3024070]
Zhao Z X, Xu S, Zhang C X, Liu J M, Zhang J S and Li P F. 2020b. DIDFuse: deep image decomposition for infrared and visible image fusion//Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI-20). Yokohama, Japan: IJCAI: 970-976 [DOI: 10.24963/ijcai.2020/135http://dx.doi.org/10.24963/ijcai.2020/135]
Zhou X and Prasad S. 2018. Deep feature alignment neural networks for domain adaptation of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 5863-5872 [DOI: 10.1109/TGRS.2018.2827308]
Zhou X Y, Tang Z, Tang L R, Li X and Lu X. 2021. Construction of junior high school mathematics knowledge graph based on multi-source heterogeneous data fusion. Journal of Wuhan University (Science Edition), 67(2): 118-126
周炫余, 唐祯, 唐丽蓉, 李璇, 卢笑. 2021. 基于多源异构数据融合的初中数学知识图谱构建. 武汉大学学报(理学版), 67(2): 118-126 [DOI: 10.14188/j.1671-8836.2020.0273]
Zhou Y N, Yang X Z, Feng L, Wu W, Wu T J, Luo J C, Zhou X C and Zhang X. 2020. Superpixel-based time-series reconstruction for optical images incorporating SAR data using autoencoder networks. GIScience and Remote Sensing, 57(8): 1005-1025 [DOI: 10.1080/15481603.2020.1841459]
Zhu L, Chen Y S, Ghamisi P and Benediktsson J A. 2018. Generative adversarial networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5046-5063 [DOI: 10.1109/TGRS.2018.2805286]
Zhu X L, Gao F, Liu D S and Chen J. 2012. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images. IEEE Geoscience and Remote Sensing Letters, 9(3): 521-525 [DOI: 10.1109/LGRS.2011.2173290]
相关文章
相关作者
相关机构