面向海洋的多模态智能计算:挑战、进展和展望
Marine oriented multimodal intelligent computing: challenges, progress and prospects
- 2022年27卷第9期 页码:2589-2610
纸质出版日期: 2022-09-16 ,
录用日期: 2022-05-27
DOI: 10.11834/jig.211267
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-09-16 ,
录用日期: 2022-05-27
移动端阅览
聂婕, 左子杰, 黄磊, 王志刚, 孙正雅, 仲国强, 王鑫, 王玉成, 刘安安, 张弘, 董军宇, 魏志强. 面向海洋的多模态智能计算:挑战、进展和展望[J]. 中国图象图形学报, 2022,27(9):2589-2610.
Jie Nie, Zijie Zuo, Lei Huang, Zhigang Wang, Zhengya Sun, Guoqiang Zhong, Xin Wang, Yucheng Wang, An'an Liu, Hong Zhang, Junyu Dong, Zhiqiang Wei. Marine oriented multimodal intelligent computing: challenges, progress and prospects[J]. Journal of Image and Graphics, 2022,27(9):2589-2610.
海洋是高质量发展的要地,海洋科学大数据的发展为认知和经略海洋带来机遇的同时也引入了新的挑战。海洋科学大数据具有超多模态的显著特征,目前尚未形成面向海洋领域特色的多模态智能计算理论体系和技术框架。因此,本文首次从多模态数据技术的视角,系统性介绍面向海洋现象/过程的智能感知、认知和预知的交叉研究进展。首先,通过梳理海洋科学大数据全生命周期的阶段演进过程,明确海洋多模态智能计算的研究对象、科学问题和典型应用场景。其次,在海洋多模态大数据内容分析、推理预测和高性能计算3个典型应用场景中展开现有工作的系统性梳理和介绍。最后,针对海洋数据分布和计算模式的差异性,提出海洋多模态大数据表征建模、跨模态关联、推理预测以及高性能计算4个关键科学问题中的挑战,并提出未来展望。
The marine-oriented research is essential to high-quality of human-based development. But
the current recognition of the ocean system is less than 5%. To understand the ocean
big marine data is acquired from observation
monitoring
investigation and statistics. Thanks to the development of the multi-scaled ocean observation system
the extensive of multi-modal marine oriented data has developed via remote sensing image
spatio-temporal analysis
simulation data
literature review and video & audio monitoring. To resilient the sustainable development of human society
current deep analysis and multimodal ocean data mining method has promoted the marine understanding on the aspects of ocean dynamic processes
energy and material cycles
the evolution of blue life
scientific discovery
healthy environment
and the quick response of extreme weather and climate change. Compared to traditional big data
the multi-modal big ocean data has its unique features
such as the super-giant system (covering 71% of the earth's surface
daily increment (10 TB)
super multi-perspectives ("land-sea-air-ice-earth based" coupling
"hydrometeorological-acoustical-optical and electromagnetic-based" polymorphism)
super spatial scale ("centimeter to hundreds kilometer based")
and temporal scale ("micro-second to inter-decadal based"). These features-derived challenges of existing multi-modal intelligent computing technology have to deal with such problems as cross-scale and multi-modal fusion analyses
multi-disciplinary and multi-domain coordinated reasoning
large computing power based multi-architecture compatible applications. We systematically introduce the cross-cutting researches of intelligent perception
cognition
and prediction for marine phenomena/processes based on multimodal data technology. First
we clarify the research objects
scientific problems
and typical application scenarios of marine multimodal intelligent computing through the evolution analysis of the lifecycle of marine science big data. Next
we target the differences between ocean data distribution and calculation patterns. We illustrate the uniqueness and scientific challenges of multimodal big marine data on the basis of modeling description
cross-modal correlation
inference prediction
and high-performance computing. 1) To bridge the "task gap" between big data and specific tasks for modeling description
we focus on effective feature extraction for related tasks of causality
differentiation
significance and robustness. The ocean-oriented differences and challenges are mainly discussed from six aspects including dynamic changes of physical structure
complex environmental noise
large intra-class differences
lack of reliable labels
unbalanced samples
and less public datasets. 2) To construct multi-circle layer
multi-scale and multi-perspective heterogeneous data
the cross-modal correlation modeling is obtained for reasonable integration of multi-model
effective reasoning of cross-model
and the multi-modalities of "heterogeneous gap bridging" through task matching
semantic consistency
and spatio-temporal correlation. The ocean field issue is mainly affected by four aspects of uneven data
large scale span
strong constraints of temporal and spatial
and high correlation of dimensions. 3) To fill the "unknown gap" of spatio-temporal information loss in the evolution of ocean
the reasoning and prediction requires the prior knowledge
experience
and reasoning ability in the field of modeling. The main differences of ocean fields are reflected in the three issues of dynamic evolution
spatio-temporal heterogeneity
and non-independent samples. 4) To reduce the "computing gap" between complex computing and real-time online analysis of marine super-giant systems
it is necessary to deal with the huge amount of data challenges in high-performance computing problems like increased resolution and the ocean processes refinement of online response analysis. In addition
we sort out and introduce existing work of typical application scenarios
such as marine multimedia content analysis
visual analysis
big data prediction
and high-performance computing. 1) Multimedia content analysis: we compare the technical features of existing marine research methods on the five aspects of target recognition
target re-identification
target retrieval
phenomenon/process recognition
and open datasets. 2) Visual analysis of marine big data: we summarize the matching issues of dynamic changes of physical structure
high correlation dimensions
and large-scale spans from the perspective of visualization
visualization analysis
and visualization system. 3) Ocean multimodal big data reasoning prediction: we review the existing research work from the perspectives of data-driven prediction and prediction of marine environmental variables
construction of marine knowledge graph
and knowledge reasoning. 4) High-performance computing issues of ocean multi-modal big data: we introduce and compare the relevant work on the three perspectives of memory-computing collaboration
multi-model acceleration
and giant system evaluation. Finally
we predict the ocean multimodal intelligent computing issues to be resolved and the future direction of it.
海洋大数据多模态海洋多媒体内容分析海洋知识图谱海洋大数据预测海洋高性能计算海洋目标重识别
marine big datamultimodalmarine multimedia content analysismarine knowledge graphmarine big data predictionmarine oriented high performance computingre-identification of marine object
Bibin V, Ibrayev R and Kaurkin M. 2019. The algorithm for transferring a large number of radionuclide particles in a parallel model of oceanhydrodynamics//Voevodin V and Sobolev S, eds. Supercomputing. Moscow, Russia: Springer: 159-170 [DOI:10.1007/978-3-030-05807-4_14http://dx.doi.org/10.1007/978-3-030-05807-4_14]
Córdoba M L, Dopico A G, García M I, Rosales F, Arnaiz J, Bermejo R and del Sastre P G. 2014. Efficient parallelization of a regional ocean model for the western Mediterranean Sea. The International Journal of High Performance Computing Applications, 28(3): 368-383 [DOI: 10.1177/1094342013512344]
Chattopadhyay A, Nabizadeh E and Hassanzadeh P. 2020. Analog forecasting of extreme-causing weather patterns using deep learning. Journal of Advances in Modeling Earth Systems, 12(2): #2019MS001958 [DOI: 10.1029/2019MS001958]
Chen Y, Ma Q M, Yu J and Chen T. 2019. Underwater acoustic object discrimination for few-shot learning//Proceedings of the 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). Hohhot, China: IEEE: 430-434 [DOI:10.1109/ICMCCE48743.2019.00103http://dx.doi.org/10.1109/ICMCCE48743.2019.00103]
Chen Y Y, Cheng Q Q, Fang X M, Yu H H and Li D L. 2018. Principal component analysis and long short-term memory neural network for predicting dissolved oxygen in water for aquaculture. Transactions of the Chinese Society of Agricultural Engineering, 34(17): 183-191
陈英义, 程倩倩, 方晓敏, 于辉辉, 李道亮. 2018. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧. 农业工程学报, 34(17): 183-191 [DOI: 10.11975/j.issn.1002-6819.2018.17.024]
Cowles G W. 2008. Parallelization of the FVCOM coastal ocean model. The International Journal of High Performance Computing Applications, 22(2): 177-193 [DOI: 10.1177/1094342007083804]
Cronin M F, Weller R A, Lampitt R S and Send U. 2012. Ocean reference stations//Proceedings of Earth Observation. Shanghai, China: InTech: 203-228 [DOI:10.5772/27423http://dx.doi.org/10.5772/27423]
Cutter G, Stierhoff K and Zeng J M. 2015. Automated detection of rockfish in unconstrained underwater videos using Haar cascades and a new image dataset: labeled fishes in the wild//2015 IEEE Winter Applications and Computer Vision Workshops. Waikoloa, USA: IEEE: 57-62 [DOI:10.1109/WACVW.2015.11http://dx.doi.org/10.1109/WACVW.2015.11]
Deng C, Jia Y T, Xu H, Zhang C, Tang J Y, Fu L Y, Zhang W N, Zhang H S, Wang X B and Zhou C H. 2021. GAKG: a multimodal geoscience academic knowledge graph//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. Queensland, Australia: ACM: 4445-4454 [DOI:10.1145/3459637.3482003http://dx.doi.org/10.1145/3459637.3482003]
Deng J, Dong W, Socher R, Li L J, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 248-255 [DOI:10.1109/CVPR.2009.5206848http://dx.doi.org/10.1109/CVPR.2009.5206848]
Duffy D Q, Schnase J L, Thompson J H, Freeman S M and Clune T L. 2012. Preliminary evaluation of mapreduce for high-performance climate data analysis//Proceedings of the 28th IEEE Conference on Massive Data Storage, [s. l.]: [s. n.]: #6024.
Everwyn J, Zanuttini B, Mouaddib A I, Gatepaille S and Brunessaux S. 2019. Achieving maritime situational awareness using knowledge graphs: a study//Proceedings of 1st Maritime Situational Awareness Workshop (MSAW 2019). Lerici, Italy: [s. n.]
Fan P Q, Li Y Y, Guo W H, Zhao J X and Zhang L. 2016. Studyon the parallel forecast technology of the oceanic acoustic detection model. Journal of Ocean Technology, 35(4): 36-40
范培勤, 李玉阳, 过武宏, 赵建昕, 张林. 2016. 海洋-声学-探测模型的并行预报技术研究. 海洋技术学报, 35(4): 36-40 [DOI: 10.3969/j.issn.1003-2029.2016.04.007]
Fan Z L, Zhong G Q, Wei H X and Li H T. 2020. EDNet: a mesoscale eddy detection network with multi-modal data//Proceedings of 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, Scotland: IEEE: 1-7 [DOI:10.1109/IJCNN48605.2020.9206613http://dx.doi.org/10.1109/IJCNN48605.2020.9206613]
Fisher R B, Shao K T and Chen-Burger Y H. 2016. Overview of the Fish4Knowledge project//Proceedings of Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data. Cham, Malaysia: Springer:1-17 [DOI:10.1007/978-3-319-30208-9_1http://dx.doi.org/10.1007/978-3-319-30208-9_1]
Guo J and Guan J H. 2021. Classification of marine plankton based on few-shot learning. Arabian Journal for Science and Engineering, 46(9): 9253-9262 [DOI: 10.1007/s13369-021-05786-2]
Guo Z H, Zhang L Q, Jiang Y F, Niu W J, Gu Z R, Zheng H Y, Wang G Y and Zheng B. 2020. Few-shot fish image generation and classification//Proceedings of Global Oceans 2020: Singapore - U.S. Gulf Coast. Biloxi, USA: IEEE: 1-6 [DOI:10.1109/IEEECONF38699.2020.9389005http://dx.doi.org/10.1109/IEEECONF38699.2020.9389005]
Ham Y G, Kim J H and Luo J J. 2019. Deep learning for multi-year ENSO forecasts. Nature, 573(7775): 568-572 [DOI: 10.1038/s41586-019-1559-7]
He J, Chen J N, Liu S, Kortylewski A, Yang C, Bai Y T, Wang C H and Yuille A. 2021. TransFG: a transformer architecture for fine-grained recognition [EB/OL]. [2021-12-31].https://arxiv.org/pdf/2103.07976.pdfhttps://arxiv.org/pdf/2103.07976.pdf
He X B and Jiang J H. 2020. Sunway parallel storage system for big data heterogeneous system. Big Data Research, 6(4): 30-39
何晓斌, 蒋金虎. 2020. 面向大数据异构系统的神威并行存储系统. 大数据, 6(4): 30-39 [DOI: 10.11959/j.issn.2096-0271.2020031]
Hou X Y, Hong Y, Zhang J M, Zou Y R, Shi X Y, Ren L B, Cheng X, Zhang B, Yu H M, Guo Z H and Cui Y K. 2017.Marine big data: concept, applications and platform construction. Marine Science Bulletin, 36(4): 361-369
侯雪燕, 洪阳, 张建民, 邹亚荣, 石晓勇, 任力波, 程晓, 张彪, 于华明, 郭振华, 崔要奎. 2017. 海洋大数据: 内涵、应用及平台建设. 海洋通报, 36(4): 361-36 [DOI: 10.11840/j.issn.1001-6392.2017.04.001]
Huang D M, Zhao D F, Wei L F, Du Y L and Wang Z H. 2016. Managing marine data as big data: uprising challenges and tentative solutions. Computer Science, 43(6): 17-23
黄冬梅, 赵丹枫, 魏立斐, 杜艳玲, 王振华. 2016. 大数据背景下海洋数据管理的挑战与对策. 计算机科学, 43(6): 17-23 [DOI: 10.11896/j.issn.1002-137X.2016.06.003]
Huang R F, Liu J C and Bao Z H. 2012. An evaluation system research and implementation for high-performance computer in meteorology and ocean field. Journal of Chengdu University of Information Technology, 27(2): 157-161
黄瑞芳, 刘俊铖, 鲍振华. 2012. 气象海洋高性能计算机测评系统研究与实现. 成都信息工程学院学报, 27(2): 157-161 [DOI: 10.3969/j.issn.1671-1742.2012.02.006]
Irrmann G, Masson S, Maisonnave É, Guibert D and Raffin E. 2022. Improving ocean modeling software NEMO 4.0 benchmarking and communication efficiency. Geoscientific Model Development, 15(4): 1567-1582
Jiang Z M. 2018.Research on Typhoon Recognition and Centering Based on Remote Sensing Data. Harbin: Harbin Institute of Technology
蒋众名. 2018. 基于遥感数据的台风识别与中心定位方法研究. 哈尔滨: 哈尔滨工业大学
Jing H, Qin B, Jiang X Y and Xia H T. 2018. Distributed parallel task scheduling on Spark-GPU framework for oceanographic geospatial data processing. Periodical of Ocean University of China, 48(S2): 180-186
景辉, 秦勃, 姜晓轶, 夏海涛. 2018. Spark-GPU框架下海洋地理空间数据分布式并行处理任务调度. 中国海洋大学学报(自然科学版), 48(S2): 180-186 [DOI: 10.16441/j.cnki.hdxb.20180032]
Koch G, Zemel R S and Salakhutdinov R. 2015. Siamese neural networks for one-shot image recognition//Proceedings of ICML Deep Learning Workshop, [s. n.]: [s. l.]
Li B Y, Li B and Qian D P. 2018. Accelerating a sea ice model on sunway many-core processor. Chinese Journal of Computers, 41(10): 2221-2235
李镔洋, 李波, 钱德沛. 2018. 基于申威众核处理器的海冰模式并行加速方法. 计算机学报, 41(10): 2221-2235 [DOI: 10.11897/SP.J.1016.2018.02221]
Li H and Xu J P. 2011. Development of data assimilation and its application in ocean science. Marine Science Bulletin, 30(4): 463-472
李宏, 许建平. 2011. 资料同化技术的发展及其在海洋科学中的应用. 海洋通报, 30(4): 463-472 [DOI: 10.3969/j.issn.1001-6392.2011.04.018]
Li Q Y, Zhong G Q, Xie C and Hedjam R. 2022a. Weak edge identification network for ocean front detection. IEEE Geoscience and Remote Sensing Letters, 19: 1-5 [DOI: 10.1109/LGRS.2021.3051203]
Li W W. 2015. Algorithm of content based algae image classification and retrieval. Journal of Jilin University (Information Science Edition, 33(5): 538-543
李伟伟. 2015. 基于内容的藻类图像分类检索算法. 吉林大学学报(信息科学版), 33(5): 538-543
Li Y D, Liang J H, Da H R, Chang L and Li H L. 2022b. A deep learning method for ocean front extraction in remote sensing imagery. IEEE Geoscience and Remote Sensing Letters, 19: 1-5 [DOI: 10.1109/LGRS.2021.3081179]
Li Y K, Hu Y X and Yang P. 2016. Frequency domain information based water body image retrieval in high resolution satellite image databases. Computer Science, 43(6A): 118-121
李轶鲲, 胡玉玺, 杨萍. 2016. 基于频率域信息的遥感图像数据库水体检索. 计算机科学, 43(6A): 118-121
Linghu L X, Wu J J, Huang B, Wu Z S and Shi M. 2018. GPU-accelerated massively parallel computation of electromagnetic scattering of a time-evolving oceanic surface model I: time-evolving oceanic surface generation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8): 2752-2762 [DOI: 10.1109/JSTARS.2018.2837149]
Liu C, Huang L, Wei Z Q and Zhang W F. 2021. Subtler mixed attention network on fine-grained image classification. Applied Intelligence, 51(11): 7903-7916 [DOI: 10.1007/s10489-021-02280-y]
Liu J F. 2015. Storage and Processing System ofMarine Data Based on Hadoop. Qingdao: Ocean University of China
刘金凤. 2015. 基于Hadoop的海洋数据存储处理系统. 青岛: 中国海洋大学
Liu S K and Wang F X. 2019. Knowledge graph of maritime collision avoidance rules in Chinese//Proceedings of the 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, China: IEEE: 169-172 [DOI:10.1109/IHMSC.2019.00047http://dx.doi.org/10.1109/IHMSC.2019.00047]
Lu X Y, Shan G H and Li G. 2020. Oceanic mesoscale eddy detection and visualization based on deep learning. Computer Systems and Applications, 29(4): 65-75
芦旭熠, 单桂华, 李观. 2020. 基于深度学习的海洋中尺度涡识别与可视化. 计算机系统应用, 29(4): 65-75 [DOI: 10.15888/j.cnki.csa.007328]
Marsi E, ∅zturk P P and Ardelan M V. 2017. Marine variable linker: exploring relations between changing variables in marine science literature//Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, Spain: Association for Computational Linguistics: 91-94
Moskvyak O, Maire F, Dayoub F, Armstrong A O and Baktashmotlagh M. 2019. Robust re-identification of manta rays from natural markings by learning pose invariant embeddings//Proceedings of 2021 International Conference on Digital Image Computing: Techniques and Applications. [s. l.]: Institute of Electrical and Electronics Engineers Inc. : 472-479
Nichol A and Schulman J. 2018. Reptile: a scalable metalearning algorithm [EB/OL]. [2021-12-31].https://arxiv.org/pdf/1803.02999.pdfhttps://arxiv.org/pdf/1803.02999.pdf
Nie Q, Sheng X, Zhang N, Wang J J, Shang Y N and Hu F H. 2019. Construction of a nautical knowledge graph based on multiple data sources. Journal of Coastal Research, 94(S1): 223-226 [DOI: 10.2112/SI94-047.1]
Osman N S and Mustaffa M R. 2015. A review on content-based image retrieval representation and description for fish//Proceedings of the 4th International Conference on Advanced Computer Science Applications and Technologies (ACSAT). Kuala Lumpur, Malaysia: IEEE: 39-44 [DOI:10.1109/ACSAT.2015.15http://dx.doi.org/10.1109/ACSAT.2015.15]
Park Y, Cho K H, Park J, Cha S M and Kim J H. 2015. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Science of the Total Environment, 502: 31-41 [DOI: 10.1016/j.scitotenv.2014.09.005]
Piedra-Fernández J A, Ortega G, Wang J Z and Cantón-Garbín M. 2014. Fuzzy content-based image retrieval for oceanic remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5422-5431 [DOI: 10.1109/TGRS.2013.2288732]
Qu T T, Wang L Z, Yu J, Yan J N, Xu G L, Li M, Cheng C Q, Hou K H and Chen B. 2020. STGI: a spatio-temporal grid index model for marine big data. Big Earth Data, 4(4): 435-450 [DOI: 10.1080/20964471.2020.1844933]
Ruan T, Wang H, Hu F, Ding J and Lu K. 2014. Building and Exploring Marine Oriented Knowledge Graph for ZhouShan Library//Proceedings of 13th International Semantic Web Conference ISWC (Industry Track). Riva del Garda, Italy: [s. n.]: #1383
Santana O J, Hernández-Sosa D, Martz J and Smith R N. 2020. Neural network training for the detection and classification of oceanic mesoscale eddies. Remote Sensing, 12(16): #2625 [DOI: 10.3390/rs12162625]
Schneider S, Taylor G W and Kremer S C. 2020. Similarity learning networks for animal individual re-identification—beyond the capabilities of a human observer//Proceedings of 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW). Snowmass, USA: IEEE: 44-52 [DOI:10.1109/WACVW50321.2020.9096925http://dx.doi.org/10.1109/WACVW50321.2020.9096925]
Shi S X, Wang L, Yu X and Xu L Y. 2020. Application of long term and short term memory neural network in prediction of chlorophyll—a concentration. Acta Oceanologica Sinica, 42(2): 134-142
石绥祥, 王蕾, 余璇, 徐凌宇. 2020. 长短期记忆神经网络在叶绿素a浓度预测中的应用. 海洋学报, 42(2): 134-142 [DOI: 10.3969/j.issn.0253-4193.2020.02.014]
Song X Y, Guo Y G, Zhang F, Wang S J, Yang J and Chang Y G. 2019. Research on marine creature recognition from seafloor videos//OCEANS 2019 - Marseille. Marseille, France: IEEE: 1-4 [DOI:10.1109/OCEANSE.2019.8867479http://dx.doi.org/10.1109/OCEANSE.2019.8867479]
Song Z Y, Liu W G, Liu X, Su T Y, Liu H X and Yin X Q. 2019. Research progress and perspective of the key technologies for ocean numerical model driven by the mass data. Advances in Marine Science, 37(2): 161-170
宋振亚, 刘卫国, 刘鑫, 苏天赟, 刘海行, 尹训强. 2019. 海量数据驱动下的高分辨率海洋数值模式发展与展望. 海洋科学进展, 37(2): 161-170 [DOI: 10.3969/j.issn.1671-6647.2019.02.001]
Sun J W, Yu H, Wu J F, Zhang M L, Luo Q and Sun J J. 2016. A fish image retrieval method using multiple features. Journal of Dalian Ocean University, 31(4): 449-455
孙建伟, 于红, 吴俊峰, 张美玲, 罗强, 孙娟娟. 2016. 一种使用多特征的鱼类图像检索方法. 大连海洋大学学报, 31(4): 449-455 [DOI: 10.16535/j.cnki.dlhyxb.2016.04.017]
Tan K Z, Qin B and He Y W. 2021. Process-oriented distributed storage and retrieval of ocean spatiotemporal data. Periodical of Ocean University of China, 51(11): 94-101, 134
谭凯中, 秦勃, 何亚文. 2021. 面向过程的海洋时空数据分布式存储与并行检索. 中国海洋大学学报(自然科学版), 51(11): 94-101, 134 [DOI: 10.16441/j.cnki.hdxb.20200341]
Um J H, Han S, Kim H and Park K. 2017. Study on distributed and parallel non-linear optimization algorithm for ocean color remote sensing data//Proceedings of 2017 IEEE High Performance Extreme Computing Conference (HPEC). Waltham, USA: IEEE: 1-2 [DOI:10.1109/HPEC.2017.8091075http://dx.doi.org/10.1109/HPEC.2017.8091075]
Valera M, Thomas M P, Garcia M and Castillo J E. 2019. Parallel implementation of a PETSc-based framework for the general curvilinear coastal ocean model. Journal of Marine Science and Engineering, 7(6): #185 [DOI: 10.3390/jmse7060185]
Vidyarthi A and Malik A. 2022. A hybridized modified densenet deep architecture with CLAHE algorithm for humpback whale identification and recognition. Multimedia Tools and Applications, 81(14): 19779-19793 [DOI: 10.1007/s11042-021-11034-4]
Villon S, Iovan C, Mangeas M, Claverie T, Mouillot D, Villéger S and Vigliola L. 2021. Automatic underwater fish species classification with limited data using few-shot learning. Ecological Informatics, 63: #101320 [DOI: 10.1016/j.ecoinf.2021.101320]
Wang C H, Miao C B and Shen B. 2013. Accelerating a nonhydrostatic ocean numerical model using CUDA. Periodical of Ocean University of China, 43(8): 107-113, 118
王春晖, 苗春葆, 沈飙. 2013. 非静压海洋数值模式加速计算的CUDA实现. 中国海洋大学学报(自然科学版), 43(8): 107-113, 118 [DOI: 10.16441/j.cnki.hdxb.2013.08.017]
Wang P, Song Y T, Chao Y and Zhang H C. 2005. Parallel computation of the regional ocean modeling system. International Journal of High Performance Computing Applications, 19(4): 375-385 [DOI: 10.1177/1094342005059115]
Wang T Y, Chi X B, Zhang H and Hao H Q. 2016. Performance evaluation of earth system model CAS-ESM on the supercomputer era. E-Science Technology and Application, 7(1): 59-66
王天一, 迟学斌, 张贺, 郝卉群. 2016. 地球系统模式CAS-ESM在"元"超级计算机上的性能评估. 科研信息化技术与应用, 7(1): 59-66 [DOI: 10.11871/j.issn.1674-9480.2016.01.008]
Wei G Q, Wei Z Q, Huang L, Nie J and Chang H H. 2018. Robust underwater fish classification based on data augmentation by adding noises in random local regions//Proceedings of the 19th Pacific-Rim Conference on Multimedia. Hefei, China: Springer: 509-518 [DOI:10.1007/978-3-030-00767-6_47http://dx.doi.org/10.1007/978-3-030-00767-6_47]
Wu L X, Chen Z H, Lin X P and Liu Y Z. 2020. Building the integrated observational network of "Transparent Ocean". Chinese Science Bulletin, 65(25): 2654-2661
吴立新, 陈朝晖, 林霄沛, 刘永正. 2020. "透明海洋"立体观测网构建. 科学通报, 65(25): 2654-2661 [DOI: 10.1360/TB-2020-0558]
Wu Q, Ni Y F and Huang X M. 2019. Regional ocean model parallel optimization in "Sunway TaihuLight". Journal of Computer Research and Development, 56(7): 1556-1566
吴琦, 倪裕芳, 黄小猛. 2019. 基于"神威·太湖之光"的区域海洋模式并行优化. 计算机研究与发展, 56(7): 1556-1566 [DOI: 10.7544/issn1000-1239.2019.20180791]
Xia W, Ai B, Yang Y Z and Shang H S. 2019. Research on cloud storage technology for NetCDF physical ocean data. Journal of Ocean Technology, 38(4): 71-78
夏伟, 艾波, 杨应召, 尚恒帅. 2019. NetCDF物理海洋数据云存储技术研究. 海洋技术学报, 38(4): 71-78 [DOI: 10.3969/j.issn.1003-2029.2019.04.012]
Xie C, Li M K, Chen P, Li X T, Song J, Dong J Y and Zhao J M. 2021. Application of big data visual analysis in the marine field. Big Data Research, 7(2): 3-14
解翠, 李明悝, 陈萍, 李孝天, 宋键, 董军宇, 赵佳萌. 2021. 大数据可视分析在海洋领域的应用. 大数据, 7(2): 3-14 [DOI: 10.11959/j.issn.2096-0271.2021011]
Yang H L, Zhao Q, Luan Z Z and Qian D P. 2012. CPOP: component design and parallelization towards POP ocean model based on ESMF//Proceedings of the 41st International Conference on Parallel Processing Workshops. Pittsburgh, USA: IEEE: 596-597 [DOI:10.1109/ICPPW.2012.86http://dx.doi.org/10.1109/ICPPW.2012.86]
Yang N, Han L S, Li Y, Lu K and Song Y Z. 2013. Evaluation of high performance computing cluster based on ocean model. Ocean Technology, 32(2): 133-136
杨宁, 韩林生, 李彦, 路宽, 宋雨泽. 2013. 基于海洋数值模式的高性能计算集群性能评价. 海洋技术, 32(2): 133-136
Yang X D, Song Z Y, Zhou S, Liu H X and Yin X Q. 2017. Code modernization optimization of MASNUM wave model. Advances in Marine Science, 35(4): 473-482
杨晓丹, 宋振亚, 周姗, 刘海行, 尹训强. 2017. MASNUM海浪模式的代码现代化优化. 海洋科学进展, 35(4): 473-482 [DOI: 10.3969/j.issn.1671-6647.2017.04.004]
Ye M, Nie J, Liu A N, Wang Z G, Huang L, Tian H, Song D H and Wei Z Q. 2021. Multi-year ENSO forecasts using parallel convolutional neural networks with heterogeneous architecture. Frontiers in Marine Science, 8: #717184 [DOI: 10.3389/fmars.2021.717184]
Zhang L, Xu G J and Sun X H. 2017. Parallel computing of underwater sound propagation based on HPC//Technical Acoustics. Harbin: Acoustical Society of China: 105-106
张林, 徐国军, 孙雪海. 2017. 基于HPC的水声传播并行计算研究//中国声学学会2017年全国声学学术会议论文集. 哈尔滨: 中国声学学会: 105-106
Zhang L Y, Wang P F, Zhang F, Liu H L, Lin P F, Wang T, Wei J L, Tian S B, Jiang J R and Chi X B. 2020. The Implementation and Optimization of LICOM on GPUs. Frontiers of Data and Computing, 2(4): 92-104
张留莹, 王鹏飞, 张峰, 刘海龙, 林鹏飞, 王涛, 韦俊林, 田少博, 姜金荣, 迟学斌. 2020. 海洋环流模式LICOM的GPU实现与优化. 数据与计算发展前沿, 2(4): 92-104) [DOI: 10.11871/jfdc.issn.2096-742X.2020.04.008]
Zhang Q, Wen Y Q, Zhou C H, Long H, Han D, Zhang F and Xiao C S. 2019. Construction of knowledge graphs for maritime dangerous goods. Sustainability, 11(10): #2849 [DOI: 10.3390/su11102849]
Zhang Y J, Shi S Y, Sun J, Liu G Y and Ai B. 2017. Cloud storage of ocean dynamics environment data. Marine Forecasts, 34(2): 72-79
张玉娟, 史绍雨, 孙晶, 刘桂艳, 艾波. 2017. 基于分布式数据库的海洋动力环境数据云存储. 海洋预报, 34(2): 72-79 [DOI: 10.11737/j.issn.1003-0239.2017.02.010]
Zhao H, Ai S Y, Lv Z H and Li B. 2010. Parallel accessing massive NetCDF data based on MapReduce//Wang F L, Gong Z G, Luo X F and Lei J S, eds. Web Information Systems and Mining. Sanya, China: Springer: 425-431 [DOI:10.1007/978-3-642-16515-3_53http://dx.doi.org/10.1007/978-3-642-16515-3_53]
Zhao Z M, Gao L R, Chen D, Yue A Z, Chen J B, Liu D S, Yang J and Meng Y. 2019. Development of satellite remote sensing and image processing platform. Journal of Image and Graphics, 24(12): 2098-2110
赵忠明, 高连如, 陈东, 岳安志, 陈静波, 刘东升, 杨健, 孟瑜. 2019. 卫星遥感及图像处理平台发展. 中国图象图形学报, 24(12): 2098-2110 [DOI: 10.11834/jig.190450]
Zheng G, Li X F, Zhang R H and Liu B. 2020. Purely satellite data-driven deep learning forecast of complicated tropical instability waves. Science Advances, 6(29): #aba1482 [DOI: 10.1126/sciadv.aba1482]
Zheng P N, Song J, Zhang F R and Bao X W. 2008. Common instruction of some ogcm. Marine Forecasts, 25(4): 108-120
郑沛楠, 宋军, 张芳苒, 鲍献文. 2008. 常用海洋数值模式简介. 海洋预报, 25(4): 108-120 [DOI: 10.3969/j.issn.1003-0239.2008.04.016]
Zhu G C and Hu S. 2019. Study on sea surface temperature model based on LSTM-RNN. Journal of Applied Oceanography, 38(2): 191-197
朱贵重, 胡松. 2019. 基于LSTM-RNN的海水表面温度模型研究. 应用海洋学学报, 38(2): 191-197 [DOI: 10.3969/J.ISSN.2095-4972.2019.02.005]
Zhuang P Q, Wang Y L and Qiao Y. 2018. WildFish: a large benchmark for fish recognition in the wild//Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea(South): ACM: 1301-1309 [DOI:10.1145/3240508.3240616http://dx.doi.org/10.1145/3240508.3240616]
Zou G L, Hou Q, Zheng Z S, Huang D M and Liu Z R. 2019. Classification of typhoon grade based on satellite cloud image and deep learning. Remote Sensing Information, 34(3): 1-6
邹国良, 侯倩, 郑宗生, 黄冬梅, 刘兆荣. 2019. 面向卫星云图及深度学习的台风等级分类. 遥感信息, 34(3): 1-6 [DOI: 10.3969/j.issn.1000-3177.2019.03.001]
相关作者
相关机构