三维视觉测量技术及应用进展
Overview of the development and application of 3D vision measurement technology
- 2021年26卷第6期 页码:1483-1502
纸质出版日期: 2021-06-16 ,
录用日期: 2021-03-30
DOI: 10.11834/jig.200841
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-06-16 ,
录用日期: 2021-03-30
移动端阅览
张宗华, 刘巍, 刘国栋, 宋丽梅, 屈玉福, 李旭东, 魏振忠. 三维视觉测量技术及应用进展[J]. 中国图象图形学报, 2021,26(6):1483-1502.
Zonghua Zhang, Wei Liu, Guodong Liu, Limei Song, Yufu Qu, Xudong Li, Zhenzhong Wei. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 2021,26(6):1483-1502.
三维视觉测量是计算机视觉与精密测量原理交叉融合的前沿高新技术,是工业4.0的基础支撑,是以网络化、智能化制造为变革特征的先进制造业的核心关键技术。经过几十年的发展,三维视觉测量技术在基础研究和应用研究上均获得了快速深入发展,形成了理论方法、技术工艺、系统研发和产品应用四位一体较为完备的方向体系,呈现出理论系统化、方法多维化、精度精准化和速度快捷化的发展趋势,成为智能制造过程控制、产品质量检验保证和装备整机服役测试的不可或缺的优选技术。本文主要围绕单相机、双相机和结构光等典型三维视觉测量技术展开论述,概要介绍其关键技术内涵,综述其发展现状、前沿动态、热点问题和发展趋势。重点论述条纹投影三维测量技术和相位测量偏折术。最后给出了三维视觉测量的发展趋势与未来展望。
3D vision measurement is a new and advanced technology of computer vision and precision measurement. It is the basic support of industry 4.0 and the core and key technology of advanced manufacturing industry characterized by networked and intelligent manufacturing. After decades of development
3D vision measurement technology has been developed rapidly in basic research and applied research. It has formed the relatively complete direction system of four parts: theoretical method
technical process
system development and product application. 3D vision measurement technology presents a trend of systematic theory
multi-dimensional method
precise precision and rapid speed
which has become an indispensable optimization technology of intelligent manufacturing process control
product quality inspection and guarantee
and complete equipment service test. This paper mainly focuses on typical 3D vision measurement technologies such as single-camera
double-camera and structured-light
and briefly introduces the connotation of the key technologies and summarizes its development status
frontier trends
hot issues and development trends. Single-
stereo-
and multiple cameras-based measuring system belong to passive vision
without external energy being projected on the surface of the object under test. Active vision technique projects some kind of energy onto the object surface
mainly including point-scanning
line-scanning
full-field
and time of flight. Therefore
active vision technique has been widely studied in academic and applied in many fields because of the advantages of high accuracy
non-contact
and automatic data processing. In this paper
the 3D measurement technique of fringe projection profilometry (FPP) and phase measuring deflectometry (PMD) are mainly discussed. FPP-based techniques are widely applied to measure the diffused surface. A set of or one fringe patterns are generated in software and projected by a digital light processing (DLP) projector. From a different viewpoint
an imaging device
normally a charge coupled device(CCD) camera captures the deformed fringe patterns modulated by the object surface under test. Multiple-step phase shifting algorithm or transform-based algorithm (such as Fourier transform
windowed Fourier transform
wavelet transform) can be used to obtain the wrapped phase map from a set of fringe patterns or from one fringe pattern. The wrapped phase needs to be unwrapped by using spatial phase unwrapping or temporal phase unwrapping. Spatial phase unwrapping is suitable to measure objects with smooth surface
while temporal phase unwrapping can measure objects with large step and/or discontinuous surface. In order to obtain 3D shape data
the measuring system needs to be 3D calibrated
which builds up the relationship between unwrapped phase map and 3D data. The absolute phase and the pixel position will be transferred to depth data and horizontal coordinates
respectively. The error will be analyzed in detail to improve the measurement accuracy. PMD-based techniques are mainly applied to measure the specular surface because they have the advantages of high accuracy
large dynamic
automatic data processing
and non-contact operation. The generated fringe patterns are displayed on the liquid crystal device (LCD) screen
instead of being projected on to the measured surface. The reflected fringe patterns by the specular surface are captured by a CCD camera according to the law of reflection. The obtained fringe patterns are processed by the same algorithms in FPP. In order to measure dynamic specular surface
single shot PMD methods have been developed. One fringe image has been modulated by orthogonally modulating two fringe patterns into one image. Or one composite fringe image can be generated by modulating three fringe patterns into the primary color channels of a color image. Therefore
multiple fringe patterns can be obtained from single shot image. The obtained phase information is related to the gradient of the measured specular surface
instead of the depth
so integration procedure is needed to reconstruct the 3D shape. Many integration methods have been studied
such as radial basis function
least square method
and Fourier transform method. Some researchers developed a direct PMD (DPMD) method to measure specular objects with discontinuous surface. This method builds up the direct relationship between the absolute phase and depth data
without integration procedure. One important step in PMD is how to calibrate the geometric parameters of the measuring system
mainly the distance and orientation between the LCD screen
the reference plane (the measured specular surface) and the camera. Error sources have been analyzed to improve the accuracy of the measured data as well. 3D shape data have many applications in the fields of aeronautics and astronautics
car industry
advanced equipment manufacturing measurements
health care industry
and conservation of antiquities. These applications will be described. Finally
the development trend and future prospect of 3D vision measurement are given. Although 3D measurement techniques have been matured
many aspects need to be further improved. The most important are the following two: accuracy and speed. FPP-based and DPM-based techniques can reach micrometer and nanometer level
respectively. Some applications need more high-level accuracy. The third trend is extreme size and environment. The fourth are to measure objects with complex attribute surface. For example
there are objects having high reflective surface and specular/diffuse surface. The fifth trend is on-site measurement
which can be used in machining tools and assembly line. The last one is portable measurement
so that it can be easily integrated into other components.
三维视觉测量条纹投影轮廓术相位测量偏折术相位计算标定综述
3D vision measurementfringe projection profilometryphase measuring deflectometryphase calculationcalibrationreview
An Y, Li B, Hu H S and Zhou X L. 2019. Building an omnidirectional 3-D color laser ranging system through a novel calibration method. IEEE Transactions on Industrial Electronics, 66(11): 8821-8831[DOI:10.1109/TIE.2018.2890506]
Blais F. 2004. Review of 20 years of range sensor development. Journal of Electronic Imaging, 13(1): 231-240[DOI:10.1117/1.1631921]
Cai X P, Li H M, Liu J B and Gao S H. 2007. Overview of active optical three-dimensional imaging technology. Laser and Infrared, 37(1): 22-25
蔡喜平, 李惠民, 刘剑波, 高劭宏, 2007. 主动式光学三维成像技术概述. 激光与红外, 37(1): 22-25[DOI:10.3969/j.issn.1001-5078.2007.01.005]
Chang C X, Zhang Z H, Gao N and Meng Z Z. 2020. Improved infrared phase measuring deflectometry method for the measurement of discontinuous specular objects. Optics and Lasers in Engineering, 134: #106194[DOI:10.1016/j.optlaseng.2020.106194]
Chang C X, Zhang Z H, Gao N and Meng Z Z. 2019. Measurement of the three-dimensional shape of discontinuous specular objects using infrared phase-measuring deflectometry. Sensors, 2019, 19(21): #4621[DOI:10.3390/s19214621]
Chen R, Xu J, Zhang S, Chen H P, Guan Y and Chen K. 2017. A self-recalibration method based on scale-invariant registration for structured light measurement systems. Optics and Lasers in Engineering, 88: 75-81[DOI:10.1016/j.optlaseng.2016.07.003]
Chen X R, Cai P and Shi W K. 2002. The latest development of optical non-contact 3D profile measurement. Optics and Precision Engineering, 10(5): 528-532
陈晓荣, 蔡萍, 施文康. 2002. 光学非接触三维形貌测量技术新进展. 光学 精密工程, 10(5): 528-532[DOI:10.3321/j.issn:1004-924X.2002.05.020]
Cui L. 2010. A study on three-dimensional shape measurement system based on laser triangulation. Beijng: Beijing University
崔磊. 2010. 基于激光海法的三维形貌测量系统研究. 北京: 北京航空航天大学
EttlS, Kaminski J, Knauer M C and Häusler G. 2008. Shape reconstruction from gradient data. Applied Optics, 47(12): 2091-2097[DOI:10.1364/AO.47.002091]
Feng S J, Chen Q, Gu G H, Tao T Y, Zhang L, Hu Y, Yin W and Zuo C. 2019. Fringe pattern analysis using deep learning. Advanced Photonics, 1(2): #025001[DOI:10.1117/1.AP.1.2.025001]
França J G D M, Gazziro M A, Ide A N and Saito J H. 2005. A 3D scanning system based on laser triangulation and variable field of view//Proceedings of 2005 IEEE International Conference on Image Processing. Genova, Italy: IEEE: 741-750[DOI: 10.1109/ICIP.2005.1529778http://dx.doi.org/10.1109/ICIP.2005.1529778]
Freischlad K R and Koliopoulos C L. 1986. Modal estimation of a wave front from difference measurements using the discrete Fourier transform. Journal of the Optical Society of America A, 3(11): 1852-1861[DOI:10.1364/JOSAA.3.001852]
Ganapathi V, Plagemann C, Koller D and Thrun S. 2010. Real time motion capture using a single time-of-flight camera//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 755-762[DOI: 10.1109/CVPR.2010.5540141http://dx.doi.org/10.1109/CVPR.2010.5540141]
Gong Y Z and Zhang S. 2010. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector. Optics Express, 18(19): 19743-19754[DOI:10.1364/OE.18.019743]
Gonzalez A and Meneses J. 2019. Accurate calibration method for a fringe projection system by projecting an adaptive fringe pattern. Applied Optics, 58(17): 4610-4615[DOI:10.1364/AO.58.004610]
Gu G F, Zhao J, Kong M, Guo T T and Wang D D. 2020. Tomographic three-dimensional particle position measurement based on light field camera. Acta Photonica Sinica, 49(8): #0812002
顾高霏, 赵军, 孔明, 郭天太, 王道档. 2020. 基于光场相机层析法的颗粒三维位置测量. 光子学报, 49(8): #0812002[DOI:10.3788/gzxb20204908.0812002]
Guang H, Wang Y J, Zhang L X, Li L L, Li M and Ji L H. 2017. Enhancing wavefront estimation accuracy by using higher-order iterative compensations in the Southwell configuration. Applied Optics, 56(8): 2060-2067[DOI:10.1364/AO.56.002060]
Guo C F, Lin X Y, Hu A D and Zou J. 2016. Improved phase-measuring deflectometry for aspheric surfaces test. Applied Optics, 55(8): 2059-2064[DOI:10.1364/AO.55.002059]
Guo H Q and Wang Z Q. 2006. Wavefront reconstruction using iterative discrete Fourier transforms with fried geometry. Optik, 117(2): 77-81[DOI:10.1016/j.ijleo.2005.06.003]
Guo H W, Feng P and Tao T. 2010. Specular surface measurement by using least squares light tracking technique. Optics and Lasers in Engineering, 48(2): 166-171[DOI:10.1016/j.optlaseng.2009.04.005]
Han X F, Laga H and Bennamoun M. 2019. Image-based 3D object reconstruction: state-of-the-art and trends in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence: #2954865[DOI:10.1109/TPAMI.2019.2954885]
Hartley R and Zisserman A. 2004. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge: Cambridge University Press
Hu Y, Chen Q, Zhang Y Z, Feng S J, Tao T Y, Li H, Yin W and Zuo C. 2018. Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry. Applied Optics, 57(4): 772-780[DOI:10.1364/AO.57.000772]
Huang L and Asundi A. 2012. Improvement of least-squares integration method with iterative compensations in fringe reflectometry. Applied Optics, 51(31): 7459-7465[DOI:10.1364/AO.51.007459]
Huang L and Asundi A K. 2013. Framework for gradient integration by combining radial basis functions method and least-squares method. Applied Optics, 52(24): 6016-6021[DOI:10.1364/AO.52.006016]
Huang L, Chua P S K and Asundi A. 2010. Least-squares calibration method for fringe projection profilometry considering camera lens distortion. Applied Optics, 49(9): 1539-1548[DOI:10.1364/AO.49.001539]
Huang L, Da F P and Gai S Y. 2019. Research on multi-camera calibration and point cloud correction method based on three-dimensional calibration object. Optics and Lasers in Engineering, 115: 32-41[DOI:10.1016/j.optlaseng.2018.11.005]
Huang L, Ng C S and Asundi A K. 2011. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry. Optics Express, 19(13): 12809-12814[DOI:10.1364/OE.19.012809]
Huang S J, Liu Y, Gao N, Zhang Z H, Gao F and Jiang X Q. 2018. Distance calibration between reference plane and screen in direct phase measuring deflectometry. Sensors, 18(1): #144[DOI:10.3390/s18010144]
Jiang H Z, Zhao H J, Li X D and Li D. 2010. Projected fringe profilometry for profile measurement of high reflective surface. Optics and Precision Engineering, 18(9): 2002-2008
姜宏志, 赵慧洁, 李旭东, 李冬. 2010. 用于强反射表面形貌测量的投影栅相位法. 光学 精密工程, 18(9): 2002-2008[DOI:10.3788/OPE.20101809.2002]
Kang M C, Yoo C H, Uhm K H, Lee D H and Ko S J. 2018. A robust extrinsic calibration method for non-contact gaze tracking in the 3-D space. IEEE Access, 6: 48840-48849[DOI:10.1109/ACCESS.2018.2867235]
Lagarde J M, Rouvrais C, Black D, Diridollou S and Gall Y. 2001. Skin topography measurement by interference fringe projection: a technical validation. Skin Research and Technology, 7(2): 112-121[DOI:10.1034/j.1600-0846.2001.70210.x]
Li D L, Cao Y P, Fu G K, Li C M and Wan Y Y. 2019. An improved 2+1 phase-shifting algorithm. Optics Communications, 444: 165-171[DOI:10.1016/j.optcom.2019.03.081]
Liu T C, Zhou C L, Liu Y P, Si S C and Lei Z K. 2014. Deflectometry for phase retrieval using a composite fringe. Optica Applicata, 44(3): 451-461[DOI:10.5277/oa140309]
Liu Y, Huang S J, Zhang Z H, Gao N, Gao F and Jiang X Q. 2017. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry. Scientific Reports, 7(1): #10293[DOI:10.1038/s41598-017-11014-5]
Liu Y K. 2004. Measurement of 3D Shape for Optical Surface Based on Structured Light Projection. Chengdu: Sichuan University
刘元坤. 2004. 基于结构光投影的光学面形测量方法研究. 成都: 四川大学
Liu Z, Meng Z Z, Gao N and Zhang Z H. 2019. Calibration of the relative orientation between multiple depth cameras based on a three-dimensional target. Sensors, 19(13): #3008[DOI:10.3390/s19133008]
Livingstone F R and Rioux M. 1986. Development of a large field of view 3-D vision system//Proceedings of SPIE 0665, Optical Techniques for Industrial Inspection. Quebec City, Canada: SPIE: 175-188[DOI: 10.1117/12.938790http://dx.doi.org/10.1117/12.938790]
Merner L, Wang Y J and Zhang S. 2013. Accurate calibration for 3D shape measurement system using a binary defocusing technique. Optics and Lasers in Engineering, 51(5): 514-519[DOI:10.1016/j.optlaseng.2012.10.015]
Montemerlo M, Thrun S, Koller D and Wegbreit B. 2002. FastSLAM: a factored solution to the simultaneous localization and mapping problem//Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: American Association for Artificial Intelligence: 593-598
Nayar S K and Nakagawa Y. 1994. Shape from focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8): 824-831[DOI:10.1109/34.308479]
Petz M and Tutsch R. 2005. Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces//Proceedings of SPIE 5869, Optical Manufacturing and Testing VI. San Diego, California, United States: SPIE: 58691D[DOI: 10.1117/12.617325http://dx.doi.org/10.1117/12.617325]
Poyneer L A, Gavel D T and Brase J M. 2002. Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform. Journal of the Optical Society of America A, 19(10): 2100-2111[DOI:10.1364/JOSAA.19.002100]
Qu X H, Dai J F and Zhang F M. 2009. Application study on laser ranging in large-scale measurement. Chinese Journal of Scientific Instrument, 30(3): 481-485
曲兴华, 戴建芳, 张福民. 2009. 基于激光测距的大尺寸测量应用研究. 仪器仪表学报, 30(3): 481-485[DOI:10.3321/j.issn:0254-3087.2009.03.007]
Ramirez-Hernández L R, Rodríguez-Quiñonez J C, Castro-Toscano M J, Hernández-Balbuena D, Flores-Fuentes W, Rascón-Carmona R, Lindner L and Sergiyenko O. 2020. Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method. International Journal of Advanced Robotic Systems, 17(1): 1-15[DOI:10.1177/1729881419896717]
Ren H Y, Gao F and Jiang X Q. 2015. Improvement of high-order least-squares integration method for stereo deflectometry. Applied Optics, 54(34): 10249-10255[DOI:10.1364/AO.54.010249]
Ren H Y, Gao F and Jiang X Q. 2016. Least-squares method for data reconstruction from gradient data in deflectometry. Applied Optics, 55(22): 6052-6059[DOI:10.1364/AO.55.006052]
Roddier F and Roddier C. 1991. Wavefront reconstruction using iterative Fourier transforms. Applied Optics, 30(11): 1325-1327[DOI:10.1364/AO.30.001325]
Ruel S, Luu T, Anctil M and Gagnon S. 2008. Target localization from 3D data for on-orbit autonomous rendezvous and docking//Proceedings of 2008 IEEE Aerospace Conference. Big Sky, USA: IEEE: 1-11[DOI: 10.1109/AERO.2008.4526516http://dx.doi.org/10.1109/AERO.2008.4526516]
Shao M W. 2020. Calibration methods for a camera with a tilted lens and a three-dimensional laser scanner in the Scheimpflug condition. Journal of the Optical Society of America A, 37(7): 1076-1082[DOI:10.1364/JOSAA.391906]
Shi Z Y, Zhang B, Lin J C, Wei H L and Chen X M. 2013. Principle and critical technology of in-site measurement system with laser tracker for mega gear. Optics and Precision Engineering, 21(9): 2340-2347
石照耀, 张白, 林家春, 魏华亮, 陈显民. 2013. 特大型齿轮激光跟踪在位测量原理及关键技术. 光学 精密工程, 21(9): 2340-2347[DOI:10.3788/OPE.20132109.2340]
Song L M, Chang Y L, Li Z Y, Wang P Q, Xing G X and Xi J T. 2014. Application of global phase filtering method in multi frequency measurement. Optics Express, 22(11): 13641-13647[DOI:10.1364/OE.22.013641]
Song L M, Dong X X, Xi J T, Yu Y G and Yang C K. 2013. A new phase unwrapping algorithm based on three wavelength phase shift profilometry method. Optics and Laser Technology, 45: 319-329[DOI:10.1016/j.optlastec.2012.06.029]
Song L M, Ru Y, Yang Y G, Guo Q H, Zhu X J and Xi J T. 2019. Three-dimensional measurement with reflection suppression based on high-dynamic range images. Journal of Electronic Imaging, 28(1): #013010[DOI:10.1117/1.JEI.28.1.013010]
Song L M, Ru Y, Yang Y G, Guo Q H, Zhu X J and Xi J T. 2018. Full-view three-dimensional measurement of complex surfaces. Optical Engineering, 57(10): #104106[DOI:10.1117/1.OE.57.10.104106]
Takahashi K, Nobuhara S and Matsuyama T. 2016. Mirror-based camera pose estimation using an orthogonality constraint. IPSJ Transactions on Computer Vision and Applications, 8: 11-19[DOI:10.2197/ipsjtcva.8.11]
Tang W and Ye D. 2008. 3D computer vision measurement systems. Infrared and Laser Engineering, 37(S1): 328-332
唐巍, 叶东. 2008, 三维视觉测量系统. 红外与激光工程, 37(S1): 328-332
Wang G Y, Zheng B, Li X, Houkes Z and Regtien P P L. 2002. Modelling and calibration of the laser beam-scanning triangulation measurement system. Robotics and Autonomous Systems, 40(4): 267-277[DOI:10.1016/S0921-8890(02)00247-6]
Wang Y P, Cao Y P, Fu G K, Wang L, Wan Y Y and Li C M. 2019. Single-shot phase measuring profilometry based on color binary grating with intervals. Optics Communications, 451: 268-275[DOI:10.1016/j.optcom.2019.06.062]
Wang Y W, Liu L, Wu J, Song X K, Chen X C and Wang Y J. 2020. Dynamic three-dimensional shape measurement with a complementary phase-coding method. Optics and Lasers in Engineering, 127: #105982[DOI:10.1016/j.optlaseng.2019.105982]
Watkins L R. 2012. Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms. Optics and Lasers in Engineering, 50(8): 1015-1022[DOI:10.1016/j.optlaseng.2012.01.001]
Westoby M J, Brasington J, Glasser N F, Hambrey M J and Reynolds J M. 2012. 'Structure-from-motion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314[DOI:10.1016/j.geomorph.2012.08.021]
Wu Y X, Yue H M, Yi J Y, Li M Y and Liu Y. 2016. Dynamic specular surface measurement based on color-encoded fringe reflection technique. Optical Engineering, 55(2): #024104[DOI:10.1117/1.OE.55.2.024104]
Wu Z J, Guo W B, Li Y Y, Liu Y H and Zhang Q C. 2020. High-speed and high-efficiency three-dimensional shape measurement based on gray-coded light. Photonics Research, 8(6): 819-829[DOI:10.1364/PRJ.389076]
Xiang S, Deng H P, Wu J and Zhu C J. 2020. Absolute phase unwrapping with SVM for fringe-projection profilometry. IET Image Processing, 14(12): 2645-2651[DOI:10.1049/iet-ipr.2019.1611]
Xie P, Tang M X and Wei X R. 2011. Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection//Proceedings of SPIE 8200, 2011 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology. Beijing, China: SPIE: #820014[DOI: 10.1117/12.904805http://dx.doi.org/10.1117/12.904805]
Xu Y J, Gao F and Jiang X Q. 2018. Enhancement of measurement accuracy of optical stereo deflectometry based on imaging model analysis. Optics and Lasers in Engineering, 111: 1-7[DOI:10.1016/j.optlaseng.2018.07.007]
Xu Z Q, Sun C K, Tao L and Zheng Y Z. Study on color three-dimensionallaser scanning measuring method. 2003. Acta Optica Sinica, 23(8): 1008-1012
许智钦, 孙长库, 陶立, 郑义忠. 2003. 彩色三维激光扫描测量方法的研究, 光学学报, 23(8): 1008-1012
Yang S B. 2012. Research on Position and Attitude Estimation for UAV Landing Based on Vision. Nanjing: Nanjing University of Aeronautics and Astronautics
杨世保. 2012. 无人机着陆位姿参数视觉估计研究. 南京: 南京航空航天大学
Yin S B, Ren Y J, Liu T, Guo S Y, Zhao J and Zhu J G. 2018. Review on application of machine vision in modern automobile manufacturing. Acta Optica Sinica, 38(8): #0815001
尹仕斌, 任永杰, 刘涛, 郭思阳, 赵进, 邾继贵. 2018. 机器视觉技术在现代汽车制造中的应用综述. 光学学报, 38(8): #0815001[DOI:10.3788/AOS201838.0815001]
Yin Y K, Zhang Z H, Liu X L and Peng Xiang. 2020. Review of the system model and calibration for fringe projection profilometry. Infrared and Laser Engineering, 49(3): #0303008
殷永凯, 张宗华, 刘晓利, 彭翔. 2020. 条纹投影轮廓术系统模型与标定综述. 红外与激光工程, 49(3): #0303008[DOI:10.3788/IRLA202049.0303008]
Yu C Z, Ji F, Xue J P and Wang Y J. 2019. Adaptive binocular fringe dynamic projection method for high dynamic range measurement. Sensors, 19(18): #4023[DOI:10.3390/s19184023]
Yu J, Gao N, Zhang Z H and Meng Z Z. 2020. High sensitivity fringe projection profilometry combining optimal fringe frequency and optimal fringe direction. Optics and Lasers in Engineering, 129: #106068[DOI:10.1016/j.optlaseng.2020.106068]
Yu S, Zhang J, Yu X Y, Sun X M, Wu H B and Liu X. 2018. 3D measurement using combined Gray code and dual-frequency phase-shifting approach. Optics Communications, 413: 283-290[DOI:10.1016/j.optcom.2017.12.071]
Žbontar J and Lecun Y. 2016. Stereo matching by training a convolutional neural network to compare image patches. The Journal of Machine Learning Research, 17(1): 2287-2318
Zeng Z H, Li B, Fu Y J and Chai M G. 2016. Stair phase-coding fringe plus phase-shifting used in 3D measuring profilometry. Journal of the European Optical Society-Rapid Publications, 12(1): #9[DOI:10.1186/s41476-016-0013-9]
Zhang G J. 2008. Vision Measurement. Beijing: Science Press.
张广军. 2008. 视觉测量. 北京: 科学出版社
Zhang L, Chen Q, Zuo C and Feng S J. 2020. Real-time high dynamic range 3D measurement using fringe projection. Optics Express, 28(17): 24363-24378[DOI:10.1364/OE.398814]
Zhang S, Li X L and Yau S T. 2007. Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction. Applied Optics, 46(1): 50-57[DOI:10.1364/AO.46.000050]
Zhang S, Van Der Weide D and Oliver J. 2010. Superfast phase-shifting method for 3-D shape measurement. Optics Express, 18(9): 9684-9689[DOI:10.1364/OE.18.009684]
Zhang Z H. 2012. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Optics and Lasers in Engineering, 50(8): 1097-1106[DOI:10.1016/j.optlaseng.2012.01.007]
Zhang Z H, Jing Z, Wang Z H and Kuang D F. 2012. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry. Optics and Lasers in Engineering, 50(8): 1152-1160[DOI:10.1016/j.optlaseng.2012.03.004]
Zhang Z H, Zhang D, Peng X and Hu X T. 2003. Color texture extraction from fringe image based on full-field projection. Optical Engineering, 42(7): 1935-1939[DOI:10.1117/1.1580833]
Zhang Z Y. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330-1334[DOI:10.1109/34.888718]
Zhao H J, Zeng J Y and Lei Y Z. 2008. Frequency-varying fringes projector based on acoustic grating. Acta Optica Sinica, 28(2): 355-360
赵慧洁, 曾俊钰, 雷彦章. 2008. 基于声光栅的变频条纹投射系统. 光学学报, 28(2): 355-360[DOI:10.3321/j.issn:0253-2239.2008.02.027]
Zhao P, Gao N, Zhang Z H, Gao F and Jiang X Q. 2018. Performance analysis and evaluation of direct phase measuring deflectometry. Optics and Lasers in Engineering, 103: 24-33[DOI:10.1016/j.optlaseng.2017.11.008]
Zhao Y Y, Li H T Mei D and Shi K. 2020. Metric calibration of unfocused plenopticcameras for three-dimensional shape measurement. Optical Engineering, 59(7): #073104[DOI:10.1117/1.OE.59.7.073104]
Zhu X J, Chen Z Q and Tang C. 2013. Variational image decomposition for automatic background and noise removal of fringe patterns. Optics Letters, 38(3): 275-277[DOI:10.1364/OL.38.000275]
Zhu X J, Tang C, Li B Y, Sun C and Wang L L. 2014. Phase retrieval from single frame projection fringe pattern with variational image decomposition. Optics and Lasers in Engineering, 59: 25-33[DOI:10.1016/j.optlaseng.2014.03.002]
Zuo C, Chen Q, Gu G H, Feng S J and Feng F X Y. 2012. High-speed three-dimensional profilometry for multiple objects with complex shapes. Optics Express, 20(17): 19493-19510[DOI:10.1364/OE.20.019493]
Zuo C, Huang L, Zhang M L, Chen Q and Asundi A. 2016. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Optics and Lasers in Engineering, 85: 84-103[DOI:10.1016/j.optlaseng.2016.04.022]
Zuo C, Tao T Y, Feng S J, Huang L, Asundi A and Chen Q. 2018. Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10, 000 frames per second. Optics and Lasers in Engineering, 102: 70-91[DOI:10.1016/j.optlaseng.2017.10.013]
相关作者
相关机构