输电线路部件视觉缺陷检测综述
Overview of visual defect detection of transmission line components
- 2021年26卷第11期 页码:2545-2560
纸质出版日期: 2021-11-16 ,
录用日期: 2021-03-06
DOI: 10.11834/jig.200689
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-11-16 ,
录用日期: 2021-03-06
移动端阅览
赵振兵, 蒋志钢, 李延旭, 戚银城, 翟永杰, 赵文清, 张珂. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021,26(11):2545-2560.
Zhenbing Zhao, Zhigang Jiang, Yanxu Li, Yincheng Qi, Yongjie Zhai, Wenqing Zhao, Ke Zhang. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021,26(11):2545-2560.
随着我国电网系统的不断发展,基层巡检作业负担越来越重,运维成本越来越高,如何实现输电线路部件缺陷的智能化检测变得愈发重要。同时,由于国家《新一代人工智能发展规划》的提出和国家电网"数字新基建"的部署,人工智能应用于电力设备运维的相关技术得到了快速发展,对输电线路部件视觉缺陷准确检测成为亟待解决的关键问题之一。早期基于图像处理和特征工程的部件视觉缺陷检测方法对图像质量的要求较高,无法真正应用于现实复杂的输电线路作业环境;随着深度学习的兴起,基于深度学习的检测模型可以有效地将部件目标及其缺陷从复杂的输电线路航拍图像中提取出来,既节省了人工设计特征的时间,又在性能上达到了显著提升,因此逐渐成为主流研究方法。本文首先描述了基于传统算法的输电线路关键部件视觉缺陷检测技术,回顾了深度学习的发展过程并分析了深度学习在缺陷检测领域的优缺点;围绕输电线路上3个重要的部件:绝缘子、金具以及螺栓,介绍了其定位与缺陷检测的研究现状;分析了输电线路部件缺陷检测中研究的样本不平衡问题、小目标检测问题、细粒度检测问题等几个关键问题;分析了符合电网巡检任务复杂场景需求和故障诊断标准的输电线路部件缺陷检测技术的未来发展趋势。
With the continuous improvement of China's economic strength and people's living standards
the requirements of the state and the people for electric power are gradually improving. To meet the increasing demand for electricity
the grid system is constantly developing
leading to increased time and capital costs required for the safe operation and maintenance of power grids. The rise of unmanned aerial vehicle (UAV) technology has introduced new detection ideas
which make the intelligent and efficient detection of defects of transmission line components a reality. Compared with manual inspection
UAV has advantages of low cost
high efficiency
strong mobility
and high safety. Thus
it has gradually replaced manual inspection. At the same time
artificial intelligence (AI) technology based on deep learning is also developing rapidly
and the related technology of applying AI to the maintenance of power equipment has developed rapidly in recent years. However
how to accurately and efficiently detect the visual defects of transmission line components is a key problem to be solved. Early component visual defect detection methods based on image processing and feature engineering have high requirements on image quality
and designing features for various transmission line components consumes much time and money. The current UAV aerial photography technology cannot meet the requirements of image quality
and its detection accuracy cannot meet the actual requirements of defect inspection of basic transmission line components. Thus
applying the component visual defect detection method based on image processing and feature engineering to complex real-life scenes is impossible. With deep learning
transmission line component defect detection models based on deep learning can effectively extract transmission line component objects and defects from aerial images with complex backgrounds. Deep learning-based detection models have many other advantages. 1) Deep learning can automatically extract multi-level
multi-angle features from original data instead of artificial design. 2) Deep learning has strong generalization and expression capabilities
that is
it possesses translation invariance. 3) Deep learning is more adaptable to complex real-world environments than traditional techniques. Therefore
the object detection model based on deep learning is an inevitable choice for processing transmission line inspection images. Before applying a deep learning model to the defect detection of key components of transmission lines
a complete defect data set of components should be created for the training of the deep learning model. However
in transmission line component defect detection
no data set is available to the public. This work aims to review the visual defect detection methods of transmission line components. On the basis of extensive research on the visual defect detection of transmission line components
existing detection methods are summarized and analyzed. First
the visual defect detection technology of key parts of transmission lines is described based on traditional algorithms. The development process of deep learning is reviewed
and the advantages and disadvantages of deep learning in defect detection are analyzed. Second
the status of research on the positioning and defect detection of three important components on transmission lines(i.e.
insulator
metal
and bolt)is introduced. Third
several key problems
such as sample imbalance
small object detection
and fine-grained detection
in transmission line component defect detection are analyzed. Lastly
the future development trend of transmission line component defect detection technology that meets the requirements of complex-scene grid inspection and fault diagnosis criteria is analyzed. The conclusion is that the development of visual defect detection of transmission line components cannot be separated from the development of deep learning in the field of image processing and image data augmentation. In short
the establishment of a high-precision
high-efficiency
strongly intelligent
multi-level
full-coverage defect detection model of key components of transmission lines on the basis of deep learning remains unrealized.
电力设备运维输电线路部件视觉缺陷检测深度学习目标检测知识引导
power equipment operation and maintenancetransmission line componentsvisual defect detectiondeep learningobject detectionknowledge guidance
Alex K, Llya S and Geoffrey E H. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90 [DOI: 10.1145/3065386].
Alexey B, Wang C Y and Liao H Y M. 2020. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2021-09-06].https://arxiv.org/pdf/2004.10934.pdfhttps://arxiv.org/pdf/2004.10934.pdf
Chang B, Wang H T, Chen H, Wu B, Chen W, Pan W F, Ma B and Ma Y L. 2018. Application of X-ray in detection of wire crimping fittings for transmission line. Electrical Engineering Materials, (2): 12-15
常彬, 王海涛, 陈泓, 吴波, 陈炜, 潘伟峰, 马波, 马云龙. 2018. X射线在输电线路导线压接金具检测中的应用. 电工材料, (2): 12-15 [DOI: 10.16786/j.cnki.1671-8887.eem.2018.02.003]
Chen J W, Liu Z G, Wang H R, Núñez A and Han Z W. 2018. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 67(2): 257-269 [DOI: 10.1109/TIM.2017.2775345]
Dai J F, Qi H Z, Xiong Y W, Li Y, Zhang G D, Hu H and Wei Y C. 2017. Deformable convolutional networks[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1703.06211.pdfhttps://arxiv.org/pdf/1703.06211.pdf
Fu J, Shao G W, Wu L, Liu L and Ji Z. 2017. Defect detection of line facility using hierarchical model with learning algorithm. High Voltage Engineering, 43(1): 266-275
付晶, 邵瑰玮, 吴亮, 刘磊, 季铮. 2017. 利用层次模型进行训练学习的线路设备缺陷检测方法. 高电压技术, 43(1): 266-275 [DOI: 10.13336/j.1003-6520.hve.20161227035]
Geng H M. 2013. Analysis on common faults and structure improvement of transmission line fittings. Silicon Valley, (18): 135, 126
耿慧敏. 2013. 输电线路金具常见故障及结构改进分析. 硅谷, (18): 135, 126 [DOI: 10.3969/j.issn.1671-7597.2013.18.138]
Girshick R, Donahue J, Darrell T and Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 580-587 [DOI: 10.1109/CVPR.2014.81http://dx.doi.org/10.1109/CVPR.2014.81]
Girshick R. 2015. Fast R-CNN//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE: 1440-1448 [DOI: 10.1109/ICCV.2015.169http://dx.doi.org/10.1109/ICCV.2015.169]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1406.2661.pdfhttps://arxiv.org/pdf/1406.2661.pdf
Han Y, Liu Z G, Lee D J, Liu W Q, Chen J W and Han Z W. 2018. Computer vision-based automatic rod-insulator defect detection in high-speed railway catenary system. International Journal of Advanced Robotic Systems, 15(3): #172988141877394 [DOI: 10.1177/1729881418773943]
He K M, Zhang X Y, Ren S Q and Jian S. 2015a. Deep residual learning for image recognition[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1512.03385.pdfhttps://arxiv.org/pdf/1512.03385.pdf
He K M, Zhang X Y, Ren S Q and Sun J. 2015b. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9): 1904-1916 [DOI: 10.1109/TPAMI.2015.2389824]
Hu J, Shen L, Albanie S, Sun G and Wu E H. 2017. Squeeze-and-Excitation networks[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1709.01507.pdfhttps://arxiv.org/pdf/1709.01507.pdf
Huang X B, Zhang H Y and Zhang Y. 2017. Automatic identification and location technology of glass insulator self-shattering. Journal of Electronic Imaging, 26(6): #063014 [DOI: 10.1117/1.JEI.26.6.063014]
Huang Z W and Zhang X X. 2017. Research on bolt defect detection technology of transmission tower. Industrial Control Computer, 30(6): 1-3, 6
黄志文, 张学习. 2017. 输电线杆塔横担处的螺栓缺陷检测技术研究. 工业控制计算机, 30(6): 1-3, 6 [DOI: 10.3969/j.issn.1001-182X.2017.06.001]
Kingma D P and Welling M. 2013. Auto-Encoding variational bayes[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1312.6114.pdfhttps://arxiv.org/pdf/1312.6114.pdf
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791]
Li X F, Liu H Y, Liu G H and Su H S. 2020. Transmission line pin defect detection based on deep learning[J/OL]. Power System Technology, [2020-11-09].https://doi.org/10.13335/j.1000-3673.pst.2020.1028https://doi.org/10.13335/j.1000-3673.pst.2020.1028
李雪峰, 刘海莹, 刘高华, 苏寒松. 2020. 基于深度学习的输电线路销钉缺陷检测[J/OL]. 电网技术, [2020-11-09].https://doi.org/10.13335/j.1000-3673.pst.2020.1028https://doi.org/10.13335/j.1000-3673.pst.2020.1028
Li X F, Su H S and Liu G H. 2020. Insulator defect recognition based on global detection and local segmentation. IEEE Access, 8: 59934-59946 [DOI: 10.1109/ACCESS.2020.2982288]
Li Y J, Zemel R, Brockschmidt M and Tarlow D. 2015. Gated graph sequence neural networks[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1511.05493.pdfhttps://arxiv.org/pdf/1511.05493.pdf
Liu S Y, Wang B, Gao K L, Wang Y, Gao C and Chen J Q. 2019. Object detection method for aerial inspection image based on region-based fully convolutional network. Automation of Electric Power Systems, 43(13): 162-168
刘思言, 王博, 高昆仑, 王岳, 高畅, 陈江琦. 2019. 基于R-FCN的航拍巡检图像目标检测方法. 电力系统自动化, 43(13): 162-168 [DOI: 10.7500/AEPS20180921005]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: Single shot multibox detector//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Liu W Q, Liu Z G, Wang H and Han Z W. 2020. An automated defect detection approach for catenary rod-insulator textured surfaces using unsupervised learning. IEEE Transactions on Instrumentation and Measurement, 69(10): 8411-8423 [DOI: 10.1109/TIM.2020.2987503]
Lu J T. 2016. Research on Signature Quantization of Key Components' Defect of Flying Robot Inspection Image. Beijing: North China Electric Power University
卢君妥. 2016. 飞行机器人巡检图像中关键部件缺陷特征量化. 北京: 华北电力大学
Mao T Q, Huang K, Zeng X W, Ren L R, Wang C C, Li S F, Zhang M and Chen Y. 2019. Development of power transmission line defects diagnosis system for UAV inspection based on binocular depth imaging technology//Proceedings of the 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, China: IEEE: 478-481 [DOI: 10.1109/ICEMPE.2019.8727361http://dx.doi.org/10.1109/ICEMPE.2019.8727361]
Pham H C, Ta Q B, Kim J T, Ho D D, Tran X L and Huynh T C. 2020. Bolt-Loosening monitoring framework using an image-based deep learning and graphical model. Sensors, 20(12): #3382 [DOI: 10.3390/s20123382]
Qi Y C, Jiang A X, Zhao Z B, Lang J Y and Nie L Q. 2019a. Hardware Fittings detection method in patrol images of transmission line based on improved SSD. Electrical Measurement and Instrumentation, 56(22): 7-12, 43
戚银城, 江爱雪, 赵振兵, 郎静宜, 聂礼强. 2019a. 基于改进SSD模型的输电线路巡检图像金具检测方法. 电测与仪表, 56(22): 7-12, 43 [DOI: 10.19753/j.issn1001-1390.2019.022.002]
Qi Y C, Lang J Y, Zhao Z B, Jiang A X and Nie L Q. 2019b. Relativistic GAN for bolts image generation with attention mechanism. Electrical Measurement and Instrumentation, 56(19): 64-69
戚银城, 郎静宜, 赵振兵, 江爱雪, 聂礼强. 2019b. 结合注意力机制的相对GAN螺栓图像生成. 电测与仪表, 56(19): 64-69 [DOI: 10.19753/j.issn1001-1390.2019.019.011]
Radford A, Metz L and Chintala S. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1511.06434.pdfhttps://arxiv.org/pdf/1511.06434.pdf
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1409.1556.pdfhttps://arxiv.org/pdf/1409.1556.pdf
Song W, Zuo D, Deng B F, Zhang H B, Xue K W and Hu H. 2016. Corrosion defect detection of earthquake hammer for high voltage transmission line. Chinese Journal of Scientific Instrument, 37(S1): 113-117
宋伟, 左丹, 邓邦飞, 张海兵, 薛凯文, 胡泓. 2016. 高压输电线防震锤锈蚀缺陷检测. 仪器仪表学报, 37(S1): 113-117 [DOI: 10.19650/j.cnki.cjsi.2016.s1.019]
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 1-9 [DOI: 10.1109/cvpr.2015.7298594http://dx.doi.org/10.1109/cvpr.2015.7298594]
Tao X, Zhang D P, Wang Z H, Liu X L, Zhang H Y and Xu D. 2020. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(4): 1486-1498 [DOI: 10.1109/TSMC.2018.2871750]
Tian B, Li D, Wang W, Liu Y, Yin Q L, Liu G X and Wang W G. 2018. Transmission line imagedefect diagnosis preprocessed parallel method based on deep learning//Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). Huhhot, China: IEEE: 299-303 [DOI: 10.1109/ICMCCE.2018.00068http://dx.doi.org/10.1109/ICMCCE.2018.00068]
Wan N, Tang X M, Liu S Y, Chen J Q, Guo K G, Li L Y and Liu S. 2020. Transmission line image object detection method considering fine-grained contexts//Proceedings of the 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chongqing, China: IEEE: 499-502 [DOI: 10.1109/ITNEC48623.2020.9084729http://dx.doi.org/10.1109/ITNEC48623.2020.9084729]
Wang J N, Su J, Yang K, Zhai Y J and Liu H J. 2020. Image generation method for insulators based on Cycle-GAN. Guangdong Electric Power, 33(1): 100-108
王金娜, 苏杰, 杨凯, 翟永杰, 刘洪吉. 2020. 基于Cycle-GAN的绝缘子图像生成方法. 广东电力, 33(1): 100-108 [DOI: 10.3969/j.issn.1007-290X.2020.001.013]
Wang M, Du Y and Zhang Z R. 2015. Study on power transmission lines inspection using unmanned aerial vehicle and image recognition of insulator defect. Journal of Electronic Measurement and Instrumentation, 29(12): 1862-1869
王淼, 杜毅, 张忠瑞. 2015. 无人机辅助巡视及绝缘子缺陷图像识别研究. 电子测量与仪器学报, 29(12): 1862-1869 [DOI: 10.13382/j.jemi.2015.12.017]
Wang S. 2017. Research on Algorithms of Vibration Damper Detection on Power Line Image. Beijing: Beijing Jiaotong University
王森. 2017. 输电线路图像上防震锤检测算法研究. 北京: 北京交通大学
Wang S Q, Liu Y F, Qing Y H, Wang C X, Lan T Z and Yao R T. 2020. Detection of insulator defects with improved ResNeSt and region proposal network. IEEE Access, 8: 184841-184850 [DOI: 10.1109/ACCESS.2020.3029857]
Wang W G, Zhang J J, Han J, Liu L and Zhu M W. 2015. Broken strand and foreign body fault detection method for power transmission line based on unmanned aerial vehicle image. Journal of Computer Applications, 35(8): 2404-2408
王万国, 张晶晶, 韩军, 刘俍, 朱铭武. 2015. 基于无人机图像的输电线断股与异物缺陷检测方法. 计算机应用, 35(8): 2404-2408 [DOI: 10.11772/j.issn.1001-9081.2015.08.2404]
Wu H B, Xi Y P, Fang W M, Sun X M and Jiang L. 2014. Damper detection in helicopter inspection of power transmission line//Proceedings of the 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control. Harbin, China: IEEE: 628-632 [DOI: 10.1109/IMCCC.2014.134http://dx.doi.org/10.1109/IMCCC.2014.134]
Wu Q G and An J B. 2014. An active contour model based on texture distribution for extracting inhomogeneous insulators from aerial images. IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3613-3626 [DOI: 10.1109/TGRS.2013.2274101]
Xue Y, Wu H D, Zhang N, Yu Z C, Ye X K and Hua X. 2020. Detection of insulation piercing connectors and bolts on the transmission line using improved Faster R-CNN. Laser and Optoelectronics Progress, 57(8): 76-83
薛阳, 吴海东, 张宁, 俞志程, 叶晓康, 华茜. 2020. 基于改进Faster R-CNN输电线穿刺线夹及螺栓的检测. 激光与光电子学进展, 57(8): 76-83 [DOI: 10.3788/LOP57.081008]
Zhai Y J, Wang D, Zhang M L, Wang J R and Guo F. 2017. Fault detection of insulator based on saliency and adaptive morphology. Multimedia Tools and Applications, 76(9): 12051-12064 [DOI: 10.1007/s11042-016-3981-2]
Zhang G N and Liu Z G. 2014. Fault detection of catenary insulator damage/foreign material based on corner matching and spectral clustering. Chinese Journal of Scientific Instrument, 35(6): 1370-1377
张桂南, 刘志刚. 2014. 基于角点匹配与谱聚类的接触网绝缘子破损/夹杂异物故障检测. 仪器仪表学报, 35(6): 1370-1377 [DOI: 10.19650/j.cnki.cjsi.2014.06.023]
Zhang J J, Han J, Zhao Y B, Liu L, Wang W G and Zhu M W. 2014. Insulator recognition and defects detection based on shape perceptual. Journal of Image and Graphics, 19(8): 1194-1201
张晶晶, 韩军, 赵亚博, 刘俍, 王万国, 朱铭武. 2014. 形状感知的绝缘子识别与缺陷诊断. 中国图象图形学报, 19(8): 1194-1201 [DOI: 10.11834/jig.20140811]
Zhang M L. 2018. Recognition and Fault Detection of the Key Components in Transmission Lines Based on Aerial Images. Baoding: North China Electric Power University
张木柳. 2018. 基于航拍图像的输电线路关键部件识别与故障检测. 保定: 华北电力大学
Zhang S, Wang H T, Dong X C, Li Y R, Li Y, Wang X Y and Sun Y Y. 2020. Bolt detection technology of transmission line based on deep learning[J/OL]. Power System Technology. [2020-11-09].https://doi.org/10.13335/j.1000-3673.pst.2020.1336https://doi.org/10.13335/j.1000-3673.pst.2020.1336
张姝, 王昊天, 董骁翀, 李玉容, 李烨, 王新迎, 孙英云. 基于深度学习的输电线路螺栓检测技术[J/OL]. 电网技术. [2020-11-09].https://doi.org/10.13335/j.1000-3673.pst.2020.1336https://doi.org/10.13335/j.1000-3673.pst.2020.1336[DOI: 10.13335/j.1000-3673.pst.2020.1336http://dx.doi.org/10.13335/j.1000-3673.pst.2020.1336].
Zhang W D, Gu C Y, Li Z and Sheng G H. 2020. Image detection technology on pin defect to overhead power lines//Proceedings of the 5th Asia Conference on Power and Electrical Engineering (ACPEE). Chengdu, China: IEEE: 229-233 [DOI: 10.1109/ACPEE48638.2020.9136237http://dx.doi.org/10.1109/ACPEE48638.2020.9136237]
Zhang X S, Bian M H, Liang Q G and Lu Z Q. 2017. Defect detection and classification method of power clamp based on eddy current testing. China Sciencepaper, 12(4): 454-458
张兴森, 边美华, 梁庆国, 卢展强. 2017. 基于涡流检测的电力线夹缺陷检测与分类方法. 中国科技论文, 12(4): 454-458 [DOI: 10.3969/j.issn.2095-2783.2017.04.021]
Zhao Q, Bai J F and Chen J H. 2013. Theory and Application of Transmission Line Fittings. Beijing: China Electric Power Press
赵强, 白俊峰, 陈建华. 2013. 输电线路金具理论与应用. 北京: 中国电力出版社
Zhao Z B, Cui Y P, Qi Y C, Du L Q, Zhang K and Zhai Y J. 2019. Detection method of insulator in aerial inspection image based on modified R-FCN. Computer Science, 46(3): 159-163
赵振兵, 崔雅萍, 戚银城, 杜丽群, 张珂, 翟永杰. 2019. 基于改进的R-FCN航拍巡线图像中的绝缘子检测方法. 计算机科学, 46(3): 159-163 [DOI: 10.11896/j.issn.1002-137X.2019.03.024]
Zhao Z B, Duan J K, Kong Y H and Zhang D X. 2020a. Construction and application of bolt and nut pair knowledge graph based on GGNN[J/OL]. Power System Technology. [2020-11-09].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DWJS20200825000&v=MTA0NTFQWXc5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnBGeS9sVWI3T0lWYz1JVHJCZmJHNEhOSE1wNDFBWk9zhttps://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DWJS20200825000&v=MTA0NTFQWXc5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnBGeS9sVWI3T0lWYz1JVHJCZmJHNEhOSE1wNDFBWk9z
赵振兵, 段记坤, 孔英会, 张东霞. 2020a. 基于GGNN的栓母对知识图谱构建与应用[J/OL]. 电网技术. [2020-11-09].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DWJS20200825000&v=MTA0NTFQWXc5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnBGeS9sVWI3T0lWYz1JVHJCZmJHNEhOSE1wNDFBWk9zhttps://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DWJS20200825000&v=MTA0NTFQWXc5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnBGeS9sVWI3T0lWYz1JVHJCZmJHNEhOSE1wNDFBWk9z[DOI: 10.13335/j.1000-3673.pst.2020.0063http://dx.doi.org/10.13335/j.1000-3673.pst.2020.0063].
Zhao Z B, Li Y X, Qi Y C, Kong Y H and Nie L Q. 2020b. Insulator defect detection method based on dynamic focus loss function and sample balance method. Electric Power Automation Equipment, 40(10): 205-211
赵振兵, 李延旭, 戚银城, 孔英会, 聂礼强. 2020b. 基于动态焦点损失函数和样本平衡方法的绝缘子缺陷检测方法. 电力自动化设备, 40(10): 205-211 [DOI: 10.16081/j.epae.202010008]
Zhao Z B, Li Y X, Zhen Z, Zhai Y J, Zhang K and Zhao W Q. 2020c. Typical fittings detection method with faster R-CNN combining KL divergence and shape constraints. High Voltage Engineering, 46(9): 3018-3026
赵振兵, 李延旭, 甄珍, 翟永杰, 张珂, 赵文清. 2020c. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法. 高电压技术, 46(9): 3018-3026 [DOI: 10.13336/j.1003-6520.hve.20200507023]
Zhao Z B, Liu N and Wang L. 2015. Localization of multiple insulators by orientation angle detection and binary shape prior knowledge. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6): 3421-3428 [DOI: 10.1109/TDEI.2015.004741]
Zhao Z B, Qi H Y, Fan X Q, Xu G Z, Qi Y C, Zhai Y J and Zhang K. 2020a. Image representation method based on relative layer entropy for insulator recognition. Entropy, 22(4): #419 [DOI: 10.3390/e22040419]
Zhao Z B, Qi H Y, Qi Y C, Zhang K, Zhai Y J and Zhao W Q, 2020b. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines. IEEE Transactions on Instrumentation and Measurement, 69(9): 6080-6091 [DOI: 10.1109/TIM.2020.2969057]
Zhao Z B, Xu L, Qi Y C and Cai Y P. 2016. Automatic co-segmentation method for aerial insulator based on Hough detection and C-V model. Chinese Journal of Scientific Instrument, 37(2): 395-403
赵振兵, 徐磊, 戚银城, 蔡银萍. 2016. 基于Hough检测和C-V模型的航拍绝缘子自动协同分割方法. 仪器仪表学报, 37(2): 395-403 [DOI: 10.3969/j.issn.0254-3087.2016.02.021]
Zhao Z B, Zhang W, Qi Y C, Zhai Y J and Zhao W Q. 2021. Causal classification method of transmission lines fitting defect combined with deep features. Journal of Beijing University of Aeronautics and Astronautics, 47(3): 461-168
赵振兵, 张薇, 戚银城, 翟永杰, 赵文清. 2021. 融合深度特征的输电线路金具缺陷因果分类方法. 北京航空航天大学学报, 47(3): 461-468 [DOI: 10.13700/j.bh.1001-5965.2020.0456]
Zhu H, Li W G and Lin Y. 2006. Present and future development of detection methods for composite insulator. Insulators and Surge Arresters, (6): 13-17
朱虎, 李卫国, 林冶. 2006. 绝缘子检测方法的现状与发展. 电瓷避雷器, (6): 13-17 [DOI: 10.3969/j.issn.1003-8337.2006.06.004]
Zhu J Y, Park T, Isola P and Efros A. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks[EB/OL]. [2020-11-06].https://arxiv.org/pdf/1703.10593.pdfhttps://arxiv.org/pdf/1703.10593.pdf
Zou D. 2017. Research on Recognition of Key Components and Detection of Anomaly in Transmission Line. Baoding: North China Electric Power University
邹栋. 2017. 输电线路中关键部件图像识别及异常检测方法研究. 保定: 华北电力大学
相关作者
相关机构