Research progress of six degree of freedom (6DoF) video technology
- Vol. 28, Issue 6, Pages: 1863-1890(2023)
Published: 16 June 2023
DOI: 10.11834/jig.230025
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 June 2023 ,
移动端阅览
王旭, 刘琼, 彭宗举, 侯军辉, 元辉, 赵铁松, 秦熠, 吴科君, 刘文予, 杨铀. 2023. 6DoF视频技术研究进展. 中国图象图形学报, 28(06):1863-1890
Wang Xu, Liu Qiong, Peng Zongju, Hou Junhui, Yuan Hui, Zhao Tiesong, Qin Yi, Wu Kejun, Liu Wenyu, Yang You. 2023. Research progress of six degree of freedom (6DoF) video technology. Journal of Image and Graphics, 28(06):1863-1890
随着元宇宙概念的兴起,以6自由度(six degree of freedom, 6DoF)视频为代表的新一代交互式媒体技术得到产业界和学术界的广泛关注。6DoF视频隶属于多媒体通信领域,通过计算重构的方式向用户提供包括视角、光照、焦距和视场范围等多个维度的媒体交互与内容变化,能使千里之外的用户有身临其境、千人千面之感,与元宇宙具有的感知、计算、重构、协同和交互等技术特征具有高度重合性。因此,6DoF视频涵盖的技术体系可作为实现元宇宙的替代技术框架。本文提出了6DoF视频10个方面的40个问题,并将6DoF视频端到端技术链条归纳为生成、分发和呈现3个宏观阶段,随后围绕这3个技术阶段分别从内容采集与预处理、编码压缩与传输优化以及交互与呈现等方面阐述国内外研究进展。其中,在内容采集与预处理阶段,阐述了多视点联合采集、多视点与深度联合采集、深度图与点云预处理;在视频压缩与传输阶段,阐述了多视点视频编码、多视点+深度视频编码、光场图像压缩、焦栈图像压缩、点云编码压缩、6DoF视频传输优化;在交互与显示阶段,阐述了解码后滤波增强和虚拟视点合成。最后,本文围绕该领域当下的挑战,对未来趋势进行了讨论。
The six degree of freedom based (6DoF-based ) video technique is featured by interaction between video content and users, and it is focused on its 1) linear-derived multiple capacities, 2) horizontal straightness, 3) vertical straightness, 4) pitch, 5) yaw, and 6) roll motions of users. In this manner, users can change multiple audio-visual dimensions, including: viewing perspective, lighting condition or directions, focal length or spot, field of view through ground truth-compared computational or synthesized content reconstruction. The 6DoF video can be used to change conventional behavior of video watching, in which the user-video interaction is limited to different span of channels and the relations between video contents is restricted as well. The 6DoF-based technique can offer immersive experience for users because the homogeneity of video-watching receptive content can be in consistency per their motion. In this way, the 6DoF video can be recognized as an epoch-making type of video for academia and industries. At the same time, metaverse-driven 6DoF video has also been recognized as a new generation of interactive media technology, which is recognized as one of the key technologies for Metaversein related domains. All these features make users experience feel depth-immersive and diversified. This mutual-benefited status is in relevance to the metaverse-based perception, computing, reconstruction, collaboration, interaction, and other related technical features. Basically, 6DoF video is originated from the framework of typical multimedia communication system, where it can be suitable to meet the basic procedure requirement of video-contextual multimedia communication like its capturing, content process, video compression, transmission, decode and display. To realize intelligent human-terminal interaction, it brings a new look beyond traditional 3D video communication system, and the requirements for interaction range and intelligence are still acomplicated. Therefore, such newly techniques are in support of new type of video to a certain extent. Our proposed technical framework of 6DoF-relevant multimedia communication system is demonstrated on the three aspects of generation, distribution, and visualization. Forty scientific and technical challenges of this domain are illustrated and it can be categorized them into 10 different directions. We carry out literature review of its growth of per one of these 10 directions on the aspects of content acquisition and pre-processing, coding compression and transmission optimization, interaction, and presentation. For techniques analysis, it is focused on such aspects of 1) content generation-derived multiview video-captured content, 2) multiview video plus depth, and 3) point cloud. The data-acquired systems can be categorized by 2 types of multiview and multiview plus depth system, and different types of contents can be thus obtained via these systems. To describe the 3D structure of the spot scene initially, multiview color videos can be captured without any affiliated information, but it is a challenging issue for subsequent data processing techniques. After that, multiview plus depth system is proposed to handle this problem, while data can be classified into two types of i) color plus depth and ii) point cloud. Data-heteogenous volume is a big challenge for these kinds of data representation to some extent. The video compression techniques-after can be focused on in terms of the video contents. Popular compression techniques for multiview video, multiview video plus depth, light fields, and point clouds are discussed further, including their origination, mechanism, performance, and credible application standards. Subsequently, transmission techniques for 6DoF video are illustrated as well after the video bitstream is obtained. Such techniques like bit allocation, interaction oriented transmission, standards and protocols are all mentioned and discussed. Its quality evaluation and synthesized-view for user-terminal interaction are analyzed as well. It can be reached to user-friendly in terms of a “capture to display” based 6DoF video system. Pixel-based methods are still discussed and optimized but computational cost is challenged there. Recent learning based methods are more concerned about terminal-oriented applications, especially for its synthesized view. To meet the requirements from practical applications, 40 scientific and technical challenges mentioned above are still to be resolved further.
元宇宙6DoF视频内容采集编码压缩视点合成
metaversesix degree of freedom (6DoF) videocontent capturingcoding compressionview synthesis
Abedi F, Yang Y and Liu Q. 2018. Group geometric calibration and rectification for circular multi-camera imaging system. Optics Express, 26(23): 30596-30613 [DOI: 10.10364/OE.26.030596http://dx.doi.org/10.10364/OE.26.030596]
Ahmad W, Vagharshakyan S, Sjöström M, Gotchev A, Bregovic R and Olsson R. 2020. Shearlet transform-based light field compression under low bitrates. IEEE Transactions on Image Processing, 29: 4269-4280 [DOI: 10.1109/TIP.2020.2969087http://dx.doi.org/10.1109/TIP.2020.2969087]
Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D and Silva C T. 2003. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 9(1): 3-15 [DOI: 10.1109/tvcg.2003.1175093http://dx.doi.org/10.1109/tvcg.2003.1175093]
An P, Liu Q, Abedi F and Yang Y. 2020. Novel calibration method for camera array in spherical arrangement. Signal Processing: Image Communication, 80: #115682 [DOI: 10.1016/j.image.2019.115682http://dx.doi.org/10.1016/j.image.2019.115682]
Bakir N, Hamidouche W, Fezza S A, Samrouth K and Déforges O. 2021. Light field image coding using VVC standard and view synthesis based on dual discriminator GAN. IEEE Transactions on Multimedia, 23: 2972-2985 [DOI: 10.1109/TMM.2021.3068563http://dx.doi.org/10.1109/TMM.2021.3068563]
Ban Y X, Xie L, Xu Z M, Zhang X G, Guo Z M and Wang Y. 2018. CUB360: exploiting cross-users behaviors for viewport prediction in 360 video adaptive streaming//Proceedings of 2018 IEEE International Conference on Multimedia and Expo. San Diego, USA: IEEE: 1-6 [DOI: 10.1109/ICME.2018.8486606http://dx.doi.org/10.1109/ICME.2018.8486606]
Barron J T, Mildenhall B, Tancik M, Hedman P, Martin-Brualla R and Srinivasan P P. 2021. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Nashville, USA: IEEE: 5835-5844 [DOI: 10.1109/ICCV48922.2021.00580http://dx.doi.org/10.1109/ICCV48922.2021.00580]
Barron J T, Mildenhall B, Verbin D, Srinivasan P P and Hedman P. 2022. Mip-NeRF 360: unbounded anti-aliased neural radiance fields//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 5460-5469 [DOI: 10.1109/CVPR52688.2022.00539http://dx.doi.org/10.1109/CVPR52688.2022.00539]
Biswas S, Liu J, Wong K, Wang S L and Urtasun R. 2020. MuSCLE: multi sweep compression of LiDAR using deep entropy models//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc.: #1859 [DOI: 10.48550/arXiv.2011.07590http://dx.doi.org/10.48550/arXiv.2011.07590]
Bonatto D, Hirt G, Kvasov A, Fachada S and Lafruit G. 2021. MPEG immersive video tools for light field head mounted displays//Proceedings of 2021 International Conference on Visual Communications and Image Processing. Munich, Germany: IEEE: #9675317 [DOI: 10.1109/VCIP53242.2021.9675317http://dx.doi.org/10.1109/VCIP53242.2021.9675317]
Boyce J M, Doré R, Dziembowski A, Fleureau J, Jung J, Kroon B, Salahieh B, Vadakital V K M and Yu L. 2021. MPEG immersive video coding standard. Proceedings of the IEEE, 109(9): 1521-1536 [DOI: 10.1109/JPROC.2021.3062590http://dx.doi.org/10.1109/JPROC.2021.3062590]
Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M and Feller S D. 2012. Multiscale gigapixel photography. Nature, 486(7403): 386-389 [DOI: 10.1038/nature11150http://dx.doi.org/10.1038/nature11150]
Bross B, Wang Y K, Yan Y, Liu S, Chen J L, Sullivan G J and Ohm J R. 2021. Overview of the versatile video coding (VVC) standard and its applications. IEEE Transactions on Circuits and Systems for Video Technology, 31(10): 3736-3764 [DOI: 10.1109/TCSVT.2021.3101953http://dx.doi.org/10.1109/TCSVT.2021.3101953]
Buades A, Coll B and Morel J M. 2005. A non-local algorithm for image denoising//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE: 60-65 [DOI: 10.1109/CVPR.2005.38http://dx.doi.org/10.1109/CVPR.2005.38]
Cernigliaro G, Jaureguizar F, Ortega A, Cabrera J and García N. 2009. Fast mode decision for multiview video coding based on depth maps//Proceedings of SPIE 7257, Visual Communications and Image Processing 2009. San Jose, USA: SPIE: #72570N [DOI: 10.1117/12.806861http://dx.doi.org/10.1117/12.806861]
Ceulemans B, Lu S P, Lafruit G and Munteanu A. 2018. Robust multiview synthesis for wide-baseline camera arrays. IEEE Transactions on Multimedia, 20(9): 2235-2248 [DOI: 10.1109/TMM.2018.2802646http://dx.doi.org/10.1109/TMM.2018.2802646]
Chang C L, Zhu X Q, Ramanathan P and Girod B. 2006. Light field compression using disparity-compensated lifting and shape adaptation. IEEE Transactions on Image Processing, 15(4): 793-806 [DOI: 10.1109/TIP.2005.863954http://dx.doi.org/10.1109/TIP.2005.863954]
Chang H R and Hang H M. 2017. Wide angle virtual view synthesis using two-by-two Kinect V2//Proceedings of 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Kuala Lumpur, Malaysia: IEEE: 1083-1091 [DOI: 10.1109/APSIPA.2017.8282189http://dx.doi.org/10.1109/APSIPA.2017.8282189]
Chauve A L, Labatut P and Pons J P. 2010. Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 1261-1268 [DOI: 10.1109/CVPR.2010.5539824http://dx.doi.org/10.1109/CVPR.2010.5539824]
Chen J, Hou J H and Chau L P. 2018. Light field compression with disparity-guided sparse coding based on structural key views. IEEE Transactions on Image Processing, 27(1): 314-324 [DOI: 10.1109/TIP.2017.2750413http://dx.doi.org/10.1109/TIP.2017.2750413]
Chen J, Watanabe R, Nonaka K, Konno T, Sankoh H and Naito S. 2019. Fast free-viewpoint video synthesis algorithm for sports scenes//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China: IEEE: 3209-3215 [DOI: 10.1109/IROS40897.2019.8967584http://dx.doi.org/10.1109/IROS40897.2019.8967584]
Chen J Y, Luo X Z, Hu M, Wu D and Zhou Y P. 2021. Sparkle: user-aware viewport prediction in 360-degree video streaming. IEEE Transactions on Multimedia, 23: 3853-3866 [DOI: 10.1109/TMM.2020.3033127http://dx.doi.org/10.1109/TMM.2020.3033127]
Choudhury P and Tumblin J. 2005. The trilateral filter for high contrast images and meshes//Proceedings of the ACM SIGGRAPH 2005 Courses. Los Angeles, United States: ACM: #1198565 [DOI: 10.1145/1198555.1198565http://dx.doi.org/10.1145/1198555.1198565]
Chung K L, Huang Y H, Lin C H and Fang J P. 2016. Novel bitrate saving and fast coding for depth videos in 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 26(10): 1859-1869 [DOI: 10.1109/TCSVT.2015.2473296http://dx.doi.org/10.1109/TCSVT.2015.2473296]
Chung T Y, Sim J Y and Kim C S. 2014. Bit allocation algorithm with novel view synthesis distortion model for multiview video plus depth coding. IEEE Transactions on Image Processing, 23(8): 3254-3267 [DOI: 10.1109/TIP.2014.2327801http://dx.doi.org/10.1109/TIP.2014.2327801]
Criminisi A, Perez P and Toyama K. 2004. Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9): 1200-1212 [DOI: 10.1109/TIP.2004.833105http://dx.doi.org/10.1109/TIP.2004.833105]
Dai A, Qi C R and Nießner M. 2017. Shape completion using 3D-encoder-predictor CNNs and shape synthesis//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6545-6554 [DOI: 10.1109/CVPR.2017.693http://dx.doi.org/10.1109/CVPR.2017.693]
Dai F, Zhang J, Ma Y K and Zhang Y D. 2015. Lenselet image compression scheme based on subaperture images streaming//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, Canada: IEEE: 4733-4737 [DOI: 10.1109/ICIP.2015.7351705http://dx.doi.org/10.1109/ICIP.2015.7351705]
De Abreu A, Frossard P and Pereira F. 2015. Optimizing multiview video plus depth prediction structures for interactive multiview video streaming. IEEE Journal of Selected Topics in Signal Processing, 9(3): 487-500 [DOI: 10.1109/JSTSP.2015.2407320http://dx.doi.org/10.1109/JSTSP.2015.2407320]
de Oliveira A Q, da Silveira T L T, Walter M and Jung C R. 2021. A hierarchical superpixel-based approach for DIBR view synthesis. IEEE Transactions on Image Processing, 30: 6408-6419 [DOI: 10.1109/TIP.2021.3092817http://dx.doi.org/10.1109/TIP.2021.3092817]
de Queiroz R L and Chou P A. 2016. Compression of 3D point clouds using a region-adaptive hierarchical transform. IEEE Transactions on Image Processing, 25(8): 3947-3956 [DOI: 10.1109/TIP.2016.2575005http://dx.doi.org/10.1109/TIP.2016.2575005]
Dib E, Le Pendu M, Jiang X R and Guillemot C. 2020. Local low rank approximation with a parametric disparity model for light field compression. IEEE Transactions on Image Processing, 29: 9641-9653 [DOI: 10.1109/TIP.2020.3029655http://dx.doi.org/10.1109/TIP.2020.3029655]
Ding L F, Tsung P K, Chien S Y, Chen W Y and Chen L G. 2008. Content-aware prediction algorithm with inter-view mode decision for multiview video coding. IEEE Transactions on Multimedia, 10(8): 1553-1564 [DOI: 10.1109/TMM.2008.2007314http://dx.doi.org/10.1109/TMM.2008.2007314]
Domański M, Al-Obaidi Y and Grajek T. 2021. Universal modeling of monoscopic and multiview video codecs with applications to encoder control//Proceedings of 2021 IEEE International Conference on Image Processing. Anchorage, USA: IEEE: 2144-2148 [DOI: 10.1109/ICIP42928.2021.9506735http://dx.doi.org/10.1109/ICIP42928.2021.9506735]
Doutre C and Nasiopoulos P. 2009. Color correction preprocessing for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 19(9): 1400-1406 [DOI: 10.1109/TCSVT.2009.2022780http://dx.doi.org/10.1109/TCSVT.2009.2022780]
Fachada S, Bonatto D, Schenkel A and Lafruit G. 2018. Depth image based view synthesis with multiple reference views for virtual reality//Proceedings of 2018 3DTV-Conference: The True Vision – Capture, Transmission and Display of 3D Video. Helsinki, Finland: IEEE: 1-4 [DOI: 10.1109/3DTV.2018.8478484http://dx.doi.org/10.1109/3DTV.2018.8478484]
Fan C L, Yen S C, Huang C Y and Hsu C H. 2020. Optimizing fixation prediction using recurrent neural networks for 360° video streaming in head-mounted virtual reality. IEEE Transactions on Multimedia, 22(3): 744-759 [DOI: 10.1109/TMM.2019.2931807http://dx.doi.org/10.1109/TMM.2019.2931807]
Fang G C, Hu Q Y, Wang H Y, Xu Y L and Guo Y L. 2022. 3DAC: learning attribute compression for point clouds//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, United States: IEEE: 14799-14808 [DOI: 10.1109/CVPR52688.2022.01440http://dx.doi.org/10.1109/CVPR52688.2022.01440]
Feng X L, Li W T and Wei S. 2021b. LiveROI: region of interest analysis for viewport prediction in live mobile virtual reality streaming//Proceedings of the 12th ACM Multimedia Systems Conference. Istanbul, Turkey: Association for Computing Machinery: 132-145 [DOI: 10.1145/3458305.3463378http://dx.doi.org/10.1145/3458305.3463378]
Feng X L, Liu Y and Wei S. 2020. LiveDeep: online viewport prediction for live virtual reality streaming using lifelong deep learning//Proceedings of 2020 IEEE Conference on Virtual Reality and 3D User Interfaces. Atlanta, USA: IEEE: 800-808 [DOI: 10.1109/VR46266.2020.00104http://dx.doi.org/10.1109/VR46266.2020.00104]
Fezza S A, Larabi M C and Faraoun K M. 2014. Feature-based color correction of multiview video for coding and rendering enhancement. IEEE Transactions on Circuits and Systems for Video Technology, 24(9): 1486-1498 [DOI: 10.1109/TCSVT.2014.2309776http://dx.doi.org/10.1109/TCSVT.2014.2309776]
Fiengo A, Chierchia G, Cagnazzo M and Pesquet-Popescu B. 2016. Convex optimization for frame-level rate allocation in MV-HEVC//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE: 2157-2161 [DOI: 10.1109/ICIP.2016.7532740http://dx.doi.org/10.1109/ICIP.2016.7532740]
Franca J G D M, Gazziro M A, Ide A N and Saito J H. 2005. A 3D scanning system based on laser triangulation and variable field of view//Proceedings of 2005 IEEE International Conference on Image Processing. Genova, Italy: IEEE: 425-428 [DOI: 10.1109/ICIP.2005.1529778http://dx.doi.org/10.1109/ICIP.2005.1529778]
Fu C Y, Li G, Song R, Gao W and Liu S. 2022. OctAttention: octree-based large-scale contexts model for point cloud compression//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press: 625-633 [DOI: 10.1609/aaai.v36i1.19942http://dx.doi.org/10.1609/aaai.v36i1.19942]
Fu Z Z, Li Y, Xu J, Wu H G and Lai Y W. 2017. Super resolution for multiview mixed resolution images in transform-domain with optimal weight. Multimedia Tools and Applications, 76(2): 3031-3045 [DOI: 10.1007/s11042-016-3258-9http://dx.doi.org/10.1007/s11042-016-3258-9]
Gao L Y, Fan T Y, Wang J Q, Xu Y L, Sun J and Ma Z. 2021. Point cloud geometry compression via neural graph sampling//Proceedings of 2021 IEEE International Conference on Image Processing. Anchorage, USA: IEEE: 3373-3377 [DOI: 10.1109/ICIP42928.2021.9506631http://dx.doi.org/10.1109/ICIP42928.2021.9506631]
Gao Y, Yang Y, Zhen Y and Dai Q H. 2015. Depth error elimination for RGB-D cameras. ACM Transactions on Intelligent Systems and Technology, 6(2): #13 [DOI: 10.1145/2735959http://dx.doi.org/10.1145/2735959]
Gastal E S L and Oliveiray M M. 2012. Adaptive manifolds for real-time high-dimensional filtering. ACM Transactions on Graphics, 31(4): #33 [DOI: 10.1145/2185520.2185529http://dx.doi.org/10.1145/2185520.2185529]
He X, Liu Q and Yang Y. 2020a. MV-GNN: multi-view graph neural network for compression artifacts reduction. IEEE Transactions on Image Processing, 29: 6829-6840 [DOI: 10.1109/TIP.2020.2994412http://dx.doi.org/10.1109/TIP.2020.2994412]
He X, Liu Q and Yang Y. 2020b. Make full use of priors: cross-view optimized filter for multi-view depth enhancement. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(4): #127 [DOI: 10.1145/3408293http://dx.doi.org/10.1145/3408293]
Hong Y, Peng B, Xiao H Y, Liu L G and Zhang J Y. 2022. HeadNeRF: a realtime NeRF-based parametric head model//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 20342-20352 [DOI: 10.1109/CVPR52688.2022.01973http://dx.doi.org/10.1109/CVPR52688.2022.01973]
Hou J H, Chen J and Chau L P. 2019. Light field image compression based on Bi-level view compensation with rate-distortion optimization. IEEE Transactions on Circuits and Systems for Video Technology, 29(2): 517-530 [DOI: 10.1109/TCSVT.2018.2802943http://dx.doi.org/10.1109/TCSVT.2018.2802943]
Hou X S, Dey S, Zhang J Z and Budagavi M. 2021. Predictive adaptive streaming to enable mobile 360-degree and VR experiences. IEEE Transactions on Multimedia, 23: 716-731 [DOI: 10.1109/TMM.2020.2987693http://dx.doi.org/10.1109/TMM.2020.2987693]
Hu F H, Deng Y S, Saad W, Bennis M and Aghvami A H. 2020. Cellular-connected wireless virtual reality: requirements, challenges, and solutions. IEEE Communications Magazine, 58(5): 105-111 [DOI: 10.1109/MCOM.001.1900511http://dx.doi.org/10.1109/MCOM.001.1900511]
Hu W, Fu Z Q and Guo Z M. 2019. Local frequency interpretation and non-local self-similarity on graph for point cloud inpainting. IEEE Transactions on Image Processing, 28(8): 4087-4100 [DOI: 10.1109/TIP.2019.2906554http://dx.doi.org/10.1109/TIP.2019.2906554]
Huang C, Peng Z J, Miao J C and Chen F. 2018. Joint depth video enhancement and fast intra encoding algorithm in 3D-HEVC. Journal of Image and Graphics, 23(4): 500-509
黄超, 彭宗举, 苗瑾超, 陈芬. 2018. 联合深度视频增强的3D-HEVC帧内编码快速算法. 中国图象图形学报, 23(4): 500-509 [DOI: 10.11834/jig.170452http://dx.doi.org/10.11834/jig.170452]
Huang H, Li D, Zhang H, Ascher U and Cohen-Or D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Transactions on Graphics, 28(5): 1-7 [DOI: 10.1145/1618452.1618522http://dx.doi.org/10.1145/1618452.1618522]
Huang H, Wu S H, Gong M L, Cohen-Or D, Ascher U and Zhang H. 2013. Edge-aware point set resampling. ACM Transactions on Graphics, 32(1): #9 [DOI: 10.1145/2421636.2421645http://dx.doi.org/10.1145/2421636.2421645]
Huang H C, Wang Y C, Chen W C, Lin P Y and Huang C T. 2019. System and VLSI implementation of phase-based view synthesis//Proceedings of the ICASSP 2019 —— 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: IEEE: 1428-1432 [DOI: 10.1109/ICASSP.2019.8682399http://dx.doi.org/10.1109/ICASSP.2019.8682399]
Huang L L, Wang S L, Wong K, Liu J and Urtasun R. 2020a. OctSqueeze: octree-structured entropy model for LiDAR compression//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1310-1320 [DOI: 10.1109/CVPR42600.2020.00139http://dx.doi.org/10.1109/CVPR42600.2020.00139]
Huang Z T, Yu Y K, Xu J W, Ni F and Le X Y. 2020b. PF-Net: point fractal network for 3D point cloud completion//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 7662-7670 [DOI: 10.1109/CVPR42600.2020.00768http://dx.doi.org/10.1109/CVPR42600.2020.00768]
Ibrahim M M, Liu Q, Khan R, Yang J Y, Adeli E and Yang Y. 2020a. Depth map artefacts reduction: a review. IET Image Processing, 14(12): 2630-2644 [DOI: 10.1049/iet-ipr.2019.1622http://dx.doi.org/10.1049/iet-ipr.2019.1622]
Ibrahim M M, Liu Q and Yang Y. 2020b. Adaptive colour-guided non-local means algorithm for compound noise reduction of depth maps. IET Image Processing, 14(12): 2768-2779 [DOI: 10.1049/iet-ipr.2019.0074http://dx.doi.org/10.1049/iet-ipr.2019.0074]
Jia C M, Zhang X F, Wang S S, Wang S Q and Ma S W. 2019. Light field image compression using generative adversarial network-based view synthesis. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1): 177-189 [DOI: 10.1109/JETCAS.2018.2886642http://dx.doi.org/10.1109/JETCAS.2018.2886642]
Jiang C Y and Nooshabadi S. 2016. A scalable massively parallel motion and disparity estimation scheme for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 26(2): 346-359 [DOI: 10.1109/TCSVT.2015.2402853http://dx.doi.org/10.1109/TCSVT.2015.2402853]
Jiang X R, Le Pendu M, Farrugia R A and Guillemot C. 2017. Light field compression with homography-based low-rank approximation. IEEE Journal of Selected Topics in Signal Processing, 11(7): 1132-1145 [DOI: 10.1109/JSTSP.2017.2747078http://dx.doi.org/10.1109/JSTSP.2017.2747078]
Jin C C, Peng Z J, Chen F and Jiang G Y. 2022. Subjective and objective video quality assessment for windowed-6DoF synthesized videos. IEEE Transactions on Broadcasting, 68(3): 594-608 [DOI: 10.1109/TBC.2022.3165473http://dx.doi.org/10.1109/TBC.2022.3165473]
Jin J, Wang A H, Zhao Y, Lin C Y and Zeng B. 2016. Region-aware 3-D warping for DIBR. IEEE Transactions on Multimedia, 18(6): 953-966 [DOI: 10.1109/TMM.2016.2539825http://dx.doi.org/10.1109/TMM.2016.2539825]
Kan N W, Zou J N, Li C L, Dai W R and Xiong H K. 2022. RAPT360: reinforcement learning-based rate adaptation for 360-degree video streaming with adaptive prediction and tiling. IEEE Transactions on Circuits and Systems for Video Technology, 32(3): 1607-1623 [DOI: 10.1109/TCSVT.2021.3076585http://dx.doi.org/10.1109/TCSVT.2021.3076585]
Kanchana V, Somraj N, Yadwad S and Soundararajan R. 2022. Revealing disocclusions in temporal view synthesis through infilling vector prediction//Proceedings of 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE: 3093-3102 [DOI: 10.1109/WACV51458.2022.00315http://dx.doi.org/10.1109/WACV51458.2022.00315]
Kazhdan M and Hoppe H. 2013. Screened poisson surface reconstruction. ACM Transactions on Graphics, 32(3): #29 [DOI: 10.1145/2487228.2487237http://dx.doi.org/10.1145/2487228.2487237]
Khire S, Cooper L, Park Y, Carter A, Jayant N and Saltz J. 2012. ZPEG: a hybrid DPCM-DCT based approach for compression of Z-stack images//Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA: IEEE: 5424-5427 [DOI: 10.1109/EMBC.2012.6347221http://dx.doi.org/10.1109/EMBC.2012.6347221]
Kim D M, Yoon Y S, Shin S Y and Suh J W. 2021. Rendering-based free-view image synthesis using peripheral view and depth images//Proceedings of the 36th International Technical Conference on Circuits/Systems, Computers and Communications. Jeju, Korea (South): IEEE: #9501463 [DOI: 10.1109/ITC-CSCC52171.2021.9501463http://dx.doi.org/10.1109/ITC-CSCC52171.2021.9501463]
Kim H G and Ro Y M. 2017. Multiview stereoscopic video hole filling considering spatiotemporal consistency and binocular symmetry for synthesized 3D video. IEEE Transactions on Circuits and Systems for Video Technology, 27(7): 1435-1449 [DOI: 10.1109/TCSVT.2016.2515360http://dx.doi.org/10.1109/TCSVT.2016.2515360]
Kim V G, Li W, Mitra N J, Chaudhuri S, DiVerdi S and Funkhouser T. 2013. Learning part-based templates from large collections of 3D shapes. ACM Transactions on Graphics, 32(4): #70 [DOI: 10.1145/2461912.2461933http://dx.doi.org/10.1145/2461912.2461933]
Klimaszewski K, Stankiewicz O, Wegner K and Domański M. 2014. Quantization optimization in multiview plus depth video coding//Proceedings of 2014 IEEE International Conference on Image Processing. Paris, France: IEEE: 3223-3227 [DOI: 10.1109/ICIP.2014.7025652http://dx.doi.org/10.1109/ICIP.2014.7025652]
Kopf J, Cohen M F, Lischinski D and Uyttendaele M. 2007. Joint bilateral upsampling. ACM Transactions on Graphics, 26(3): #1276497 [DOI: 10.1145/1276377.1276497http://dx.doi.org/10.1145/1276377.1276497]
Lee T C, Chien C L and Hang H M. 2016. Virtual view synthesis quality refinement//Proceedings of 2016 3DTV-Conference: the True Vision —— Capture, Transmission and Display of 3D Video. Hamburg, Germany: IEEE: 1-4 [DOI: 10.1109/3DTV.2016.7548958http://dx.doi.org/10.1109/3DTV.2016.7548958]
Lei J J, Sun J, Pan Z Q, Kwong S, Duan J H and Hou C P. 2015. Fast mode decision using inter-view and inter-component correlations for multiview depth video coding. IEEE Transactions on Industrial Informatics, 11(4): 978-986 [DOI: 10.1109/TII.2015.2446769http://dx.doi.org/10.1109/TII.2015.2446769]
Lei J J, Zhang Z Q, Pan Z Q, Liu D, Liu X R, Chen Y and Ling N. 2022. Disparity-aware reference frame generation network for multiview video coding. IEEE Transactions on Image Processing, 31: 4515-4526 [DOI: 10.1109/TIP.2022.3183436http://dx.doi.org/10.1109/TIP.2022.3183436]
Levoy M and Hanrahan P. 1996. Light field rendering//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM: 31-42 [DOI: 10.1145/237170.237199http://dx.doi.org/10.1145/237170.237199]
Li G, Lei J J, Pan Z Q, Peng B and Ling N. 2022. Multiple resolution prediction with deep up-sampling for depth video coding. IEEE Transactions on Circuits and Systems for Video Technology, 32(9): 6337-6346 [DOI: 10.1109/TCSVT.2022.3157074http://dx.doi.org/10.1109/TCSVT.2022.3157074]
Li L, Li Z, Li B, Liu D and Li H Q. 2017. Pseudo-sequence-based 2-D hierarchical coding structure for light-field image compression. IEEE Journal of Selected Topics in Signal Processing, 11(7): 1107-1119 [DOI: 10.1109/JSTSP.2017.2725198http://dx.doi.org/10.1109/JSTSP.2017.2725198]
Li L H, Xiang S, Yang Y and Yu L. 2015. Multi-camera interference cancellation of time-of-flight (TOF) cameras//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, Canada: IEEE: 556-560 [DOI: 10.1109/ICIP.2015.7350860http://dx.doi.org/10.1109/ICIP.2015.7350860]
Li R H, Li X Z, Fu C W, Cohen-Or D and Heng P A. 2019a. PU-GAN: a point cloud upsampling adversarial network//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 7202-7211 [DOI: 10.1109/ICCV.2019.00730http://dx.doi.org/10.1109/ICCV.2019.00730]
Li R H, Li X Z, Heng P A and Fu C W. 2021a. Point cloud upsampling via disentangled refinement//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 344-353 [DOI: 10.1109/CVPR46437.2021.00041http://dx.doi.org/10.1109/CVPR46437.2021.00041]
Li T S, Yu L, Wang H K and Kuang Z. 2021b. A bit allocation method based on inter-view dependency and spatio-temporal correlation for multi-view texture video coding. IEEE Transactions on Broadcasting, 67(1): 159-173 [DOI: 10.1109/TBC.2020.3028340http://dx.doi.org/10.1109/TBC.2020.3028340]
Li X M, Zhao D B, Ma S W and Gao W. 2008. Fast disparity and motion estimation based on correlations for multiview video coding. IEEE Transactions on Consumer Electronics, 54(4): 2037-2044 [DOI: 10.1109/TCE.2008.4711270http://dx.doi.org/10.1109/TCE.2008.4711270]
Li Y, Yang G B, Chen N, Zhu Y P and Ding X L. 2016b. Early DIRECT mode decision for MVC using MB mode homogeneity and RD Cost correlation. IEEE Transactions on Broadcasting, 62(3): 700-708 [DOI: 10.1109/TBC.2016.2570018http://dx.doi.org/10.1109/TBC.2016.2570018]
Lie W N, Hsieh C Y and Lin G S. 2018. Key-frame-based background sprite generation for hole filling in depth image-based rendering. IEEE Transactions on Multimedia, 20(5): 1075-1087 [DOI: 10.1109/TMM.2017.2763319http://dx.doi.org/10.1109/TMM.2017.2763319]
Lilienblum E and Al-Hamadi A. 2015. A structured light approach for 3-D surface reconstruction with a stereo line-scan system. IEEE Transactions on Instrumentation and Measurement, 64(5): 1258-1266 [DOI: 10.1109/TIM.2014.2364105http://dx.doi.org/10.1109/TIM.2014.2364105]
Lin J J, Rickert M, Perzylo A and Knoll A. 2021. PCTMA-Net: point cloud transformer with morphing atlas-based point generation network for dense point cloud completion//Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague, Czech Republic: IEEE: 5657-5663 [DOI: 10.1109/IROS51168.2021.9636483http://dx.doi.org/10.1109/IROS51168.2021.9636483]
Lipman Y, Cohen-Or D, Levin D and Tal-Ezer H. 2007. Parameterization-free projection for geometry reconstruction. ACM Transactions on Graphics, 26(3): #1276405 [DOI: 10.1145/1276377.1276405http://dx.doi.org/10.1145/1276377.1276405]
Liu D, Wang L, Li L, Xiong Z, Wu F and Zeng W. 2016. Pseudo-sequence-based light field image compression//Proceedings of 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, USA: IEEE: #7574674 [DOI: 10.1109/ICMEW.2016.7574674http://dx.doi.org/10.1109/ICMEW.2016.7574674]
Liu H, Yuan H, Liu Q, Hou J and Liu J. 2020. A comprehensive study and comparison of core technologies for MPEG 3D point cloud compression. IEEE Transactions on Broadcasting, 66(3): 701-717 [DOI: 10.1109/TBC.2019.2957652http://dx.doi.org/10.1109/TBC.2019.2957652]
Liu H, Yuan H, Hou J, Hamzaoui R and Gao W. 2022. PUFA-GAN: a frequency-aware generative adversarial network for 3D point cloud upsampling. IEEE Transactions on Image Processing, 31: 7389-7402 [DOI: 10.1109/TIP.2022.3222918http://dx.doi.org/10.1109/TIP.2022.3222918]
Liu W, Chen X G, Yang J and Wu Q. 2017. Robust color guided depth map restoration. IEEE Transactions on Image Processing, 26(1): 315-327 [DOI: 10.1109/TIP.2016.2612826http://dx.doi.org/10.1109/TIP.2016.2612826]
Liu X H, Liu X C, Liu Y S and Han Z Z. 2022. SPU-Net: self-supervised point cloud upsampling by coarse-to-fine reconstruction with self-projection optimization. IEEE Transactions on Image Processing, 31: 4213-4226 [DOI: 10.1109/TIP.2022.3182266http://dx.doi.org/10.1109/TIP.2022.3182266]
Liu Y W, Huang Q M, Ma S W, Zhao D B, Gao W, Ci S and Tang H. 2011. A novel rate control technique for multiview video plus depth based 3D video coding. IEEE Transactions on Broadcasting, 57(2): 562-571 [DOI: 10.1109/TBC.2011.2105652http://dx.doi.org/10.1109/TBC.2011.2105652]
Liu Y Y, Zhu C and Guo H W. 2019. Survey of light field data compression. Journal of Image and Graphics, 24(11): 1842-1859
刘宇洋, 朱策, 郭红伟. 2019. 光场数据压缩研究综述. 中国图象图形学报, 24(11): 1842-1859 [DOI: 10.11834/jig.190035http://dx.doi.org/10.11834/jig.190035]
Luo G B, Zhu Y S and Guo B. 2018. Fast MRF-based hole filling for view synthesis. IEEE Signal Processing Letters, 25(1): 75-79 [DOI: 10.1109/LSP.2017.2720182http://dx.doi.org/10.1109/LSP.2017.2720182]
Luo G B, Zhu Y S, Weng Z Y and Li Z T. 2020. A disocclusion inpainting framework for depth-based view synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(6): 1289-1302 [DOI: 10.1109/TPAMI.2019.2899837http://dx.doi.org/10.1109/TPAMI.2019.2899837]
Maniotis P and Thomos N. 2022. Viewport-aware deep reinforcement learning approach for 360° video caching. IEEE Transactions on Multimedia, 24: 386-399 [DOI: 10.1109/TMM.2021.3052339http://dx.doi.org/10.1109/TMM.2021.3052339]
Mao A, Du Z, Hou J, Duan Y, Liu Y and He Y.2022. Pu-flow: a point cloud upsampling network with normalizing flows. IEEE Transactions on Visualization and Computer Graphics: #05893 [10.48550/arXiv.2107.05893]
Marr D and Poggio T. 1976. Cooperative computation of stereo disparity: a cooperative algorithm is derived for extracting disparity information from stereo image pairs. Science, 194(4262): 283-287 [DOI: 10.1126/science.968482http://dx.doi.org/10.1126/science.968482]
Mekuria R, Blom K and Cesar P. 2017. Design, implementation, and evaluation of a point cloud codec for tele-immersive video. IEEE Transactions on Circuits and Systems for Video Technology, 27(4): 828-842 [DOI: 10.1109/TCSVT.2016.2543039http://dx.doi.org/10.1109/TCSVT.2016.2543039]
Merkle P, Smolic A, Muller K and Wiegand T. 2007. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 17(11): 1461-1473 [DOI: 10.1109/TCSVT.2007.903665http://dx.doi.org/10.1109/TCSVT.2007.903665]
Mieloch D, Dziembowski A and Domański M. 2021. Depth map refinement for immersive video. IEEE Access, 9: 10778-10788 [DOI: 10.1109/ACCESS.2021.3050554http://dx.doi.org/10.1109/ACCESS.2021.3050554]
Mildenhall B, Srinivasan P P, Tancik M, Barron J T, Ramamoorthi R and Ng R. 2020. NeRF: representing scenes as neural radiance fields for view synthesis//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 405-421 [DOI: 10.1007/978-3-030-58452-8_24http://dx.doi.org/10.1007/978-3-030-58452-8_24]
Nasrabadi A T, Samiei A and Prakash R. 2020. Viewport prediction for 360° videos: a clustering approach//Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. Istanbul, Turkey: Association for Computing Machinery: 34-39 [DOI: 10.1145/3386290.3396934http://dx.doi.org/10.1145/3386290.3396934]
Nealen A, Igarashi T, Sorkine O and Alexa M. 2006. Laplacian mesh optimization//Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. Kuala Lumpur, Malaysia: ACM: 381-389 [DOI: 10.1145/1174429.1174494http://dx.doi.org/10.1145/1174429.1174494]
Nguyen A, Yan Z S and Nahrstedt K. 2018. Your attention is unique: detecting 360-degree video saliency in head-mounted display for head movement prediction//Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea (South): Association for Computing Machinery: 1190-1198 [DOI: 10.1145/3240508.3240669http://dx.doi.org/10.1145/3240508.3240669]
Ni Z F, Tian D, Bhagavathy S, Llach J and Manjunath B S. 2009. Improving the quality of depth image based rendering for 3D video systems//Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE: 513-516 [DOI: 10.1109/ICIP.2009.5413941http://dx.doi.org/10.1109/ICIP.2009.5413941]
Nie Y W, Zhang Z S, Sun H Q, Su T and Li G Q. 2017. Homography propagation and optimization for wide-baseline street image interpolation. IEEE Transactions on Visualization and Computer Graphics, 23(10): 2328-2341 [DOI: 10.1109/TVCG.2016.2618878http://dx.doi.org/10.1109/TVCG.2016.2618878]
Niu Y Z, Zheng X H, Zhao T S and Chen J H. 2020. Visually consistent color correction for stereoscopic images and videos. IEEE Transactions on Circuits and Systems for Video Technology, 30(3): 697-710 [DOI: 10.1109/TCSVT.2019.2897123http://dx.doi.org/10.1109/TCSVT.2019.2897123]
Nonaka K, Watanabe R, Chen J, Sabirin H and Naito S. 2018. Fast plane-based free-viewpoint synthesis for real-time live streaming//Proceedings of 2018 IEEE Visual Communications and Image Processing. Taichung, China: IEEE: 1-4 [DOI: 10.1109/VCIP.2018.8698648http://dx.doi.org/10.1109/VCIP.2018.8698648]
Ohm J R, Sullivan G J, Schwarz H, Tan T K and Wiegand T. 2012. Comparison of the coding efficiency of video coding standards-including high efficiency video coding (HEVC). IEEE Transactions on Circuits and Systems for Video Technology, 22(12): 1669-1684 [DOI: 10.1109/TCSVT.2012.2221192http://dx.doi.org/10.1109/TCSVT.2012.2221192]
Pan L, Chen X Y, Cai Z G, Zhang J Z, Zhao H Y, Yi S and Liu Z W. 2021. Variational relational point completion network//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 8520-8529 [DOI: 10.1109/CVPR46437.2021.00842http://dx.doi.org/10.1109/CVPR46437.2021.00842]
Pan Z Q, Zhang Y and Kwong S. 2015. Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Transactions on Broadcasting, 61(2): 166-176 [DOI: 10.1109/TBC.2015.2419824http://dx.doi.org/10.1109/TBC.2015.2419824]
Paul M. 2018. Efficient multiview video coding using 3-D coding and saliency-based bit allocation. IEEE Transactions on Broadcasting, 64(2): 235-246 [DOI: 10.1109/TBC.2017.2781118http://dx.doi.org/10.1109/TBC.2017.2781118]
Pauly M, Mitra N J, Giesen J, Gross M and Guibas L J. 2005. Example-based 3D scan completion//Proceedings of the 3rd Eurographics Symposium on Geometry Processing. Vienna, Austria: Eurographics Association: #23
Peng B, Chang R J, Pan Z Q, Li G, Ling N and Lei J J. 2022. Deep in-loop filtering via multi-domain correlation learning and partition constraint for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology: #3213515 [DOI: 10.1109/TCSVT.2022.3213515http://dx.doi.org/10.1109/TCSVT.2022.3213515]
Peng Z J, Han H M, Chen F, Jiang G Y and Yu M. 2016. Joint processing and fast encoding algorithm for multi-view depth video. Eurasip Journal on Image and Video Processing, 2016(1): #24 [DOI: 10.1186/s13640-016-0128-3http://dx.doi.org/10.1186/s13640-016-0128-3]
Qi Charles R, Su H, Kaichun M and Guibas L J. 2017a. PointNet: deep learning on point sets for 3D classification and segmentation//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 77-85 [DOI: 10.1109/CVPR.2017.16http://dx.doi.org/10.1109/CVPR.2017.16]
Qi C R, Yi L, Su H and Guibas L J. 2017b. PointNet++: deep hierarchical feature learning on point sets in a metric space//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.: 5105-5114 [DOI: 10.48550/arXiv.1706.02413http://dx.doi.org/10.48550/arXiv.1706.02413]
Qian G C, Abualshour A, Li G H, Thabet A and Ghanem B. 2021. PU-GCN: point cloud upsampling using graph convolutional networks//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 11678-11687 [DOI: 10.1109/CVPR46437.2021.01151http://dx.doi.org/10.1109/CVPR46437.2021.01151]
Qian Y, Hou J H, Kwong S and He Y. 2020. PUGeo-Net: a geometry-centric network for 3D point cloud upsampling//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 752-769 [DOI: 10.1007/978-3-030-58529-7_44http://dx.doi.org/10.1007/978-3-030-58529-7_44]
Qian Y, Hou J, Kwong S and He Y. 2021. Deep magnification-flexible upsampling over 3D point clouds. IEEE Transactions on Image Processing, 30: 8354-8367 [10.1109/TIP.2021.3115385]
Qiao Y G, Jiao L C, Yang S Y, Hou B and Feng J. 2019. Color correction and depth-based hierarchical hole filling in free viewpoint generation. IEEE Transactions on Broadcasting, 65(2): 294-307 [DOI: 10.1109/TBC.2019.2901391http://dx.doi.org/10.1109/TBC.2019.2901391]
Qiu S, Anwar S and Barnes N. 2022. PU-transformer: point cloud upsampling transformer//Proceedings of the 16th Asian Conference on Computer Vision. Macau, China: Springer: 2475-2493 [DOI: 10.48550/arXiv.2111.12242http://dx.doi.org/10.48550/arXiv.2111.12242]
Quach M, Valenzise G and Dufaux F. 2019. Learning convolutional transforms for lossy point cloud geometry compression//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 4320-4324 [DOI: 10.1109/ICIP.2019.8803413http://dx.doi.org/10.1109/ICIP.2019.8803413]
Quach M, Valenzise G and Dufaux F. 2020. Improved deep point cloud geometry compression//Proceedings of the 22nd IEEE International Workshop on Multimedia Signal Processing. Tampere, Finland: IEEE: #928707 [DOI: 10.1109/MMSP48831.2020.9287077http://dx.doi.org/10.1109/MMSP48831.2020.9287077]
Rahaman M D and Paul M. 2018. Virtual view synthesis for free viewpoint video and multiview video compression using Gaussian mixture modelling. IEEE Transactions on Image Processing, 27(3): 1190-1201 [DOI: 10.1109/TIP.2017.2772858http://dx.doi.org/10.1109/TIP.2017.2772858]
Rizkallah M, Maugey T and Guillemot C. 2021. Rate-distortion optimized graph coarsening and partitioning for light field coding. IEEE Transactions on Image Processing, 30: 5518-5532 [DOI: 10.1109/TIP.2021.3085203http://dx.doi.org/10.1109/TIP.2021.3085203]
Rock J, Gupta T, Thorsen J, Gwak J, Shin D and Hoiem D. 2015. Completing 3D object shape from one depth image//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 2484-2493 [DOI: 10.1109/CVPR.2015.7298863http://dx.doi.org/10.1109/CVPR.2015.7298863]
Sakamoto T, Kodama K and Hamamoto T. 2012a. A novel scheme for 4-D light-field compression based on 3-D representation by multi-focus images//Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, USA: IEEE: 2901-2904 [DOI: 10.1109/ICIP.2012.6467506http://dx.doi.org/10.1109/ICIP.2012.6467506]
Sakamoto T, Kodama K and Hamamoto T. 2012b. A study on efficient compression of multi-focus images for dense light-field reconstruction//Proceedings of 2012 Visual Communications and Image Processing. San Diego, USA: IEEE: #6410759 [DOI: 10.1109/VCIP.2012.6410759http://dx.doi.org/10.1109/VCIP.2012.6410759]
Sarmad M, Lee H J and Kim Y M. 2019. RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5898-5907 [DOI: 10.1109/CVPR.2019.00605http://dx.doi.org/10.1109/CVPR.2019.00605]
Scharstein D and Szeliski R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1/3): 7-42 [DOI: 10.1023/A:1014573219977http://dx.doi.org/10.1023/A:1014573219977]
Schnabel R and Klein R. 2006. Octree-based point-cloud compression//Botsch M, Chen B Q, Pauly M and Zwicker M, eds. Symposium on Point-Based Graphics. [s.l.]: The Eurographics Association: 1811-7813 [DOI: 10.2312/SPBG/SPBG06/111-120http://dx.doi.org/10.2312/SPBG/SPBG06/111-120]
Schwarz S, Preda M, Baroncini V, Budagavi M, Cesar P, Chou P A, Cohen R A, Krivokuća M, Lasserre S, Li Z, Llach J, Mammou K, Mekuria R, Nakagami O, Siahaan E, Tabatabai A, Tourapis A M and Zakharchenko V. 2019. Emerging MPEG standards for point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1): 133-148 [DOI: 10.1109/JETCAS.2018.2885981http://dx.doi.org/10.1109/JETCAS.2018.2885981]
Sharma M and Ragavan G. 2019. A novel image fusion scheme for FTV view synthesis based on layered depth scene representation and scale periodic transform//Proceedings of 2019 International Conference on 3D Immersion. Brussels, Belgium: IEEE: 1-8 [DOI: 10.1109/IC3D48390.2019.8975902http://dx.doi.org/10.1109/IC3D48390.2019.8975902]
Shen L Q, Liu Z, Yan T, Zhang Z Y and An P. 2010. Early SKIP mode decision for MVC using inter-view correlation. Signal Processing: Image Communication, 25(2): 88-93 [DOI: 10.1016/j.image.2009.11.003http://dx.doi.org/10.1016/j.image.2009.11.003]
Stankiewicz O, Lafruit G and Domański M. 2018. Multiview video: acquisition, processing, compression, and virtual view rendering//Chellappa R and Theodoridis S, eds. Academic Press Library in Signal Processing, Volume 6. Amsterdam, the Netherlands: Elsevier: 3-74 [DOI: 10.1016/B978-0-12-811889-4.00001-4http://dx.doi.org/10.1016/B978-0-12-811889-4.00001-4]
Su X, Rizkallah M, Maugey T and Guillemot C. 2017. Graph-based light fields representation and coding using geometry information//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE: 4023-4027 [DOI: 10.1109/ICIP.2017.8297038http://dx.doi.org/10.1109/ICIP.2017.8297038]
Su X Y, Zhang Q C and Chen W J. 2014. Three-dimensional imaging based on structured illumination. Chinese Journal of Lasers, 41(2): #0209001
苏显渝, 张启灿, 陈文静. 2014. 结构光3维成像技术. 中国激光, 41(2): #0209001 [DOI: 10.3788/CJL201441.0209001http://dx.doi.org/10.3788/CJL201441.0209001]
Tang D H, Dou M S, Lincoln P, Davidson P, Guo K W, Taylor J, Fanello S, Keskin C, Kowdle A, Bouaziz S, Izadi S and Tagliasacchi A. 2018. Real-time compression and streaming of 4D performances. ACM Transactions on Graphics, 37(6): #256 [DOI: 10.1145/3272127.3275096http://dx.doi.org/10.1145/3272127.3275096]
Tang D H, Singh S, Chou P A, Häne C, Dou M S, Fanello S, Taylor J, Davidson P, Guleryuz O G, Zhang Y D, Izadi S, Tagliasacchi A, Bouaziz S and Keskin C. 2020. Deep implicit volume compression//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1290-1300 [DOI: 10.1109/CVPR42600.2020.00137http://dx.doi.org/10.1109/CVPR42600.2020.00137]
Tanimoto M. 2012. FTV: free-viewpoint television. Signal Processing: Image Communication, 27(6): 555-570 [DOI: 10.1016/j.image.2012.02.016http://dx.doi.org/10.1016/j.image.2012.02.016]
Tchapmi L P, Kosaraju V, Rezatofighi H, Reid I and Savarese S. 2019. TopNet: structural point cloud decoder//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 383-392 [DOI: 10.1109/CVPR.2019.00047http://dx.doi.org/10.1109/CVPR.2019.00047]
Tech G, Chen Y, Müller K, Ohm J R, Vetro A and Wang Y K. 2016. Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Transactions on Circuits and Systems for Video Technology, 26(1): 35-49 [DOI: 10.1109/TCSVT.2015.2477935http://dx.doi.org/10.1109/TCSVT.2015.2477935]
Thatte J and Girod B. 2019. A statistical model for disocclusions in depth-based novel view synthesis//Proceedings of 2019 IEEE Visual Communications and Image Processing. Sydney, Australia: IEEE: 1-4 [DOI: 10.1109/VCIP47243.2019.8966071http://dx.doi.org/10.1109/VCIP47243.2019.8966071]
Tohidypour H R, Pourazad M T and Nasiopoulos P. 2016. Online-learning-based complexity reduction scheme for 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 26(10): 1870-1883 [DOI: 10.1109/TCSVT.2015.2477955http://dx.doi.org/10.1109/TCSVT.2015.2477955]
van der Jeught S and Dirckx J J J. 2016. Real-time structured light profilometry: a review. Optics and Lasers in Engineering, 87: 18-31 [DOI: 10.1016/j.optlaseng.2016.01.011http://dx.doi.org/10.1016/j.optlaseng.2016.01.011]
van Duong V, Canh T N, Huu T N and Jeon B. 2019. Focal stack based light field coding for refocusing applications//Proceedings of 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Jeju, Korea (South): IEEE: 1-4 [DOI: 10.1109/BMSB47279.2019.8971928http://dx.doi.org/10.1109/BMSB47279.2019.8971928]
Vetro A, Wiegand T and Sullivan G J. 2011. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 99(4): 626-642 [DOI: 10.1109/JPROC.2010.2098830http://dx.doi.org/10.1109/JPROC.2010.2098830]
Vijayanagar K R, Kim J, Lee Y and Kim J B. 2013. Efficient view synthesis for multi-view video plus depth//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne, Australia: IEEE: 2197-2201 [DOI: 10.1109/ICIP.2013.6738453http://dx.doi.org/10.1109/ICIP.2013.6738453]
Vizzotto B B, Zatt B, Shafique M, Bampi S and Henkel J. 2013. Model predictive hierarchical rate control with markov decision process for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 23(12): 2090-2104 [DOI: 10.1109/TCSVT.2013.2270400http://dx.doi.org/10.1109/TCSVT.2013.2270400]
Wang J Q, Ding D D, Li Z, Feng X X, Cao C T and Ma Z. 2022a. Sparse tensor-based multiscale representation for point cloud geometry compression. IEEE Transactions on Pattern Analysis and Machine Intelligence: #3225816 [DOI: 10.1109/TPAMI.2022.3225816http://dx.doi.org/10.1109/TPAMI.2022.3225816]
Wang J Q, Ding D D, Li Z and Ma Z. 2021a. Multiscale point cloud geometry compression//Proceedings of 2021 Data Compression Conference. Snowbird, United States: IEEE: 73-82 [DOI: 10.1109/DCC50243.2021.00015http://dx.doi.org/10.1109/DCC50243.2021.00015]
Wang J Q, Zhu H, Liu H J and Ma Z. 2021b. Lossy point cloud geometry compression via end-to-end learning. IEEE Transactions on Circuits and Systems for Video Technology, 31(12): 4909-4923 [DOI: 10.1109/TCSVT.2021.3051377http://dx.doi.org/10.1109/TCSVT.2021.3051377]
Wang L L, Wang H, Dai D Q, Leng J Y and Han X G. 2021c. Bidirectional shadow rendering for interactive mixed 360° videos//Proceedings of 2021 IEEE Virtual Reality and 3D User Interfaces. Lisboa, Portugal: IEEE: 170-178 [DOI: 10.1109/VR50410.2021.00038http://dx.doi.org/10.1109/VR50410.2021.00038]
Wang X G, Ang M H and Lee G H. 2022b. Cascaded refinement network for point cloud completion with self-supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11): 8139-8150 [DOI: 10.1109/TPAMI.2021.3108410http://dx.doi.org/10.1109/TPAMI.2021.3108410]
Wang Y F, Wu S H, Huang H, Cohen-Or D and Sorkine-Hornung O. 2019. Patch-based progressive 3D point set upsampling//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5951-5960 [DOI: 10.1109/CVPR.2019.00611http://dx.doi.org/10.1109/CVPR.2019.00611]
Wang Z Y, Hu J H, Wang S Z and Lu T. 2015. Trilateral constrained sparse representation for Kinect depth hole filling. Pattern Recognition Letters, 65: 95-102 [DOI: 10.1016/j.patrec.2015.07.025http://dx.doi.org/10.1016/j.patrec.2015.07.025]
Wegner K, Stankiewicz O and Domański M. 2016. Novel depth-based blending technique for improved virtual view synthesis//Proceedings of 2016 International Conference on Signals and Electronic Systems. Krakow, Poland: IEEE: 93-98 [DOI: 10.1109/ICSES.2016.7593828http://dx.doi.org/10.1109/ICSES.2016.7593828]
Wen X, Li T Y, Han Z Z and Liu Y S. 2020a. Point cloud completion by skip-attention network with hierarchical folding//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1939-1948 [DOI: 10.1109/CVPR42600.2020.00201http://dx.doi.org/10.1109/CVPR42600.2020.00201]
Wen X, Xiang P, Han Z Z, Cao Y P, Wan P F, Zheng W and Liu Y S. 2023. PMP-Net++: point cloud completion by transformer-enhanced multi-step point moving paths. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1): 852-867 [DOI: 10.1109/TPAMI.2022.3159003http://dx.doi.org/10.1109/TPAMI.2022.3159003]
Wen X Z, Wang X, Hou J H, Ma L, Zhou Y and Jiang J M. 2020b. Lossy geometry compression of 3D point cloud data via an adaptive octree-guided network//Proceedings of 2020 IEEE International Conference on Multimedia and Expo. London, UK: IEEE: 1-6 [DOI: 10.1109/ICME46284.2020.9102866http://dx.doi.org/10.1109/ICME46284.2020.9102866]
Wiegand T, Sullivan G J, Bjontegaard G and Luthra A. 2003. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7): 560-576 [DOI: 10.1109/TCSVT.2003.815165http://dx.doi.org/10.1109/TCSVT.2003.815165]
Wien M, Boyce J M, Stockhammer T and Peng W H. 2019. Standardization status of immersive video coding. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1): 5-17 [DOI: 10.1109/JETCAS.2019.2898948http://dx.doi.org/10.1109/JETCAS.2019.2898948]
Wiesmann L, Milioto A, Chen X Y L, Stachniss C and Behley J. 2021. Deep compression for dense point cloud maps. IEEE Robotics and Automation Letters, 6(2): 2060-2067 [DOI: 10.1109/LRA.2021.3059633http://dx.doi.org/10.1109/LRA.2021.3059633]
Wu C L, Zhang R X, Wang Z and Sun L F. 2020a. A spherical convolution approach for learning long term viewport prediction in 360 immersive video//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, United States: AAAI: 14003-14010 [DOI: 10.1609/aaai.v34i01.7377http://dx.doi.org/10.1609/aaai.v34i01.7377]
Wu K, Yang Y, Yu M and Liu Q. 2020b. Block-wise focal stack image representation for end-to-end applications. Optics Express, 28(26): 40024-40043 [DOI: 10.1364/OE.413523http://dx.doi.org/10.1364/OE.413523]
Wu K, Yang Y, Liu Q and Zhang X. 2022. Focal stack image compression based on basis-quadtree representation. IEEE Transactions on Multimedia: #3169055 [DOI: 10.1109/TMM.2022.3169055http://dx.doi.org/10.1109/TMM.2022.3169055]
Wu S H, Huang H, Gong M L, Zwicker M and Cohen-Or D. 2015. Deep points consolidation. ACM Transactions on Graphics, 34(6): #176 [DOI: 10.1145/2816795.2818073http://dx.doi.org/10.1145/2816795.2818073]
Wu T, Pan L, Zhang J Z, Wang T, Liu Z W and Lin D H. 2021. Density-aware chamfer distance as a comprehensive metric for point cloud completion. [EB/OL]. [2023-01-14]. https://arxiv.org/pdf/2111.12702.pdfhttps://arxiv.org/pdf/2111.12702.pdf
Xiang P, Wen X, Liu Y S, Cao Y P, Wan P F, Zheng W and Han Z Z. 2021. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 5479-5489 [DOI: 10.1109/ICCV48922.2021.00545http://dx.doi.org/10.1109/ICCV48922.2021.00545]
Xiang S, Yu L, Yang Y, Liu Q and Zhou J L. 2015. Interfered depth map recovery with texture guidance for multiple structured light depth cameras. Signal Processing: Image Communication, 31: 34-46 [DOI: 10.1016/j.image.2014.11.004http://dx.doi.org/10.1016/j.image.2014.11.004]
Xie J, Feris R S, Yu S S and Sun M T. 2015. Joint super resolution and denoising from a single depth image. IEEE Transactions on Multimedia, 17(9): 1525-1537 [DOI: 10.1109/TMM.2015.2457678http://dx.doi.org/10.1109/TMM.2015.2457678]
Xu Y W, Xing K Y, Liu H, Zhao T S and Kwong S. 2021. Flexible complexity optimization in multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 31(10): 4096-4106 [DOI: 10.1109/TCSVT.2020.3043005http://dx.doi.org/10.1109/TCSVT.2020.3043005]
Xu Z M, Zhang X G, Zhang K and Guo Z M. 2018. Probabilistic viewport adaptive streaming for 360-degree videos//Proceedings of 2018 IEEE International Symposium on Circuits and Systems. Florence, Italy: IEEE: 1-5 [DOI: 10.1109/ISCAS.2018.8351404http://dx.doi.org/10.1109/ISCAS.2018.8351404]
Yan Z Q, Yu L, Yang Y and Liu Q. 2014. Beyond the interference problem: hierarchical patterns for multiple-projector structured light system. Applied Optics, 53(17): 3621-3632 [DOI: 10.1364/AO.53.003621http://dx.doi.org/10.1364/AO.53.003621]
Yang M and Zheng N N. 2019. SynBF: a new bilateral filter for postremoval of noise from synthesis views in 3-D video. IEEE Transactions on Multimedia, 21(1): 15-28 [DOI: 10.1109/tmm.2018.2849605http://dx.doi.org/10.1109/tmm.2018.2849605]
Yang Y, Deng H P, Wu J and Yu L. 2015a. Depth map reconstruction and rectification through coding parameters for mobile 3D video system. Neurocomputing, 151: 663-673 [DOI: 10.1016/j.neucom.2014.04.088http://dx.doi.org/10.1016/j.neucom.2014.04.088]
Yang Y, Liu Q, He X and Liu Z. 2019. Cross-view multi-lateral filter for compressed multi-view depth video. IEEE Transactions on Image Processing, 28(1): 302-315 [DOI: 10.1109/TIP.2018.2867740http://dx.doi.org/10.1109/TIP.2018.2867740]
Yang Y, Liu Q, Ji R R and Gao Y. 2012. Dynamic 3D scene depth reconstruction via optical flow field rectification. PLoS One, 7(11): #47041 [DOI: 10.1371/journal.pone.0047041http://dx.doi.org/10.1371/journal.pone.0047041]
Yang Y, Wang X, Liu Q, Xu M L and Yu L. 2015c. A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction. Information Sciences, 320: 306-319 [DOI: 10.1016/j.ins.2014.11.014http://dx.doi.org/10.1016/j.ins.2014.11.014]
Yao C, Tillo T, Zhao Y, Xiao J M, Bai H H and Lin C Y. 2014. Depth map driven hole filling algorithm exploiting temporal correlation information. IEEE Transactions on Broadcasting, 60(2): 394-404 [DOI: 10.1109/TBC.2014.2321671http://dx.doi.org/10.1109/TBC.2014.2321671]
Yaqoob A, Bi T and Muntean G M. 2020. A survey on adaptive 360° video streaming: solutions, challenges and opportunities. IEEE Communications Surveys and Tutorials, 22(4): 2801-2838 [DOI: 10.1109/COMST.2020.3006999http://dx.doi.org/10.1109/COMST.2020.3006999]
Ye S Q, Chen D D, Han S F, Wan Z Y and Liao J. 2022. Meta-PU: an arbitrary-scale upsampling network for point cloud. IEEE Transactions on Visualization and Computer Graphics, 28(9): 3206-3218 [DOI: 10.1109/TVCG.2021.3058311http://dx.doi.org/10.1109/TVCG.2021.3058311]
Yeh C H, Li M F, Chen M J, Chi M C, Huang X X and Chi H W. 2014. Fast mode decision algorithm through inter-view rate-distortion prediction for multiview video coding system. IEEE Transactions on Industrial Informatics, 10(1): 594-603 [DOI: 10.1109/TII.2013.2273308http://dx.doi.org/10.1109/TII.2013.2273308]
Yin K X, Huang H, Zhang H, Gong M L, Cohen-Or D and Chen B Q. 2014. Morfit: interactive surface reconstruction from incomplete point clouds with curve-driven topology and geometry control. ACM Transactions on Graphics, 33(6): #202 [DOI: 10.1145/2661229.2661241http://dx.doi.org/10.1145/2661229.2661241]
Yu L Q, Li X Z, Fu C W, Cohen-Or D and Heng P A. 2018a. EC-Net: an edge-aware point set consolidation network//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 398-414 [DOI: 10.1007/978-3-030-01234-2_24http://dx.doi.org/10.1007/978-3-030-01234-2_24]
Yu L Q, Li X Z, Fu C W, Cohen-Or D and Heng P A. 2018b. PU-Net: point cloud upsampling network//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2790-2799 [DOI: 10.1109/CVPR.2018.00295http://dx.doi.org/10.1109/CVPR.2018.00295]
Yu X M, Rao Y M, Wang Z Y, Liu Z Y, Lu J W and Zhou J. 2021. PoinTr: diverse point cloud completion with geometry-aware transformers//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 12478-12487 [DOI: 10.1109/ICCV48922.2021.01227http://dx.doi.org/10.1109/ICCV48922.2021.01227]
Yuan H, Kwong S, Ge C, Wang X and Zhang Y. 2014. Interview rate distortion analysis-based coarse to fine bit allocation algorithm for 3-D video coding. IEEE Transactions on Broadcasting, 60(4): 614-625[DOI: 10.1109/TBC.2014.2361964http://dx.doi.org/10.1109/TBC.2014.2361964]
Yuan H, Kwong S, Wang X, Gao W and Zhang Y. 2015. Rate distortion optimized inter-view frame level bit allocation method for MV-HEVC. IEEE Transactions on Multimedia, 17(12): 2134-2146 [DOI: 10.1109/TMM.2015.2477682http://dx.doi.org/10.1109/TMM.2015.2477682]
Yuan H, Liu J, Xu H, Li Z and Liu W. 2012. Coding distortion elimination of virtual view synthesis for 3D video system: theoretical analyses and implementation. IEEE Transactions on Broadcasting, 58(4): 558-567 [DOI: 10.1109/TBC.2012.2187612http://dx.doi.org/10.1109/TBC.2012.2187612]
Yuan H, Zhao S, Hou J, Wei X and Kwong S. 2020. Spatial and temporal consistency-aware dynamic adaptive streaming for 360-degree videos. IEEE Journal of Selected Topics in Signal Processing, 14(1): 177-193 [DOI: 10.1109/JSTSP.2019.2957981http://dx.doi.org/10.1109/JSTSP.2019.2957981]
Yuan W T, Khot T, Held D, Mertz C and Hebert M. 2018. PCN: point completion network//Proceedings of 2018 International Conference on 3D Vision. Verona, Italy: IEEE: 728-737 [DOI: 10.1109/3DV.2018.00088http://dx.doi.org/10.1109/3DV.2018.00088]
Zeng H Q, Ma K K and Cai C H. 2011. Fast mode decision for multiview video coding using mode correlation. IEEE Transactions on Circuits and Systems for Video Technology, 21(11): 1659-1666 [DOI: 10.1109/TCSVT.2011.2133350http://dx.doi.org/10.1109/TCSVT.2011.2133350]
Zhang H B, Fu C H, Chen R L, Xiao Y Z and Su W M. 2016. Fast intra coding for depth map in 3D-HEVC. Journal of Image and Graphics, 21(7): 845-853
张洪彬, 伏长虹, 陈锐霖, 萧允治, 苏卫民. 2016. 3D-HEVC深度图像快速帧内编码方法. 中国图象图形学报, 21(7): 845-853 [DOI: 10.11834/jig.20160702http://dx.doi.org/10.11834/jig.20160702]
Zhang H B, Fu C H, Chan Y L, Tsang S H and Siu W C. 2018. Probability-based depth intra-mode skipping strategy and novel VSO metric for DMM decision in 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 28(2): 513-527 [DOI: 10.1109/TCSVT.2016.2612693http://dx.doi.org/10.1109/TCSVT.2016.2612693]
Zhang P P, Wang X, Ma L, Wang S Q, Kwong S and Jiang J M. 2021a. Progressive point cloud upsampling via differentiable rendering. IEEE Transactions on Circuits and Systems for Video Technology, 31(12): 4673-4685 [DOI: 10.1109/TCSVT.2021.3100134http://dx.doi.org/10.1109/TCSVT.2021.3100134]
Zhang X, Cheung G, Zhao Y, Le Callet P, Lin C Y and Tan J Z G. 2021b. Graph learning based head movement prediction for interactive 360 video streaming. IEEE Transactions on Image Processing, 30: 4622-4636 [DOI: 10.1109/TIP.2021.3073283http://dx.doi.org/10.1109/TIP.2021.3073283]
Zhang Y, Kwong S, Xu L, Hu S D, Jiang G Y and Kuo C C J. 2013a. Regional bit allocation and rate distortion optimization for multiview depth video coding with view synthesis distortion model. IEEE Transactions on Image Processing, 22(9): 3497-3512 [DOI: 10.1109/TIP.2013.2265883http://dx.doi.org/10.1109/TIP.2013.2265883]
Zhang Y, Kwong S, Xu L and Jiang G Y. 2013b. DIRECT mode early decision optimization based on rate distortion cost property and inter-view correlation. IEEE Transactions on Broadcasting, 59(2): 390-398 [DOI: 10.1109/TBC.2013.2253033http://dx.doi.org/10.1109/TBC.2013.2253033]
Zhang Z Y. 2012. Microsoft Kinect sensor and its effect. IEEE Multimedia, 19(2): 4-10 [DOI: 10.1109/MMUL.2012.24http://dx.doi.org/10.1109/MMUL.2012.24]
Zhao W B, Liu X M, Zhong Z W, Jiang J J, Gao W, Li G and Ji X Y. 2022. Self-supervised arbitrary-scale point clouds upsampling via implicit neural representation//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 1989-1997 [DOI: 10.1109/CVPR52688.2022.00204http://dx.doi.org/10.1109/CVPR52688.2022.00204]
Zhu J, Zhang J, Cao Y and Wang Z F. 2017. Image guided depth enhancement via deep fusion and local linear regularizaron//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE: 4068-4072 [DOI: 10.1109/ICIP.2017.8297047http://dx.doi.org/10.1109/ICIP.2017.8297047]
Zhu T T and Gao P. 2019. An improved Gaussian mixture model based hole-filling algorithm exploiting depth information//Proceedings of 2019 IEEE Visual Communications and Image Processing. Sydney, Australia: IEEE: #8965964 [DOI: 10.1109/VCIP47243.2019.8965964http://dx.doi.org/10.1109/VCIP47243.2019.8965964]
相关作者
相关机构