Overview of reversible data hiding in plaintext image
- Vol. 27, Issue 1, Pages: 111-124(2022)
Published: 16 January 2022 ,
Accepted: 23 August 2021
DOI: 10.11834/jig.210384
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 January 2022 ,
Accepted: 23 August 2021
移动端阅览
Bo Ou, Zhaoxia Yin, Shijun Xiang. Overview of reversible data hiding in plaintext image. [J]. Journal of Image and Graphics 27(1):111-124(2022)
图像可逆信息隐藏作为信息隐藏的重要分支,发展至今已近三十年,因其独有的图像无损恢复能力,一直备受医学、司法、军事等重点领域的青睐。然而现有可逆信息隐藏研究成果繁多,迁移知识广泛,本文简要梳理可逆信息隐藏的发展脉络,在回顾经典算法的基础上,加以简化、注释,总结成功经验,展望潜在应用,以期为研究者提供一个按图索骥的探索路径。本文主要包括3个部分,分别为位图(Bitmap
BMP)图像的可逆信息隐藏(适用于空域嵌入操作)、JPEG(Joint Photographic Experts Group)图像的可逆信息隐藏(适用于频域和编码域嵌入操作)和鲁棒可逆水印(适用于扩展性研究)。通过近百篇高影响力文献的梳理可知,可逆研究的受众广泛、基础深厚,其严谨的数学定义和简明的机理论证是深受研究者推崇和坚持的重要原因。“干净、简明”的特点也是其能够与现实应用有效结合的强力抓手。增加可逆算法对于载体多样性的普适性研究,引入新的评价指标来导引算法与现实应用的融合,将是未来可开拓的方向。可逆信息隐藏技术能够恢复图像初始状态,其独特之处在于图像本身就是一个复杂语义的信息表达。这既要求可逆嵌入操作所施加的影响不能改变图像所表达的主要语义,又要求该操作是可消除的,保留溯源能力,将内容的信息表达权始终交由图像本身。这一特点不仅为敏感领域信息处理所亟需,也是其他常见领域并不排斥的。严格来说,一定程度上的复原本就是事物发展到一定阶段后的必然追求。据此,本文认为推广可逆研究与多学科融合解决更难、更广泛的问题,实现长远发展,是完全必要且可行的。
As a branch of hidden information
reversible data hiding (RDH) has been developed over three decades. The key character of RDH differentiation is the reversibility that can ensure the adequate recovery of both the original image and the hidden message. The applications of targeted occasions have been focused on
such as medical
judicial and military image processing. Currently
RDH community has derived an enormous number of algorithms
each of which entangles a specialty of the other discipline. It may torture the consistent study of primary learners as they cannot control the situation and then feel confused and frustrating. The brief guidance may be required to provide a unique pathway of RDH research. The initial works have put more emphasis on the classical algorithms and aim to awake them simplistic and friendly. The potentials for the future are summarized and new scientific issues are proposed to integrate the RDH with the realistic applications
such as night image processing for surveillance and reconnaissance
image fusion for remote transmission storage
etc. In this review
we aim to provide a straightforward and explicit guideline for the readers with no formal training of this topic. We illustrate the typical RDH algorithms designed for the common images
and explain their motivations of reversible data embedding and extraction. Enlightened by the early-age motivations
we look forward the future directions to strengthen the close cooperation between RDH and the other leading disciplines. The whole paper consists of three parts
i.e.
the researches for BMP images which are suited to the uncompressed images
the researches for JPEG images which are suitable for the coding-to-compression domain
and the robust reversible research in which more requirements are considered in the algorithm design to make RDH applicable for the practical case. In the reference list
nearly 100 papers are recommended for the study of this field. Most of the works are published in the top journals and conferences
and the significant influences of originality and innovation have been verified by the high citation rates in the past years. It is found that the RDH society has evolved into the form of great varieties and quantities. RDH is preferred by the expert and primary researchers due to its concise mathematical definition
simple experimental implementation and subtle embedding optimization. Such a simple and clear character allows RDH be easier to form a connection with the various applications without causing obvious conflicts. It is beneficial for the further development to have more discussions about the theoretical generality for diverse medium and introduce new evaluation metrics to guide the RDH design consisted with the practical application requirements. The unique feature of RDH is that it can recover the initial status of image when a change has taken place. It verifies that the image itself has the ability of recovery. In fact
the image is a sort of semantic expression relying on the strong but complicated data correlations. The correlations indicate that the image elements are similar to some extent
and can recover themselves in theory. In the existing works
the designers tend to understand the correlations at first
and then exploit the redundant elements to make space for hiding secret message. In a word
the algorithms revolve around the idea of better understanding the image. Of course
that how to interpret the correlations depends on the human-defined metric. In the current works
we are used to taking the PSNR metric to interpret the image
and then explore the boundary within which the distortion is acceptable and the main semantic information is preserved. However
merely PSNR is not sufficient to interpret the diversity of images. More metrics for different cases are better choices for the development of new and novel algorithms. Generally speaking
the reversibility is acceptable not only for the sensitive fields but also the common ones. The long-term development is feasible if RDH can respond more arising practical demands.
可逆信息隐藏综述空域可逆嵌入频域可逆嵌入鲁样可逆
reversible data hidingoverviewreversible embedding in spatial domainreversible embedding in frequency domainrobust reversible embedding
Alattar A M. 2004. Reversible watermark using the difference expansion of a generalized integer transform. IEEE Transactions on Image Processing, 13(8): 1147-1156 [DOI: 10.1109/TIP.2004.828418]
Celik M U, Sharma G, Tekalp A M and Saber E. 2005. Lossless generalized-LSB data embedding. IEEE Transactions on Image Processing, 14(2): 253-266 [DOI: 10.1109/TIP.2004.840686]
Chang C C, Tai W L and Lin C C. 2006. A reversible data hiding scheme based on side match vector quantization. IEEE Transactions on Circuits and Systems for Video Technology, 16(10): 1301-1308 [DOI: 10.1109/TCSVT.2006.882380]
Chang J C, Lu Y Z and Wu H L. 2017. A separable reversible data hiding scheme for encrypted JPEG bitstreams. Signal Processing, 133: 135-143 [DOI: 10.1016/j.sigpro.2016.11.003]
Chen K J, Zhou H, Hou D D, Zhang W M and Yu N H. 2021. Reversible data hiding in jpeg imagesunder multi-distortion metric. IEEE Transactions on Circuits and Systems for Video Technology, 31(10): 3942-3953 [DOI: 10.1109/TCSVT.2020.3044186]
Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F and Roux C. 2013. Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Transactions on Information Forensics and Security, 8(1): 111-120 [DOI: 10.1109/TIFS.2012.2224108]
Coltuc D. 2011. Improved embedding for prediction-based reversible watermarking. IEEE Transactions on Information Forensics and Security, 6(3): 873-882 [DOI: 10.1109/TIFS.2011.2145372]
Coltuc D. 2012. Low distortion transform for reversible watermarking. IEEE Transactions on Image Processing, 21(1): 412-417 [DOI: 10.1109/TIP.2011.2162424]
Coltuc D and Chassery J M. 2007a. Very fast watermarking by reversible contrast mapping. IEEE Signal Processing Letters, 14(4): 255-258 [DOI: 10.1109/LSP.2006.884895]
Coltuc D and Chassery J M. 2007b. Distortion-free robust watermarking: a case study//Proceedings Volume 6505, Security, Steganography, and Watermarking of Multimedia Contents Ⅸ. San Jose, USA: SPIE: 585-592 [DOI: 10.1117/12.702445http://dx.doi.org/10.1117/12.702445]
Dai Y and Yin Z X. 2018. Synchronized data embedding and scrambling scheme in JPEG images. Journal of Applied Sciences, 36(2): 255-266
戴禹, 殷赵霞. 2018. JPEG图像同步嵌入与加扰方案. 应用科学学报, 36(2): 255-266 [DOI: 10.3969/j.issn.0255-8297.2018.02.005]
Dragoi I C and Coltuc D. 2014. Local-prediction-based difference expansion reversible watermarking. IEEE Transactions on Image Processing, 23(4): 1779-1790 [DOI: 10.1109/TIP.2014.2307482]
Du Y, Yin Z X and Zhang X P. 2020. High capacity lossless data hiding in JPEG bitstream based on general VLC mapping [J/OL]. IEEE Transactions on Dependable and Secure Computing,https://doi.org/10.1109/TDSC.2020.3013326https://doi.org/10.1109/TDSC.2020.3013326
Fridrich J, Goljan M, Chen Q and Pathak V. 2004. Lossless data embedding with file size preservation//Proceedings Volume 5306, Security, Steganography, and Watermarking of Multimedia Contents Ⅵ. San Jose, USA: SPIE: 354-365 [DOI: 10.1117/12.525418http://dx.doi.org/10.1117/12.525418]
Fridrich J, Goljan M and Du R. 2002. Lossless data embedding for all image formats//Proceedings Volume 4675, Security and Watermarking of Multimedia Contents Ⅳ. San Jose, USA: SPIE: 572-583 [DOI: 10.1117/12.465317http://dx.doi.org/10.1117/12.465317]
Gao G Y and Shi Y Q. 2015. Reversible data hiding using controlled contrast enhancement and integer wavelet transform. IEEE Signal Processing Letters, 22(11): 2078-2082 [DOI: 10.1109/LSP.2015.2459055]
Gao X B, An L L, Yuan Y, Tao D C and Li X L. 2011. Lossless data embedding using generalized statistical quantity histogram. IEEE Transactions on Circuits and Systems for Video Technology, 21(8): 1061-1070 [DOI: 10.1109/TCSVT.2011.2130410]
He J H, Chen J X, Luo W Q, Tang S H and Huang J W. 2019a. A novel high-capacity reversible data hiding scheme for encrypted JPEG bitstreams. IEEE Transactions on Circuits and Systems for Video Technology, 29(12): 3501-3515 [DOI: 10.1109/TCSVT.2018.2882850]
He J H, Chen J X and Tang S H. 2019b. Reversible data hiding in jpeg images based on negative influence models. IEEE Transactions on Information Forensics and Security, 15: 2121-2133 [DOI: 10.1109/TIFS.2019.2958758]
He J H, Pan X L, Wu H T and Tang S H. 2020. Improved block ordering and frequency selection for reversible data hiding in JPEG images. Signal Processing, 175: #107647 [DOI: 10.1016/j.sigpro.2020.107647]
Hou D D, Wang H Q, Zhang W M and Yu N H. 2018. Reversible data hiding in JPEG image based on DCT frequency and block selection. Signal Processing, 148: 41-47 [DOI: 10.1016/j.sigpro.2018.02.002]
Hou D D, Zhang W M, Liu J Y, Zhou S Y, Chen D D and Yu N H. 2019. Emerging applications of reversible data hiding//Proceedings of the 2nd International Conference on Image and Graphics Processing. Singapore, Singapore: ACM: 105-109 [DOI: 10.1145/3313950.3313952http://dx.doi.org/10.1145/3313950.3313952]
Hu R W and Xiang S J. 2021b. Lossless robust image watermarking by using polar harmonic transform. Signal Processing, 179: #107833 [DOI: 10.1016/j.sigpro.2020.107833]
Hu X C, Zhang W M, Li X L and Yu N H. 2015. Minimum rate prediction and optimized histograms modification for reversible data hiding. IEEE Transactions on Information Forensics and Security, 10(3): 653-664 [DOI: 10.1109/TIFS.2015.2392556]
Hu Y J and Jeon B. 2006. Reversible visible watermarking and lossless recovery of original images. IEEE Transactions on Circuits and Systems for Video Technology, 16(11): 1423-1429 [DOI: 10.1109/TCSVT.2006.884011]
Hu Y J, Lee H K, Chen K Y and Li J W. 2008. Difference expansion based reversible data hiding using two embedding directions. IEEE Transactions on Multimedia, 10(8): 1500-1512 [DOI: 10.1109/TMM.2008.2007341]
Hu Y J, Lee H K and Li J W. 2009. DE-based reversible data hiding with improved overflow location map. IEEE Transactions on Circuits and Systems for Video Technology, 19(2): 250-260 [DOI: 10.1109/TCSVT.2008.2009252]
Hu Y J, Wang K and Lu Z M. 2013. An improved VLC-based lossless data hiding scheme for JPEG images. Journal of Systems andSoftware, 86(8): 2166-2173 [DOI: 10.1016/j.jss.2013.03.102]
Huang F J, Qu X C, Kim H J and Huang J W. 2016. Reversible data hiding in JPEG images. IEEE Transactions on Circuits and Systems for Video Technology, 26(9): 1610-1621 [DOI: 10.1109/TCSVT.2015.2473235]
Huang H C, Chang F C and Fang W C. 2011. Reversible data hiding with histogram-based difference expansion for QR code applications. IEEE Transactions on Consumer Electronics, 57(2): 779-787 [DOI: 10.1109/TCE.2011.5955222]
Jung S W, Ha L T and Ko S J. 2011. A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Processing Letters, 18(2): 95-98 [DOI: 10.1109/LSP.2010.2095498]
Kim H J, Sachnev V, Shi Y Q, Nam J and Choo H G. 2008. A novel difference expansion transform for reversible data embedding. IEEE Transactions on Information Forensics and Security, 3(3): 456-465 [DOI: 10.1109/TIFS.2008.924600]
Kim S, Huang F J and Kim H J. 2019. Reversible data hiding in JPEG images using quantized DC. Entropy, 21(9): #835 [DOI: 10.3390/e21090835]
Lee S, Yoo C D and Kalker T. 2007. Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Transactions on Information Forensics and Security, 2(3): 321-330 [DOI: 10.1109/TIFS.2007.905146]
Li N and Huang F J. 2020. Reversible data hiding for JPEG images based on pairwise nonzero AC coefficient expansion. Signal Processing, 171: #107476 [DOI: 10.1016/j.sigpro.2020.107476]
Li X L, Li B, Yang B and Zeng T Y. 2013a. General framework to histogram-shifting-based reversible data hiding. IEEE Transactions on Image Processing, 22(6): 2181-2191 [DOI: 10.1109/TIP.2013.2246179]
Li X L, Li J, Li B and Yang B. 2013b. High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Processing, 93(1): 198-205 [DOI: 10.1016/j.sigpro.2012.07.025]
Li X L, Yang B and Zeng T Y. 2011. Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Transactions on Image Processing, 20(12): 3524-3533 [DOI: 10.1109/TIP.2011.2150233]
Li X L, Zhang W M, Gui X L and Yang B. 2013c. A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Transactions on Information Forensics and Security, 8(7): 1091-1100 [DOI: 10.1109/TIFS.2013.2261062]
Li X L, Zhang W M, Gui X L and Yang B. 2015. Efficient reversible data hiding based on multiple histograms modification. IEEE Transactions on Information Forensics and Security, 10(9): 2016-2027 [DOI: 10.1109/TIFS.2015.2444354]
Liang X Y and Xiang S J. 2020. Robust reversible audio watermarking based on high-order difference statistics. Signal Processing, 173: #107584 [DOI: 10.1016/j.sigpro.2020.107584]
Long J, Yin Z X, Lv J P and Zhang X P. 2016. Rotation based reversible data hiding for JPEG images. IETE Technical Review, 33(6): 607-614 [DOI: 10.1080/02564602.2015.1132014]
Luo L X, Chen Z Y, Chen M, Zeng X and Xiong Z. 2010. Reversible image watermarking using interpolation technique. IEEE Transactions on Information Forensics and Security, 5(1): 187-193 [DOI: 10.1109/TIFS.2009.2035975]
Lyu J P, Li S and Zhang X P. 2018. A novel auxiliary data construction scheme for reversible data hiding in JPEG images. Multimedia Tools and Applications, 77(14): 18029-18041 [DOI: 10.1007/s11042-017-4557-5]
Ma B and Shi Y Q. 2016. A reversible data hiding scheme based on code division multiplexing. IEEE Transactions on Information Forensics and Security, 11(9): 1914-1927 [DOI: 10.1109/TIFS.2016.2566261]
Mobasseri B G, Berger R J, Marcinak M P and NaikRaikar Y J. 2010. Data embedding in JPEG bitstream by code mapping. IEEE Transactions on Image Processing, 19(4): 958-966 [DOI: 10.1109/TIP.2009.2035227]
Ni Z C, Shi Y Q, Ansari N and Su W. 2006. Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3): 354-362 [DOI: 10.1109/TCSVT.2006.869964]
Ni Z C, Shi Y Q, Ansari N, Su W, Sun Q B and Lin X. 2008. Robust lossless image data hiding designed for semi-fragile image authentication. IEEE Transactions on Circuits and Systems for Video Technology, 18(4): 497-509 [DOI: 10.1109/TCSVT.2008.918761]
Nikolaidis A. 2016. Low overhead reversible data hiding for color JPEG images. Multimedia Tools and Applications, 75(4): 1869-1881 [DOI: 10.1007/s11042-014-2377-4]
Ong S Y and Wong K S. 2013. Rotational based rewritable data hiding in JPEG//Proceedings of 2013 Visual Communications and Image Processing (VCIP). Kuching, Malaysia: IEEE: 1-6 [DOI: 10.1109/VCIP.2013.6706428http://dx.doi.org/10.1109/VCIP.2013.6706428]
Ou B, Li X L, Zhao Y, Ni R R and Shi Y Q. 2013. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Transactions on Image Processing, 22(12): 5010-5021 [DOI: 10.1109/TIP.2013.2281422]
Qian Z X, Dai S and Chen B Y. 2017. Reversible data hiding in JPEG images using ordered embedding. KSII Transactions on Internet and Information Systems, 11(2): 945-958 [DOI: 10.3837/tiis.2017.02.017]
Qian Z X, Xu H S, Luo X Y and Zhang X P. 2019. New framework of reversible data hiding in encrypted JPEG bitstreams. IEEE Transactions on Circuits and Systems for Video Technology, 29(2): 351-362 [DOI: 10.1109/TCSVT.2018.2797897]
Qian Z X and Zhang X P. 2012. Lossless data hiding in JPEG bitstream. Journal of Systems and Software, 85(2): 309-313 [DOI: 10.1016/j.jss.2011.08.015]
Qian Z X, Zhang X P and Wang S Z. 2014. Reversible data hiding in encrypted JPEG bitstream. IEEE Transactions on Multimedia, 16(5): 1486-1491 [DOI: 10.1109/TMM.2014.2316154]
Qian Z X, Zhou H, Zhang X P and Zhang W M. 2018. Separable reversible data hiding in encrypted JPEG bitstreams. IEEE Transactions on Dependable and Secure Computing, 15(6): 1055-1067 [DOI: 10.1109/TDSC.2016.2634161]
Qiu Y Q, He H, Qian Z X, Li S and Zhang X P. 2018. Lossless data hiding in JPEG bitstream using alternative embedding. Journal of Visual Communication and Image Representation, 52: 86-91 [DOI: 10.1016/j.jvcir.2018.02.005]
Qiu Y Q, Qian Z X, He H, Tian H and Zhang X P. 2021. Optimized lossless data hiding in JPEG bitstream and relay transfer-based extension. IEEE Transactions on Circuits and Systems for Video Technology, 31(4): 1380-1394 [DOI: 10.1109/TCSVT.2020.3006494]
Sachnev V, Kim H J, Nam J, Suresh S and Shi Y Q. 2009. Reversible watermarking algorithm using sorting and prediction. IEEE Transactions on Circuits and Systems for Video Technology, 19(7): 989-999 [DOI: 10.1109/TCSVT.2009.2020257]
Sakai H, Kuribayashi M and Morii M. 2008. Adaptive reversible data hiding for JPEG images//2008 International Symposium on Information Theory and its Applications. Auckland, New Zealand: IEEE: 1-6 [DOI: 10.1109/ISITA.2008.4895529http://dx.doi.org/10.1109/ISITA.2008.4895529]
Shi Y Q, Li X L, Zhang X P, Wu H T and Ma B. 2016. Reversible data hiding: advances in the past two decades. IEEE Access, 4: 3210-3237 [DOI: 10.1109/ACCESS.2016.2573308]
Tai W L, Yeh C M and Chang C C. 2009. Reversible data hiding based on histogram modification of pixel differences. IEEE Transactions on Circuits and Systems for Video Technology, 19(6): 906-910 [DOI: 10.1109/TCSVT.2009.2017409]
Thodi D M and Rodriguez J J. 2007. Expansion embedding techniques for reversible watermarking. IEEE Transactions on Image Processing, 16(3): 721-730 [DOI: 10.1109/TIP.2006.891046]
Tian J. 2003. Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 13(8): 890-896 [DOI: 10.1109/TCSVT.2003.815962]
Wang J X, Ni J Q, Zhang X and Shi Y Q. 2017. Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Transactions on Cybernetics, 47(2): 315-326 [DOI: 10.1109/TCYB.2015.2514110]
Wang K, Lu Z M and Hu Y J. 2013. A high capacity lossless data hiding scheme for JPEG images. Journal of Systems and Software, 86(7): 1965-1975 [DOI: 10.1016/j.jss.2013.03.083]
Wang X, Li X L and Pei Q Q. 2020. Independent embedding domain based two-stage robust reversible watermarking. IEEE Transactions on Circuits and Systems for Video Technology, 30(8): 2406-2417 [DOI: 10.1109/TCSVT.2019.2915116]
Wang X T, Shao C Y, Xu X G and Niu X M. 2007. Reversible data-hiding scheme for 2-D vector maps based on difference expansion. IEEE Transactions on Information Forensics and Security, 2(3): 311-320 [DOI: 10.1109/TIFS.2007.902677]
Wang Y Y, He H J, Chen F and Zhang S J. 2020. Reversible data hiding in JPEG images based on distortion-extension cost. Journal of Computer Research and Development, 57(11): 2271-2282
王洋洋, 和红杰, 陈帆, 张善俊. 2020. 基于失真-扩展代价的JPEG图像可逆数据隐藏. 计算机研究与发展, 57(11): 2271-2282 [DOI: 10.7544/issn1000-1239.2020.20200434]
Wedaj F T, Kim S, Kim H J and Huang F J. 2017. Improved reversible data hiding in JPEG images based on new coefficient selection strategy. EURASIP Journal on Image and Video Processing, 2017(1): #63 [DOI: 10.1186/s13640-017-0206-1]
Weng S W, Zhao Y, Pan J S and Ni R R. 2008. Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Processing Letters, 15: 721-724 [DOI: 10.1109/LSP.2008.2001984]
Wu H T, Dugelay J L and Shi Y Q. 2015. Reversible image data hiding with contrast enhancement. IEEE Signal Processing Letters, 22(1): 81-85 [DOI: 10.1109/LSP.2014.2346989]
Xiao M Y, Li X L, Ma B, Zhang X P and Zhao Y. 2021. Efficient reversible data hiding for JPEG images with multiple histograms modification. IEEE Transactions on Circuits and Systems for Video Technology, 31(7): 2535-2546 [DOI: 10.1109/TCSVT.2020.3027391]
Xuan G R, Li X L and Shi Y Q. 2019. Minimum entropy and histogram-pair based JPEG image reversible data hiding. Journal of Information Security and Applications, 45: 1-9 [DOI: 10.1016/j.jisa.2018.12.007]
Xuan G R, Shi Y Q, Ni Z C, Chai P Q, Cui X and Tong X F. 2007. Reversible data hiding for JPEG images based on histogram pairs//4th International Conference on Image Analysis and Recognition. Montreal, Canada: Springer-Verlag: 715-727 [DOI: 10.1007/978-3-540-74260-9_64http://dx.doi.org/10.1007/978-3-540-74260-9_64]
Yang Y, Sun X M, Yang H F, Li C T and Xiao R. 2009. A contrast-sensitive reversible visible image watermarking technique. IEEE Transactions on Circuits and Systems for Video Technology, 19(5): 656-667 [DOI: 10.1109/TCSVT.2009.2017401]
Yin J X, Wang R, Guo Y F and Liu F. 2017. An adaptive reversible data hiding scheme for JPEG images//Proceedings of the 15th International Workshop on Digital Watermarking. Beijing, China: Springer: 456-469 [DOI: 10.1007/978-3-319-53465-7_34http://dx.doi.org/10.1007/978-3-319-53465-7_34]
Yin Z X, Du Y and Ji Y. 2020a. Towards versatility: lossless data hiding in JPEG Bitstream via table-independent code mapping[EB/OL].https://arxiv.org/pdf/2006.15984.pdfhttps://arxiv.org/pdf/2006.15984.pdf
Yin Z X, Ji Y and Luo B. 2020b. Reversible data hiding in JPEG images with multi-objective optimization. IEEE Transactions on Circuits and Systems for Video Technology, 30(8): 2343-2352 [DOI: 10.1109/TCSVT.2020.2969463]
Yin Z X, Xiang Y Z, Qian Z X and Zhang X P. 2018. Unified data hiding and scrambling method for JPEG images//Proceedings of the 19th Pacific Rim Conference on Multimedia. Hefei, China: Springer: 373-383 [DOI: 10.1007/978-3-030-00764-5_34http://dx.doi.org/10.1007/978-3-030-00764-5_34]
Zeng X T, Ping L D and Pan X Z. 2010. A lossless robust data hiding scheme. Pattern Recognition, 43(4): 1656-1667 [DOI: 10.1016/j.patcog.2009.09.016]
Zhang C, Ou B and Tang D. 2020a. An improved VLC mapping method with parameter optimization for reversible data hiding in JPEG bitstream. Multimedia Tools and Applications, 79(27): 19045-19062 [DOI: 10.1007/s11042-020-08809-6]
Zhang C, Ou B, Tian H W and Qin Z. 2020b. Reversible data hiding in JPEG bitstream using optimal VLC mapping. Journal of Visual Communication and Image Representation, 71: #102821 [DOI: 10.1016/j.jvcir.2020.102821]
Zhang W M, Chen B and Yu N H. 2012. Improving various reversible data hiding schemes via optimal codes for binary covers. IEEE Transactions on Image Processing, 21(6): 2991-3003 [DOI: 10.1109/TIP.2012.2187667]
Zhang W M, Hu X C, Li X L and Yu N H. 2013. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Transactions on Image Processing, 22(7): 2775-2785 [DOI: 10.1109/TIP.2013.2257814]
Zhang X P. 2013. Reversible data hiding with optimal value transfer. IEEE Transactions on Multimedia, 15(2): 316-325 [DOI: 10.1109/TMM.2012.2229262]
相关文章
相关作者
相关机构