Report of NeurIPS 2020
- Vol. 26, Issue 2, Pages: 229-244(2021)
Published: 16 February 2021 ,
Accepted: 30 December 2020
DOI: 10.11834/jig.200838
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 February 2021 ,
Accepted: 30 December 2020
移动端阅览
Zhouchen Lin, Yisen Wang. Report of NeurIPS 2020. [J]. Journal of Image and Graphics 26(2):229-244(2021)
神经信息处理系统大会(Conference on Neural Information Processing Systems,NeurIPS)是机器学习领域的顶级会议,在中国计算机学会(China Computer Federation,CCF)推荐国际学术会议中被评为人工智能领域的A类会议,一直广受关注。NeurIPS 2020收到了创纪录的9 467篇投稿,最终录用1 898篇论文。收录的论文涵盖了人工智能的各种主题,包括深度学习及其应用、强化学习与规划、纯理论研究、概率方法、优化及机器学习与社会等。本文回顾了NeurIPS 2020的亮点及论文录用情况,详细解读了特邀报告、最佳论文、口头报告及部分海报论文,希望能帮助读者快速了解NeurIPS 2020的盛况。
The Conference on Neural Information Processing Systems (NeurIPS)
as a top-tier conference in the field of machine learning and also a China Computer Federation(CCF)-A conference
has been receiving lots of attention. NeurIPS 2020 received a record-breaking 9 467 submissions
and finally accepted 1 898 papers
which covered various topics of artificial intelligence(AI)
such as deep learning and its applications
reinforcement learning and planning
theory
probabilistic methods
optimization
and the social aspect of machine learning. In this paper
we first reviewed the highlights and statistical information of NeurIPS 2020
for example
using GatherTown (each attendee is represented by a cartoon character) to improve the experience of immersive interactions with each other. Following that
we summarized the invited talks which covered multiple disciplines such as cryptography
feedback control theory
causal inference
and biology. Moreover
we provide a quick review of best papers
orals and some interesting posters
hoping to help readers have a quick glance over NeurIPS 2020.
人工智能机器学习深度学习强化学习理论优化学术会议NeurIPS 2020
artificial intelligence(AI)machine learningdeep learningreinforcement learningtheoryoptimizationacademic conferenceNeurIPS 2020
Adlam B and Pennington J.2020. Understanding double descent requires a fine-grained bias-variance decomposition[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/7d420e2b2939762031eed0447a9be19f-Paper.pdfhttps://papers.nips.cc/paper/2020/file/7d420e2b2939762031eed0447a9be19f-Paper.pdf
Asi H and Duchi J C. 2020. Instance-optimality in Differential Privacy via Approximate Inverse Sensitivity Mechanisms.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/a267f936e54d7c10a2bb70dbe6ad7a89-Paper.pdfhttps://papers.nips.cc/paper/2020/file/a267f936e54d7c10a2bb70dbe6ad7a89-Paper.pdf
Awasthi P, Jain H, Rawat A S and Vijayaraghavan A. 2020. Adversarial robustness via robust low rank representations[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/837a7924b8c0aa866e41b2721f66135c-Paper.pdfhttps://papers.nips.cc/paper/2020/file/837a7924b8c0aa866e41b2721f66135c-Paper.pdf
Bai S J, Koltun V and Kolter J Z.2020.Multiscale deep equilibrium models[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdfhttps://papers.nips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
Bear D M, Fan C F, Mrowca D, Li Y Z, Alter S, Nayebi A, Schwartz J, Li F F, Wu J J, Tenenbaum J B and Yamins D L K. 2020. Learning physical graph representations from visual scenes[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/4324e8d0d37b-110ee1a4f1633ac52df5-Paper.pdfhttps://papers.nips.cc/paper/2020/file/4324e8d0d37b-110ee1a4f1633ac52df5-Paper.pdf
Bechavod Y, Jung Cr and Wu Z W.2020.Metric-free individual fairness in online learning[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/80b618ebcac7aa97a6dac2ba65cb7e36-Paper.pdfhttps://papers.nips.cc/paper/2020/file/80b618ebcac7aa97a6dac2ba65cb7e36-Paper.pdf
Benton G, Finzi M, Izmailov P and Wilson A G. 2020. Learning Invariances in Neural Networks from Training Data.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdfhttps://papers.nips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf
Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D M, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I and Amodei D. 2020. Language Models are Few-Shot Learners[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdfhttps://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
Celli A, Marchesi A, Farina G and Gatti N.2020. No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/5763abe87ed1938799203fb6e8650025-Paper.pdfhttps://papers.nips.cc/paper/2020/file/5763abe87ed1938799203fb6e8650025-Paper.pdf
Chanpuriya S, Musco C, Sotiropoulos K and Tsourakakis C.2020. Node embeddings and exact low-rank representations of complex networks[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/99503bdd3c5a4c4671ada72d6fd81433-Paper.pdfhttps://papers.nips.cc/paper/2020/file/99503bdd3c5a4c4671ada72d6fd81433-Paper.pdf
Chelu V, Precup D and van Hasselt H. 2020. Forethought and hindsight in credit assignment[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/18064d61b6f93dab8681a460779b8429-Paper.pdfhttps://papers.nips.cc/paper/2020/file/18064d61b6f93dab8681a460779b8429-Paper.pdf
Chen L J, Zaharia M and Zou J.2020.FrugalML: how to use ML prediction APIs more accurately and cheaply[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/789ba2ae4d335e8a2ad-283a3f7effced-Paper.pdfhttps://papers.nips.cc/paper/2020/file/789ba2ae4d335e8a2ad-283a3f7effced-Paper.pdf
Chi L, Jiang B R and Mu Y D. 2020.Fast Fourier Convolution.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdfhttps://papers.nips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
Dereziński M, Khanna R and Mahoney M W. 2020. Improved Guarantees and a Multiple-Descent Curve for Column Subset Selection and the Nyström Method[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/342c472b95d00421be10e9512b532866-Paper.pdfhttps://papers.nips.cc/paper/2020/file/342c472b95d00421be10e9512b532866-Paper.pdf
Dennis M, Jaques N, Vinitsky E, Bayen A, Russell S, Critch A and Levine S. 2020. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/985e9a46e10005356bbaf194249f6856-Paper.pdfhttps://papers.nips.cc/paper/2020/file/985e9a46e10005356bbaf194249f6856-Paper.pdf
Desai S, Durugkar I, Karnan H, Warnell G, Hanna J and Stone P. 2020. An imitation from observation approach to transfer learning with dynamics mismatch[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/28f248e9279ac845995c4e9f8af35c2b-Paper.pdfhttps://papers.nips.cc/paper/2020/file/28f248e9279ac845995c4e9f8af35c2b-Paper.pdf
Esteves C, Makadia A and Daniilidis K. 2020. Spin-weighted spherical CNNs[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/6217b2f7e4634fa665d31d3b4df81b56-Paper.pdfhttps://papers.nips.cc/paper/2020/file/6217b2f7e4634fa665d31d3b4df81b56-Paper.pdf
Evgenii C, Christophe D, Mohamed H, Luca O and Massimiliano P. Fair Regression via Plug-in Estimator and Recalibration with Statistical Guarantees.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/ddd808772c035aed516d42ad3559be5f-Paper.pdfhttps://papers.nips.cc/paper/2020/file/ddd808772c035aed516d42ad3559be5f-Paper.pdf
Fan Z and Wang Z C. 2020. Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/572201a4497b0b-9f02d4f279b09ec30d-Paper.pdfhttps://papers.nips.cc/paper/2020/file/572201a4497b0b-9f02d4f279b09ec30d-Paper.pdf
Feng W Z, Zhang J, Dong Y X, Han Y, Luan H B, Xu Q, Yang Q, Kharlamov E and Tang J. 2020. Graph random neural networks for semi-supervised learning on graphs[EB/OL].[2020-12-20].https://arxiv.org/pdf/2005.11079.pdfhttps://arxiv.org/pdf/2005.11079.pdf
Fuchs F, Worrall D, Fischer V and Welling M.2020. SE(3)-transformers: 3D roto-translation equivariant attention networks[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdfhttps://papers.nips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
Galanti T and Wolf L.2020.On the modularity of hypernetworks[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/75c58d36157505a600e0695ed0b3a22d-Paper.pdfhttps://papers.nips.cc/paper/2020/file/75c58d36157505a600e0695ed0b3a22d-Paper.pdf
Gillen S, Jung C, Kearns M J and Roth A.2018. Online learning with an unknown fairness metric//Proceedings of Annual Conference on Neural Information Processing Systems. Montréal, Canada: ACM: 2605-2614
Grill J B, Strub F, AltchéF, Tallec C, Richemond P, Buchatskaya E, Doersch C, Pires B A, Guo D, Azar M G, Piot B, Kavukcuoglu K, Munos R and Valko M. 2020. Bootstrap your own latent-a new approach to self-supervised learning[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdfhttps://papers.nips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
Gupta G, Yadav K and Paull L.2020.La-MAML: look-ahead meta learning for continual learning[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/85b9a5ac91cd629bd3afe396ec07270a-Paper.pdfhttps://papers.nips.cc/paper/2020/file/85b9a5ac91cd629bd3afe396ec07270a-Paper.pdf
Ho J, Jain A and Abbeel P. 2020. Denoising diffusion probabilistic models[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdfhttps://papers.nips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
Huang Z Y, Hu P, Zhou J T Y, Lyu J C and Peng X. 2020. Partially View-aligned Clustering.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/1e591403ff232de0f0f139ac51d99295-Paper.pdfhttps://papers.nips.cc/paper/2020/file/1e591403ff232de0f0f139ac51d99295-Paper.pdf
Jabri A, Owens A and Efros A A.2020.Space-time correspondence as a contrastive random walk[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/e2ef524fbf3d9fe611d5a8e90fefdc9c-Paper.pdffhttps://papers.nips.cc/paper/2020/file/e2ef524fbf3d9fe611d5a8e90fefdc9c-Paper.pdff
Jenrungrot T, Jayaram V, Seitz S and Kemelmacher-Shlizerman I.2020.The cone of silence: speech separation by localization[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/f056bfa71038e04a2400266027c169f9-Paper.pdfhttps://papers.nips.cc/paper/2020/file/f056bfa71038e04a2400266027c169f9-Paper.pdf
Kang G L, Wei Y C, Yang Y, Zhuang Y T and Hauptmann A G.2020.Pixel-level cycle association: a new perspective for domain adaptive semantic segmentation[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/243be2818a23c980ad664f30f48e5d19-Paper.pdfhttps://papers.nips.cc/paper/2020/file/243be2818a23c980ad664f30f48e5d19-Paper.pdf
Karakida R and Osawa K. 2020. Understanding approximate Fisher information for fast convergence of natural gradient descent in wide neural networks[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdfhttps://papers.nips.cc/paper/2020/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf
Karalias N and Loukas A.2020. Erdös Goes Neural: an unsupervised learning framework for combinatorial optimization on graphs.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdfhttps://papers.nips.cc/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf
Karras T, Aittala M, Hellsten J, Laine S, Lehtinen and Aila T.2020. Training generative adversarial networks with limited data.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdfhttps://papers.nips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf
Kim J, Kim S, Kong J and Yoon S.2020.Glow-TTS: A generative flow for text-to-speech via monotonic alignment search[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/5c3b99e8f92532e5ad1556e53ceea00c-Paper.pdfhttps://papers.nips.cc/paper/2020/file/5c3b99e8f92532e5ad1556e53ceea00c-Paper.pdf
Lee K, Lee Byeong-Uk, Shin U and Kweon In So. 2020. An efficient asynchronous method for integrating evolutionary and gradient-based policy search[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/731309c4bb223491a9f67eac5214fb2e-Paper.pdfhttps://papers.nips.cc/paper/2020/file/731309c4bb223491a9f67eac5214fb2e-Paper.pdf
Lee W, Yu H, Rival X and Yang H.2020. On correctness of automatic differentiation for non-differentiable functions[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/4aaa76178f8567e05c8e8295c96171d8-Paper.pdfhttps://papers.nips.cc/paper/2020/file/4aaa76178f8567e05c8e8295c96171d8-Paper.pdf
Lewkowycz A and Gur-Ari G. 2020. On the training dynamics of deep networks with L2regularization[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/32fcc8cfe1fa4c77b5c58dafd36d1a98-Paper.pdfhttps://papers.nips.cc/paper/2020/file/32fcc8cfe1fa4c77b5c58dafd36d1a98-Paper.pdf.
Li M, Chen S H, Zhang Y and Tsang I.2020. Graph cross networks with vertex infomax pooling[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/a26398dca6f47b49876cbaffbc9954f9-Paper.pdfhttps://papers.nips.cc/paper/2020/file/a26398dca6f47b49876cbaffbc9954f9-Paper.pdf
Liao Z Y, Couillet R and Mahoney M W.2020.A random matrix analysis of random fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/a03fa30821986dff10fc66647c84c9c3-Paper.pdfhttps://papers.nips.cc/paper/2020/file/a03fa30821986dff10fc66647c84c9c3-Paper.pdf
Liu C, Salzmann M, Lin T, Tomioka R and Süsstrunk S.2020. On the loss landscape of adversarial training: identifying challenges and how to overcome them[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/f56d8183992b6c54c92c16a8519a6e2b-Paper.pdfhttps://papers.nips.cc/paper/2020/file/f56d8183992b6c54c92c16a8519a6e2b-Paper.pdf
Morvan M L, Josse J, Moreau T, Scornet E and Varoquaux G.2020.NeuMiss networks: differentiable programming for supervised learning with missing values[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/42ae1544956fbe6e09242-e6cd752444c-Paper.pdfhttps://papers.nips.cc/paper/2020/file/42ae1544956fbe6e09242-e6cd752444c-Paper.pdf
Massaroli S, Poli M, Park J, Yamashita A and Asama H.2020.Dissecting neural ODEs[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/293835c2cc75b585649498ee74b395f5-Paper.pdfhttps://papers.nips.cc/paper/2020/file/293835c2cc75b585649498ee74b395f5-Paper.pdf
Matsubara T, Ishikawa A and Yaguchi T.2019.Deep energy-based modeling of discrete-time physics[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/98b418276d571e623651fc1d471c7811-Paper.pdfhttps://papers.nips.cc/paper/2020/file/98b418276d571e623651fc1d471c7811-Paper.pdf
Mu J and Andreas J. 2020. Compositional explanations of neurons[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdfhttps://papers.nips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
Lawrence N, Loewen P, Forbes M, Backstrom and Gopaluni B.2020. Almost Surely Stable Deep Dynamics[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-Paper.pdfhttps://papers.nips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-Paper.pdf
Pan P B, Swaroop S, Immer A, Eschenhagen R, Turner R E and Khan M E.2020.Continual deep learning by functional regularisation of memorable past[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/2f3bbb9730639e9ea48f309d9a79ff01-Paper.pdfhttps://papers.nips.cc/paper/2020/file/2f3bbb9730639e9ea48f309d9a79ff01-Paper.pdf
Peng D Y, Dong X Y, Real E, Tan M X, Lu Y F, Bender G, Liu H X, Kraft A, Liang C and Le Q V. 2020. PyGlove: Symbolic Programming for Automated Machine Learning.[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/012a91467f210472fab4e11359bbfef6-Paper.pdfhttps://papers.nips.cc/paper/2020/file/012a91467f210472fab4e11359bbfef6-Paper.pdf
Pinheiro P O, Almahairi A, Benmalek R Y, Golemo F and Courville A. 2020. Unsupervised learning of dense visual representations[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/3000311ca56a1cb93397bc676c0b7fff-Paper.pdfhttps://papers.nips.cc/paper/2020/file/3000311ca56a1cb93397bc676c0b7fff-Paper.pdf
Rashidinejad P, Jiao J T and Russel S.2020.SLIP: learning to predict in unknown dynamical systems with long-term memory[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/3e91970f771a2c473ae36b60d1146068-Paper.pdfhttps://papers.nips.cc/paper/2020/file/3e91970f771a2c473ae36b60d1146068-Paper.pdf
Salman H, Ilyas A, Engstrom L, Kapoor A and Madry A.2020.Do adversarially robust ImageNet models transfer better?[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/24357dd085d2c4b1a88a7e0692e60294-Paper.pdfhttps://papers.nips.cc/paper/2020/file/24357dd085d2c4b1a88a7e0692e60294-Paper.pdf
Seshadhri C, Sharma A, Stolman A and Goel A. 2020. The impossibility of low-rank representations for triangle-rich complex networks//Proceedings of the National Academy of Sciences, 117(11): 5631-5637
Shao J, Hu K, Wang C H, Xue X Y and Raj B. 2020. Is normalization indispensable for training deep neural network?[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/9b8619251a19057cff70779273e95aa6-Paper.pdfhttps://papers.nips.cc/paper/2020/file/9b8619251a19057cff70779273e95aa6-Paper.pdf
Sitzmann V, Martel J N P, Bergman A W, Lindell D B and Wetzstein G.2020.Implicit neural representations with periodic activation functions[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdfhttps://papers.nips.cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
Song J M and Ermon S.2020.Multi-label contrastive predictive coding[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/5cd5058bca53951ffa7801bcdf421651-Paper.pdfhttps://papers.nips.cc/paper/2020/file/5cd5058bca53951ffa7801bcdf421651-Paper.pdf
Tang K H, Huang J Q and Zhang H W. 2020. Long-tailed classification by keeping the good and removing the bad momentum causal effect[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/1091660f3dff84fd648efe31391c5524-Paper.pdfhttps://papers.nips.cc/paper/2020/file/1091660f3dff84fd648efe31391c5524-Paper.pdf
Tao R Y, François-Lavet V and Pineau J.2020. Novelty search in representational space for sample efficient exploration[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/5ca41a86596a5ed567d15af0be224952-Paper.pdfhttps://papers.nips.cc/paper/2020/file/5ca41a86596a5ed567d15af0be224952-Paper.pdf
Tatro N, Chen P Y, Das P, Melnyk I, Sattigeri P and Lai R.2020. Optimizing mode connectivity via neuron alignment[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/aecad42329922dfc97eee948606e1f8e-Paper.pdfhttps://papers.nips.cc/paper/2020/file/aecad42329922dfc97eee948606e1f8e-Paper.pdf
Teshima T, Ishikawa I, Tojo K, Oono K, Ikeda M and Sugiyama M.2020. Coupling-based invertible neural networks are universal diffeomorphism approximators[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/2290a7385ed77cc5592dc2153229f-082-Paper.pdfhttps://papers.nips.cc/paper/2020/file/2290a7385ed77cc5592dc2153229f-082-Paper.pdf
Udrescu S M, Tan A, Feng J H, Neto O, Wu T L and Tegmark M.2020.AI Feynman 2.0: pareto-optimal symbolic regression exploiting graph modularity[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdfhttps://papers.nips.cc/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
Vialard F X, Kwitt R, Wei S and Niethammer M. 2020. A shooting formulation of deep learning[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/89562dccfeb1d0394b9ae7e09544dc70-Paper.pdfhttps://papers.nips.cc/paper/2020/file/89562dccfeb1d0394b9ae7e09544dc70-Paper.pdf
Wang R H, Albooyeh M and Ravanbakhsh S.2020.Equivariant networks for hierarchical structures[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/9efb1a59d7b58e69996cf0e32cb71098-Paper.pdfhttps://papers.nips.cc/paper/2020/file/9efb1a59d7b58e69996cf0e32cb71098-Paper.pdf
Wu D X, Xia S T and Wang Y S. 2020. Adversarial weight perturbation helps robust generalization[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/1ef91c212e30e14bf125e9374262401f-Paper.pdfhttps://papers.nips.cc/paper/2020/file/1ef91c212e30e14bf125e9374262401f-Paper.pdf
Yang H R, Zhang J Y, Dong H L, Inkawhich N, Gardner A, Touchet A, Wilkes W, Berry H and Li H.2020a.DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/3ad7c2ebb96fcba7cda0cf54a2e802f5-Paper.pdfhttps://papers.nips.cc/paper/2020/file/3ad7c2ebb96fcba7cda0cf54a2e802f5-Paper.pdf
Yang Y Y, Rashtchian C, Zhang H Y, Salakhutdinov R R and Chaudhuri K. 2020b.A closer look at accuracy vs. robustness[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/61d77652c97ef636343742fc3dcf3ba9-Paper.pdfhttps://papers.nips.cc/paper/2020/file/61d77652c97ef636343742fc3dcf3ba9-Paper.pdf
Zaheer M, Guruganesh G, Dubey K A, Ainslie J, Alberti C, Ontanon S, Pham P, Ravula A, Wang Q F, Yang L and Ahmed A.2020. Big bird: transformers for longer sequences[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdfhttps://papers.nips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
Zoph B, Ghiasi G, Lin T Y, Cui Y, Liu H X, Cubuk E D and Le Q V.2020.Rethinking pre-training and self-training[EB/OL].[2020-12-20].https://papers.nips.cc/paper/2020/file/27e9661e033a-73a6ad8cefcde965c54d-Paper.pdfhttps://papers.nips.cc/paper/2020/file/27e9661e033a-73a6ad8cefcde965c54d-Paper.pdf
相关作者
相关机构