高光谱图像智能分类研究综述与展望
Overview and Prospects in Intelligent Classification of Hyperspectral Images
- 2025年 页码:1-32
收稿日期:2025-02-03,
修回日期:2025-03-14,
录用日期:2025-03-24,
网络出版日期:2025-03-26
DOI: 10.11834/jig.250045
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2025-02-03,
修回日期:2025-03-14,
录用日期:2025-03-24,
网络出版日期:2025-03-26,
移动端阅览
本论文结合国内外发展动态和团队三十余年高光谱图像分类研究实践,深入探讨、综述了高光谱图像分类的研究进展与未来发展趋势。从新的视角将多光谱和高光谱图像分类方法划分为四类:1. 传统方法,即特征提取加常规分类器的方法;2. 常规学习方法,即特征提取加常规学习分类器的方法;3. 深度学习方法,即基于深度学习的端对端自动特征挖掘与分类的方法;4. 数据与知识融合驱动的方法,即深度学习方法与领域知识和特征融合的方法。其中,第2至第4类方法统称为智能分类方法,是本文的主题。本文是国内外迄今第一篇高光谱图像智能分类研究综述论文。论文首先回顾并梳理了高光谱图像分类的背景和发展历程,介绍了为高光谱图像分类研究和验证测试提供基础的代表性高光谱卫星和高光谱数据集。接着,重点围绕特征挖掘和分类器两个核心方向,分别介绍了高光谱图像特征挖掘、传统分类方法、常规学习分类方法和深度学习分类方法,列举了若干代表性模型、方法及其应用案例。最后,讨论了该领域目前仍存在的问题和挑战,并对未来发展方向进行了讨论:数据与知识联合驱动的深度学习方法成为热点,多尺度、多分辨率、多特征、多分类器的有效融合是提高高光谱图像分类精度的重要途径,小样本学习、零样本迁移学习以及轻量化、有限精度神经网络在星载高光谱图像应用值得重视。研究表明:本文对高光谱图像分类方法的四类划分体现了技术的发展历史、当前重点和未来趋势,其中数据与知识融合的高光谱图像分类(即第4类方法)是对高光谱图像分类前沿研究方向的洞见,对未来研究和应用具有重要指导意义。
Hyperspectral imaging technology, emerging from the intricate integration of digital imaging and advanced spectral separation techniques, represents a remarkable leap in the field of remote sensing and data acquisition. This technology empowers the acquisition of images across an extensive range of multiple continuous narrow spectral channels, thereby constructing a three-dimensional data cube. This cube seamlessly amalgamates spatial and spectral information, giving rise to what is known as a hyperspectral image (HSI). Hyperspectral images (HSIs) are not merely repositories of rich spectral information; they also comprehensively integrate spatial and radiometric information. This unique combination furnishes robust and indispensable support for the intricate classification, precise identification, and in-depth analysis of complex targets, which are often encountered in diverse real-world scenarios. Consequently, HSIs have been recognized to possess substantial application value across a plethora of civilian and military domains. In the aviation and aerospace sectors, they play a pivotal role in tasks such as terrain mapping, environmental monitoring from high altitudes, and the detection of potential hazards. In biomedical research, hyperspectral imaging is being increasingly utilized for non - invasive disease diagnosis, tissue characterization, and the study of physiological processes at a cellular level. In mineral exploration, it enables the identification of various minerals and the assessment of their abundance based on their distinct spectral signatures. In precision agriculture, HSIs are employed to monitor crop health, nutrient deficiencies, and water stress, thus optimizing agricultural practices for higher yields.Presently, hyperspectral imaging and processing technologies are still internationally regarded as highly promising and transformative areas of development. However, HSIs are characterized by deeply coupling and diverse forms of information redundancies across spatial, spectral, and temporal domains. These inherent characteristics pose unique and formidable challenges, most notably the "curse of dimensionality" and the issue of mixed pixels. The "curse of dimensionality" refers to the exponential increase in computational complexity and data volume with the rise in the number of spectral bands, which often leads to overfitting and a significant degradation in classification performance. Mixed pixels, on the other hand, occur when a single pixel in the image encompasses multiple land cover types, making it extremely difficult to accurately classify the pixel's true nature. These issues render traditional pattern recognition and digital image processing methods ill-equipped for direct application to HSI classification. Despite the remarkable progress achieved in multispectral and hyperspectral imaging and their associated processing techniques, numerous challenges persist, and their full potential remains to be fully harnessed.Drawing on the latest global developments and the team's over three-decade-long research practice, this paper undertakes an in-depth exploration and comprehensive review of the research progress and future trends in HSI classification from a novel perspective. It systematically categorizes multispectral and HSI classification methods into four distinct types:(1) Traditional methods, which typically involve a two-step process of feature extraction followed by the application of conventional classifiers such as maximum likelihood classifiers. These methods rely on hand-crafted features that are designed based on prior knowledge and assumptions about the data.(2) Conventional learning methods, which integrate feature extraction with conventional learning-based classifiers. These classifiers, such as support vector machines and multilayper perceptrons, are capable of learning from the data to some extent, but still require manual intervention in feature mining.(3) Deep learning methods, which leverage the power of neural networks for automated feature extraction and classification. These methods, such as convolutional neural networks and recurrent neural networks, can automatically learn hierarchical features from the data without the need for explicit feature mining.(4) Data and knowledge fusion methods, which combine deep learning with knowledge-based and feature-fusion techniques. These methods aim to incorporate prior knowledge and multiple sources of information into the deep-learning framework to enhance the classification performance. Among these, methods 2 to 4 are collectively denoted as intelligent classification methods and constitute the focal point of this paper. As far as we know, this article is the first review paper in the world that specifically and systematically overview the intelligent classification of hyperspectral images.The paper commences with a detailed review of the background and development history of HSI classification, tracing its evolution from the early days of remote sensing to the current state-of-the-art techniques. It also provides an in-depth introduction to representative hyperspectral satellites and datasets, which serve as the bedrock for research and validation in this field. Subsequently, it accentuates two core directions—feature mining (including feature extraction, feature or band selection, and feature combination) and classifiers—and delves into the discussion of HSI feature mining, traditional classification methods, conventional learning classification methods, and deep learning classification methods. For each category, it presents examples of representative models, methods, and their real-world applications. Finally, it confronts the existing challenges and problems in the field and probes into the future directions. The effective fusion of multi-scale, multi-resolution, multi-feature, and multi-classifier approaches is identified as a crucial avenue for enhancing the accuracy of HSI classification. Additionally, small-sample learning, zero-shot transfer learning, and lightweight, limited-precision neural networks tailored for onboard HSI applications merit close attention.Research findings indicate that the four-category classification of HSI methods proposed in this paper accurately mirrors the historical development, current research focus, and future trends of the technology. Among these, data and knowledge fusion-based classification (i.e., the fourth category) offers profound insights into the cutting-edge research of HSI classification and holds substantial guiding value for future studies and practical applications.
Abbasi A and He M Y . 2019 . Convolutional neural network with PCA and batch normalization for hyperspectral image classification. IEEE International Geoscience and Remote Sensing Symposium(IGARSS) . Yokohama : IEEE: , 959 - 962 . [ DOI: 10.1109/IGARSS. 2019. 8899329 http://dx.doi.org/10.1109/IGARSS.2019.8899329 ]
Atkinson P and Tattnall A . 1997 . Introduction neural networks in remote sensing . International Journal of Remote Sensing (IJRS) , 18 ( 4 ): 699 - 709 . [ DOI: 10.1080/0143116972187 00 http://dx.doi.org/10.1080/014311697218700 ]
Bahdanau D , Cho K and Bengio Y . 2014 . Neural machine translation by jointly learning to align and translate . [EB/OL]. [ 2024-9 ]. https://arxiv.org/ pdf/1409.0473 https://arxiv.org/pdf/1409.0473
Bengio Y , Lamblin P , Popavici D and Larochelle H . 2007 . Greedy layer-wise training of deep networks. Advances in Neural Information Processing System 19 . 153 - 160 .[ DOI: 10.7551/mitpress/7503.003.0024 http://dx.doi.org/10.7551/mitpress/7503.003.0024 ]
Camps-Valls G and Bruzzone L . 2005 . Kernel-based methods for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 43 ( 6 ): 1351 – 1362 . [ DOI: 10.1109/TGRS. 2005. 846154 http://dx.doi.org/10.1109/TGRS.2005.846154 ]
Camps-Valls G , Gomez-Chova L , Munoz-Mari J , Vila-Frances J and Calpe-Maravilla J . 2006 . Composite kernels for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 3 ( 1 ): 93 - 97 . [ DOI: 10.1109/TGRS.2005.857031 http://dx.doi.org/10.1109/TGRS.2005.857031 ]
Camps-Valls G , Marsheva T and Zhou D Y . 2007 . Semi-supervised graph-based hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 10 ): 3044 - 3054 . [ DOI: 10.1109/ TGRS.2007. 895416 http://dx.doi.org/10.1109/TGRS.2007.895416 ]
Chen R , Vivone G , Li G , Dai CL and Chanussot J . 2023 An Offset Graph U-Net for Hyperspectral Image Classification . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 15 . [ DOI: 10.1109/tgrs.2023.3307609 http://dx.doi.org/10.1109/tgrs.2023.3307609 ]
Chen Y S , Zhao X and Jia X P . 2015 . Spectral–spatial classification of hyperspectral data based on deep belief network . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 ( 6 ): 1 – 12 . [ DOI: 10.1109/JSTARS.2012.2194598 http://dx.doi.org/10.1109/JSTARS.2012.2194598 ]
Chen Y S , Jiang H L , Li C Y , Jia X P and Ghamisi P . 2016 . Deep feature extraction and classification of hyperspectral Images based on convolutional neural networks . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 10 ): 6232 – 6251 . [ DOI: 10.1109/JSTARS. 2012.2194598 http://dx.doi.org/10.1109/JSTARS.2012.2194598 ]
Chi M M and Bruzzone L . 2007 . Semisupervised classification of hyperspectral images by SVMs optimized in the primal . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 6 ): 1870 - 1880 . [ DOI: 10.1109/TGRS.2007.894550 http://dx.doi.org/10.1109/TGRS.2007.894550 ]
Chung J , Gulcehre C , Cho K H and Bengio Y . Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. [ 2014-12-11 ]. https://arxiv.org/pdf/ 1412.3555.pdf https://arxiv.org/pdf/1412.3555.pdf
Cortes C and Vapnik V . 1995 . Support vector networks . Machine Learning , 20 : 273 - 297 .[ DOI: 10.53347/rid-61710 http://dx.doi.org/10.53347/rid-61710 ]
Di W Y , He M Y and Mei S H . 2009 . A hyperspectral image classification algorithms based on quick non-negative matrix factorization and RBF neural network . Remote Sensing Technology and Application , 24 ( 3 ): 385 - 390
狄文羽 , 何明一 , 梅少辉 . 2009 . 基于快速非负矩阵分解和RBF网络的高光谱图像分类演算法 . 遥感技术与应用 , 24 ( 3 ): 385 - 390 [ DOI: 10.11873/j.issn.1004-0323.2009.3.385 http://dx.doi.org/10.11873/j.issn.1004-0323.2009.3.385 ]
Dosovitskiy A . 2020 . An image is worth 16 x 16 words: Transformers for image recognition at scale[EB/OL]. [ 2024-12-9 ]. https://arxiv.org/pdf/2010.11929.pdf https://arxiv.org/pdf/2010.11929.pdf
Fırat H , Asker M E , Bayındır M İ and Hanbay D . l 2023 . Hybrid 3D/2D complete inception module and convolutional neural network for hyperspectral remote sensing image classification. Neural Processing Letters , 55 ( 2 ): 1087 - 1130 . [ DOI: 10.1007/s11063-022-10929-z http://dx.doi.org/10.1007/s11063-022-10929-z ]
Fourure D , Fromont E , Muselet D . 2017 . Residual conv-deconv grid network for semantic segmentation . British Machine Vision Conference (BMVC) . [ DOI: 10.5244/C.31.181 http://dx.doi.org/10.5244/C.31.181 ]
Fukushinma K . 1980 . Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position . Biological Cybernetics , 36 ( 4 ): 193 – 202 . [ DOI: 10.1007/bf00344251 http://dx.doi.org/10.1007/bf00344251 ]
Ghaderizadeh S , Abbasi-Moghadam D , Sharifi A , Tariq A and Qin S . 2022 . Multiscale dual-branch residual spectral-spatial network with attention for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 15 : 5455 - 5467 . [ DOI: 10. 1109/JSTARS.2022.3188732 http://dx.doi.org/10.1109/JSTARS.2022.3188732 ]
Gu A , Dao T . 2023 . Mamba: Linear-time sequence modeling with selective state spaces [EB/OL]. [ 2024-5-31 ]. https://arxiv.org/ pdf/2312.00752 https://arxiv.org/pdf/2312.00752
Gualtieri J A and Cromp R F . 1999 . Proceedings of SPIE . The International Society for Optical Engineering , v 3584 , p 221 - 232 .[ DOI: 10.1117/12.363290 http://dx.doi.org/10.1117/12.363290 ]
Guo B , Gunn S R , Damper R I and Nelson J D B . 2008 . Customizing kernel functions for SVM-based hyperspectral image classification . IEEE Transactions on Image Processing , 17 ( 4 ): 622 - 629 . [ DOI: 10.1109/TIP.2008.918955 http://dx.doi.org/10.1109/TIP.2008.918955 ]
Guo Y , Fan B , Feng Y , Jia X P and He M Y . 2024 . Distribution- aware and class-adaptive aggregation for few-shot hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 16 . [ DOI: 10.1109/ TGRS.2024.3432734 http://dx.doi.org/10.1109/TGRS.2024.3432734 ]
Guo Y , He M Y , and Fan B . 2023 . Grid-transformer for few-shot hyperspectral image classification. IEEE International Conference on Image Processing . Kuala Lumpur : IEEE : 755 - 759 . [ DOI: 10.1109/ICIP49359.2023.10222023 http://dx.doi.org/10.1109/ICIP49359.2023.10222023 ]
He K M , Zhang X Y , Ren S Q and Sun J . 2016 . Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas : IEEE : 770 - 778 . [ DOI: org/10.1109/ cvpr.2016.90 http://dx.doi.org/org/10.1109/cvpr.2016.90 ]
He M Y , Whitbread P , and Bogner R . 1990 . Classification of multispectral images with neural networks using binary data //Proc. First Australia Conference on Neural Networks . 1990: 96 - 96 .
He M Y . 1992 . Neural computing: principles, language, design, applications . Xi’an : Xidian university press
何明一 . 1992 . 神经计算:原理语言设计与应用 . 西安 : 西安电子科技大学出版社
He M Y . 1993 . Theory, application and related problems of double parallel forward neural networks . Xidian University . [ DOI: 10.7666/d.Y189410 http://dx.doi.org/10.7666/d.Y189410 ]
何明一 . 1993 . 双并联前向神经网络的理论、应用及其相关问题. [博士学位论文],西安电子科技大学
He M Y . 2021 . Preface to the Special Issue on Hyperspectral Image Processing and Applications of the Journal of Images andGraphics , 26 ( 8 ):
I-II (何明一 . 2021 . 《中国图象图形学报》高光谱图像处理与应用专刊序言 [J], 中国图象图形学报 , 2021 , 26 ( 8 )): Ⅰ-Ⅱ
He M Y . 2023 . Advance of Skip Connection Networks and Green Neural Network . CSIG Workshop on Intelligent Perception Computing and Learning (何明一 ,2023. 跨层连接网络的发展与绿色神经网络. 中国图象图形学学会第十六期珠峰论坛——智能感知计算与学习专题研讨会
He M Y and Bao Z . 1998 . Neural network and signal processing system-finite precision design theory . Xi’an : Northwestern polytechnical university press .
何明一 , 保峥 . 1998 . 神经网络与信号处理系统:有限精度设计理论 . 西安 : 西北工业大学出版社
He M Y , Qu X G and Mei S H . 2011 . A novel semi-supervised feature extraction algorithm . IEEE Conference on Industrial Electronics and Applications , 436 - 440 . [ DOI: 10.1109/ICIEA. 2011.5975623 http://dx.doi.org/10.1109/ICIEA.2011.5975623 ]
He M Y , Chang W J and Mei S H . 2013 . Advance in feature mining from hyperspectral remote sensing data . Spacecraft Recover & Remote Sensing , 34 ( 1 ): 1 - 12
何明一 , 畅文娟 , 梅少辉 . 2013 . 高光谱遥感数据特征挖掘技术研究进展 . 航天返回与遥感 , 34 ( 1 ): 1 - 12 . [ DOI: 10.3969/j.issn.1009-8518.2013.01.001 http://dx.doi.org/10.3969/j.issn.1009-8518.2013.01.001 ]
He M Y , Li X H , Zhang Y F , Zhang J and Wang W G . 2016a . Hyperspectral image classification based on deep stacking network. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) . Beijing : IEEE : 3286 - 3289 [ DOI: 10.1109/ igarss.2016.7729850 http://dx.doi.org/10.1109/igarss.2016.7729850 ]
He M and Li X . 2016b . Deep stacking network with coarse features for hyperspectral image classification . Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS) , 1 - 6 .[ DOI: 10.1109/WHISPERS. 2016. 8071666 http://dx.doi.org/10.1109/WHISPERS.2016.8071666 ]
He M Y , Li B , and Chen H H . 2017 . Multi-scale 3D deep convolutional neural network for hyperspectral image classification . IEEE International Conference on Image Processing(ICIP) , 3904 - 3908 [ DOI: 10.1109/ICIP. 2017.8297014 http://dx.doi.org/10.1109/ICIP.2017.8297014 ]
Hecht-Nielsen R . 1992 . Theory of the backpropagation neural network . Neural Networks for Perception : Computation, Learning, and Architectures , 65 - 93 . [ DOI: 10.1016/ B978-0-12-741252-8.50010-8 http://dx.doi.org/10.1016/B978-0-12-741252-8.50010-8 ]
Heermann P and Khazenie N . 1990 . Application of neural networks for classification of multi-source multi-spectral remote sensing data, IEEE International Geoscience and Remote Sensing Symposium (IGARSS) . College Park : IEEE : 1273 - 1276 [ DOI: 10.1109/igarss. 1990.688729 http://dx.doi.org/10.1109/igarss.1990.688729 ]
Hepner G F , Logan T , Ritter N and Bryant N . 1990 . Artificial neural network classification using a minimal training set: comparison to conventional supervised classification . Photogrammetric Engineering and Remote Sensing , 56 : 469 - 473 .
Hinton G and Salakhutdinov R . 2006a . Reducing the dimensionality of data with neural networks . Science , 504 - 507 . [ DOI: 10.1126/science.1127647 http://dx.doi.org/10.1126/science.1127647 ]
Hinton G , Osindero S and Teh Y W . 2006b . A fast learning algorithm for deep belief nets . Neural Computation . 18 : 1527 - 1554 . [ DOI: 10.1162/neco.2006.18.7.1527 http://dx.doi.org/10.1162/neco.2006.18.7.1527 ]
Hochreiter S . 1997 . Long short-term memory . Neural Computation MIT-Press , .[ DOI: 10.1162/neco.1997.9.8.1735 http://dx.doi.org/10.1162/neco.1997.9.8.1735 ]
Hong D F , Gao L R , Yao J , Zhang B , Plaza A and Chanussot J . Graph convolutional networks for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 2020 , 59 ( 7 ): 5966 - 5978 .[ DOI: 10.1109/TGRS.2020. 3015157 http://dx.doi.org/10.1109/TGRS.2020.3015157 ]
Hong D F , Han Z , Yao J , Gao L , Zhng B , Plaza A and Chanussot . 2021 . Spectral former: rethinking hyperspectral image classification with transformers . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 15 . [ DOI: 10.1109/ TGRS.2021.3130716 http://dx.doi.org/10.1109/TGRS.2021.3130716 ]
Hong D F , Zhang B , Li X , Li Y , Li C , Yao J , Yokaya N , Li H , Ghamisi P , Jia X P , Plaza A , Gamba P , Benediktsson J A and Chanussot J . 2024 . Spectral GPT: spectral remote sensing foundation model . IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI) , 46 ( 8 ): 5227 - 5244 . [ DOI: 10.1109/TPAMI.2024.3362475 http://dx.doi.org/10.1109/TPAMI.2024.3362475 ]
Hu J , Shen L , Sun G . Squeeze-and-excitation networks . 2018 . IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Salt Lake City : IEEE: 7132- 7141 .[ DOI: 10.1109/cvpr.2018. 00745 http://dx.doi.org/10.1109/cvpr.2018.00745 ]
Hu W S , Li H C , Pan L , Li W , Tao R and Du Q . 2020 . Spatial– spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 6 ): 4237 - 4250 . [ DOI: 10.1109/tgrs.2019.2961947 http://dx.doi.org/10.1109/tgrs.2019.2961947 ]
Huang G , Liu Z , Van Der Maaten L and Weinberger K Q . 2017 . Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Honolulu : IEEE : 4700 - 4708 .[ DOI: 10.1109/CVPR.2017.243 http://dx.doi.org/10.1109/CVPR.2017.243 ]
Huang L , Chen Y and He X . 2024 . Spectral-spatial mamba for hyperspectral image classification . [2024-8-1] . https://arxiv.org/pdf/2404.18401 https://arxiv.org/pdf/2404.18401
Huang R and He M Y . 2005 . Band selection based on feature weighting for classification of hyperspectral data . IEEE Geoscience and Remote Sensing Letters , 2 ( 2 ): 156 - 159 . [ DOI: 10.1109/LGRS.2005. 844658 http://dx.doi.org/10.1109/LGRS.2005.844658 ]
Hubel D H and Wiesel T N . 1962 . Receptive fields, binocular interaction and functional architecture in the cat's visual cortex . J PHYSIOL , 160 ( 1 ): 106 - 154 . [ DOI: 10.1113/jphysiol. 1962.sp006837 http://dx.doi.org/10.1113/jphysiol.1962.sp006837 ]
Hughes G F . 1968 . On the mean accuracy of statistical pattern recognizers . IEEE Transactions on Information Theory , 14 ( 1 ): 55 - 63 . [ DOI: 10.1109/TIT.1968.1054102 http://dx.doi.org/10.1109/TIT.1968.1054102 ]
Ji C . 2000 . Land-use classification of remotely sensed data using kohonen self-organizing feature map neural networks . Photogrammetric Engineering and Remote Sensing , 66 ( 12 ): 1451 - 1460 .
Jia X P and He M Y . 2012 . Feature mining for hyperspectral data. Invited Tutorial at IEEE GRSS 4th Workshop on Hyperspectral Image and Signal Processing[Tutorial], Shanghai , China . [ DOI: 10.1109/JPROC.2012.2229082 http://dx.doi.org/10.1109/JPROC.2012.2229082 ]
Jia X P and Richards J . 1994 . Efficient maximum likelihood classification for imaging spectrometer data sets . IEEE Transactions on Geoscience and Remote Sensing , 32 ( 3 ): 274 - 281 . [ DOI: 10.1109/36.295042 http://dx.doi.org/10.1109/36.295042 ]
Jia X P and Richards J . 1998 . Progressive two-class decision classifier for optimization of class discriminations . Remote Sensing of Environment , 63 : 289 - 297 . [ DOI: 10.1016/S0034-4257(97)00164-8 http://dx.doi.org/10.1016/S0034-4257(97)00164-8 ]
Jia X P , Kou B and Crawford M . 2013, Feature Mining for Hyperspectral Image Classification . Proceedings of the IEEE , 101 ( 3 ): 676 - 697 . ] DOI: 10.1109/JPROC.2012.2229082 http://dx.doi.org/10.1109/JPROC.2012.2229082 ]
Jia Y H . 2000 . Application of artificial neural network to classification of muti-source remote sensing imagery . Bulletin of Surveying and Mapping , 7 : 7 - 8
贾永红 . 2000 . 人工神经网络在多源遥感影像分类中的应用 . 测绘通报 , 7 : 7 - 8 [ DOI: 10.3969/j.issn.0494-0911.2000.07.003 http://dx.doi.org/10.3969/j.issn.0494-0911.2000.07.003 .]
Keshava N . 2003 . A survey of spectral unmixing algorithms . Lincoln Laboratory Journal , 14 ( 1 ): 55 - 78 .
Kipf T N , Welling M . 2017 . Semi-supervised classification with graph convolutional networks [EB/OL]. [ 2017-2-22 ].
Kohonen T . 1982 . Self-organized formation of topologically correct feature maps . Biological Cybernetics , 43 : 59 - 69 . [ DOI: 10.1007/bf00337288 http://dx.doi.org/10.1007/bf00337288 ]
Krizhevsky A , Sutskever I and Hinton G E . 2012 . ImageNet classification with deep convolutional neural network. International Conference on Neural Information Processing Systems . Curran Associates Inc . 1097 - 1105 . [ DOI: 10.1145/3065386 http://dx.doi.org/10.1145/3065386 ]
LeCun Y , Boser B , Denker J S , Henderson D , Howard , R E , Hubbard W and Jackel L D . 1989 . Backpropagation applied to handwritten zip code recognition . Neural computation , 1 ( 4 ): 541 - 551 . [ DOI: 10.1162/neco.1989.1.4.541 http://dx.doi.org/10.1162/neco.1989.1.4.541 ]
LeCun Y , Bottou L , Bengio Y and Haffner P . 1998 . Gradient-based learning applied to document recognition . Proceedings of the IEEE , 86 ( 11 ): 2278 - 2324 . [ DOI: 10.1109/5. 726791 http://dx.doi.org/10.1109/5.726791 ]
Li C C , Du D W , Zhang L B , Wen L Y , Luo T J , Wu Y J and Zhu P F . 2020a . Spatial attention pyramid network for unsupervised domain adaptation . IEEE European Conference on Computer Vision (ECCV) , 481 - 497 . [ DOI: 10.1007/978-3-030-58601-0_29 http://dx.doi.org/10.1007/978-3-030-58601-0_29 ]
Li R , Zheng S Y , Duan C X , Yang Y and Wang X . 2020b . Classification of hyperspectral image based on double-branch dual-attention mechanism network . Remote Sensing , 12 ( 3 ): 582 . [ DOI: 10.20944/preprints201912.0059.v1 http://dx.doi.org/10.20944/preprints201912.0059.v1 ]
Li T , Zhang J P and Zhang Y . 2014 . Classification of hyperspectral image based on deep belief networks. IEEE International Conference on Image Processing (ICIP).IEEE International Conference on Image Processing . Paris : IEEE : 5132 - 5136 . [ DOI: 10.1109/ICIP.2014.7026039 http://dx.doi.org/10.1109/ICIP.2014.7026039 ]
Li W , Wu G D , Zhang F and Du Q . 2016 . Hyperspectral image classification using deep pixel-pair features . IEEE Transactions on Geoscience & Remote Sensing , 55 ( 2 ): 844 - 853 . [ DOI: 10.1109/TGRS.2016.2616355 http://dx.doi.org/10.1109/TGRS.2016.2616355 ]
Li Y P , Luo Y , Zhang L F , Wang Z M and Du B . 2024 . MambaHSI: spatial-spectral mamba for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 16 . [ DOI: 10.1109/TGRS.2024.3430985 http://dx.doi.org/10.1109/TGRS.2024.3430985 ]
Li Z K , Guo H , Chen Y S , Liu C W , D u Q , Fang Z Q and Wang Y . 2023 . Few-shot hyperspectral image classification with self-supervised learning . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 17 . [ DOI: 10.1109/TGRS.2023. 3298851 http://dx.doi.org/10.1109/TGRS.2023.3298851 ]
Liang L H , Zhang S Q and Li J . 2022 . Multiscale DenseNet meets with bi-RNN for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 15 : 5401 - 5415 . [ DOI: 10.1109/jstars.2022.3187009 http://dx.doi.org/10.1109/jstars.2022.3187009 ]
Lin M , Jing W , Di D , Chen G S and Song H B . 2021 . Context-aware attentional graph U-Net for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 19 : 1 - 5 . [ DOI: 10.1109/lgrs.2021.3069987 http://dx.doi.org/10.1109/lgrs.2021.3069987 ]
Liu D X , Han G L , Liu P X , Yang H , Sun X L , Li Q Q and Wu J J . 2021 . A novel 2D-3D CNN with spectral-spatial multi-scale feature fusion for hyperspectral image classification . Remote Sensing , 13 ( 22 ): 4621 . [ DOI: 10.3390/rs13224621 http://dx.doi.org/10.3390/rs13224621 ]
Liu Q C , Xiao L , Yang J X and Wei Z H . CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 2020 , 59 ( 10 ): 8657 - 8671 . [ DOI: 10.1109/tgrs.2020.3037361 http://dx.doi.org/10.1109/tgrs.2020.3037361 ]
Liu Q W , Dong Y N , Zhang Y X and Luo H . 2022 . A fast dynamic graph convolutional network and CNN parallel network for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 15 . [ DOI: 10.1109/tgrs.2022.3179419 http://dx.doi.org/10.1109/tgrs.2022.3179419 ]
Liu Q , Zhou F , Hang R L and Yuan X T . 2017 . Bidirectional- convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification . Remote Sensing , 9 ( 12 ): 1330 . [ DOI: 10.3390/rs9121330 http://dx.doi.org/10.3390/rs9121330 ]
Liu Q Y , Peng J T , Chen N , Sun W W , Ning Y J and Du Q . 2023 . Category-specific prototype self-refinement contrastive learning for few-shot hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 16 . [ DOI: 10.1109/TGRS.2023.3317077 http://dx.doi.org/10.1109/TGRS.2023.3317077 ]
Lu Y J , Mei S H , Xu F L , Ma F Y and Wang X F . 2024 . Separable deep graph convolutional network integrated with CNN and prototype learning for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , [ DOI: 10.1109/tgrs.2024.3390575 http://dx.doi.org/10.1109/tgrs.2024.3390575 ]
Luo C F , Liu Z J , Wang C Y and Niu Z . 2006 . Optimized BP neural network classifier based on genetic algorithm for land cover classification using remotely-sensed data . Transactions of the CSAE , 22 ( 12 ): 133 - 137
骆成凤 , 刘正军 , 王长耀 , 牛铮 . 2006 . 基于遗传演算法优化的BP神经网络遥感数据土地覆盖分类 . 农业工程学报 , 22 ( 12 ): 133 - 137 [ DOI: 10.3321/ j.issn:1002-6819.2006.12.028 http://dx.doi.org/10.3321/j.issn:1002-6819.2006.12.028 ]
Luo J C , Zhou C H and Yang Y . 2001 . ANN remote sensing classification model and its integration approach with geo-knowledge . Journal of Remote Sensing , 5 ( 2 ): 122 - 129 . [ DOI: 10.11834/jrs.20010210 http://dx.doi.org/10.11834/jrs.20010210 ]
Makantasis K , Karantzalos K , Doulamis A and Doulamis N . 2015 . Deep supervised learning for hyperspectral data classification through convolutional neural networks. IEEE International Geoscience and Remote Sensing Symposium . Milan : IEEE : 959 - 4962 .[ DOI: 10.1109/IGARSS.2015.7326945 http://dx.doi.org/10.1109/IGARSS.2015.7326945 ]
Mathieu F , Benediktsson J , Chanussot J and Sveinsson J R . 2008 . Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles . IEEE Transactions on Geoscience and Remote Sensing , 46 ( 11 ): 3804 - 3814 . [ DOI: 10.1109/TGRS.2008.922034 http://dx.doi.org/10.1109/TGRS.2008.922034 ]
Melgani F and Bruzzone L . 2004 . Classification of hyperspectral remote sensing images with support vector machines . IEEE Transactions on Geoscience and Remote Sensing , 42 ( 8 ): 1778 - 1790 .[ DOI: 10.1109/TGRS.2004.831865 http://dx.doi.org/10.1109/TGRS.2004.831865 ]
Mou L C , Ghamisi P and Zhu X X . 2017 . Deep recurrent neural networks for hyperspectral image classification . IEEE Transactions on geoscience and remote sensing , 55 ( 7 ): 3639 - 3655 . [ DOI: 10.1109/TGRS.2016.2636241 http://dx.doi.org/10.1109/TGRS.2016.2636241 ]
Pal M and Mather P M . 2005 . Support vector machines for classification in remote sensing . International Journal of Remote Sensing , 26 ( 5 ): 1007 - 1011 .[ DOI: 10.1080/ 01431160512331314083 http://dx.doi.org/10.1080/01431160512331314083 ]
Paola J D and Schowengerdt R A . 1995a . A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery . International Jorenal of Remote Sensing (IJR)S , 16 ( 16 ): 3033 - 3058 . [ DOI: 10.1080/ 01431169508954607 http://dx.doi.org/10.1080/01431169508954607 ]
Paola J D and Schowengerdt R A . 1995b . A detailed comparison of backpropagation neural network and maximumlLikelihood classifiers for urban land use classification . IEEE Transactions on Geoscience and Remote Sensing , 33 ( 4 ): 981 - 996 .[ DOI: 10.1109/36.406684 http://dx.doi.org/10.1109/36.406684 ]
Peng J T , Li L Q and Tang Y Y . 2019 . Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images . IEEE Transactions on Neural Networks and Learning System , 30 ( 6 ): 1790 - 1802 . [ DOI: 10.1109/TNNLS.2018.2874432 http://dx.doi.org/10.1109/TNNLS.2018.2874432 ]
Qing Y H and Liu W Y . 2021a . Hyperspectral image classification based on multi-scale residual network with attention mechanism . Remote Sensing , 13 ( 3 ): 335 . [ DOI: 10.3390/rs13030335 http://dx.doi.org/10.3390/rs13030335 ]
Qing Y H , Liu W Y , Feng L Y and Gao W J . 2021b . Improved transformer net for hyperspectral image classification . Remote Sensing , 13 ( 11 ): 2216 . [ DOI: 10.3390/rs13112216 http://dx.doi.org/10.3390/rs13112216 ]
Ranzato M , Poultney C , Chopra S and LeCun Y . 2007 . Efficient learning of sparse representations with an energybased model . Advances in Neural Information Processing Systems 19 : Proceedings of the 2006 Conference, MIT Press : 1137 - 1144 . [ DOI: 10.7551/mitpress/7503.003. 0147 http://dx.doi.org/10.7551/mitpress/7503.003.0147 ]
Ronneberger O , Fischer P , Brox T . 2015 . U-Net: convolutional networks for biomedical image segmentatio. International Conference on Medical Image Computing and Computer- Assisted Intervention . Springer International Publishing , [ DOI: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28 ]
Roy S K , Krishna G , Dubey S R and Chaudhuri B B . 2019 . HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 17 ( 2 ): 277 - 281 . [ DOI: 10.1109/ LGRS.2019.2918719 http://dx.doi.org/10.1109/LGRS.2019.2918719 ]
Santiago V F and Vidya M . 2009 . Improving hyperspectral image classification using spatial preprocessing . IEEE Geoscience and Remote Sensing Letters . 6 ( 2 ): 297 - 301 . [ DOI: 10.1109/LGRS.2009.2012443 http://dx.doi.org/10.1109/LGRS.2009.2012443 ]
Shevade S K , Keerthi S S , Bhattacharyya C and Murthy K R K . 2000 . Improvements to the SMO algorithm for SVM Regrssion . IEEE Transactions on neural network , 11 ( 5 ): 1188 - 1193 .[ DOI: 10.1109/72.870050 http://dx.doi.org/10.1109/72.870050 ]
Simonyan K , Zisserman A . 2014 . Very deep convolutional networks for large-scale image recognition .[EB/OL].[ 2015-04-10 ]. https://arxiv.org/pdf/1409.1556 https://arxiv.org/pdf/1409.1556 .
Sun L , Wang X Y , Zheng Y H , Wu Z B and Fu L Y . 2024 . Multiscale 3-d-2-d mixed cnn and lightweight attention-free transformer for hyperspectral and lidar classification . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 16 . [ DOI: 10.1109/TGRS.2024.3367374 http://dx.doi.org/10.1109/TGRS.2024.3367374 ]
Sun L , Zhao G R , Zheng Y H and Wu Z B . 2022 . Spectral-spatial feature tokenization transformer for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 14 . [ DOI: 10.1109/TGRS.2022.3144158 http://dx.doi.org/10.1109/TGRS.2022.3144158 ]
Tan K and Du P J . 2008 . Hyperspectral remote sensing image classification based on radical . Spectroscopy and Spectral Analysis , 28 ( 9 ): 2009 - 2013
谭琨 , 杜培军 . 2008 . 基于径向基函数神经网络的高光谱遥感图像分类 . 光谱学与光谱分析 , 28 ( 9 ): 2009 - 2013 [ DOI: 10.3964 /j.issn.1000- 0593(0008)09-2009-05 http://dx.doi.org/10.3964/j.issn.1000-0593(0008)09-2009-05 ]
Vaswani A , Shazeer N , Parmar N , Uszkoreit J , Jones L , Gomez A N , Kaiser L and Polosukhin L . 2017 . Attention is all you need . Advances in neural information processing systems , 30 .
Vapnik V , Golowic S . E and Smola A . 1997 . Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing systems , 281 - 287 . [ DOI: 10.1007/BFb0020166 http://dx.doi.org/10.1007/BFb0020166 ]
Wan S , Gong C , Zhong P , Du B , Zhang L and Yang J . Multiscale dynamic graph convolutional network for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 2019 , 58 ( 5 ): 3162 - 3177 . [ DOI: 10.1109/tgrs.2019.2949180 http://dx.doi.org/10.1109/tgrs.2019.2949180 ]
Wang D , Hu M Q , Jin Y , Miao Y C , Yang J Q , Xu Y C , Qin X L , Ma J Q , Sun L Y , Li C X , Fu C , Chen H R X , Han C X , Yokoya N , Zhang J , Xu M Q , Liu L , Zhang L F , Wu C , Du B , Tao D C and Zhang L P . 2024a . HyperSIGMA: hyperspectral intelligence comprehension foundation mode [EB/OL]. [ 2024-6-17 ]. https://arxiv.org/pdf/ 2406.11519 https://arxiv.org/pdf/2406.11519
Wang G C , Zhang X R , Peng Z L , Zhang T Y and Jiao L C . 2024b . S2Mamba : a spatial-spectral state space model for hyperspectral image classification [EB/OL]. [ 2024-8-13 ]. https:// arxiv.org/ pdf/ 2404.18213 https://arxiv.org/pdf/2404.18213
Wang Q L , Wu B G , Zhu P F , Li P H , Zuo W M and Hu Q H . 2020 . ECA-Net: Efficient channel attention for deep convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Seattle : IEEE : 11534 - 11542 . [ DOI: 10.1109/cvpr42600.2020.01155 http://dx.doi.org/10.1109/cvpr42600.2020.01155 ]
Woo S , Park J , Lee J Y and Kweon I S . 2018 . Cbam: Convolutional block attention module. IEEE European conference on computer vision (ECCV) . Munich : IEEE 3 - 19 . [ DOI: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1 ]
Xi B B , Li J J , Li Y S , Song R , Hong D F and Chanussot J . 2022 . Few-shot learning with class-covariance metric for hyperspectral image classification . IEEE Transactions on Image Processing , 31 : 5079 - 5092 . [ DOI: 10.1109/TIP.2022. 3192712 http://dx.doi.org/10.1109/TIP.2022.3192712 ]
Xia J T and He M Y . 2003a . A fast training algorithm for support vector machine via boundary sample selection, Proceedings of 2003 International Conference on Neural Networks and Signal Processing . Nanjing : IEEE : 20 - 22 [ DOI: 10.1109/icnnsp.2003.1279203 http://dx.doi.org/10.1109/icnnsp.2003.1279203 ]
Xia J T and He M Y . 2003b . High dimensional multi- spectral image classification by SVM and its characteristic analysis . Computer Engineering , 29 ( 13 ): 27 - 28 . (夏建涛,何明一. 2003 . 基于SVM的高维多光谱图像分类演算法及其特性的研究. 计算机工程, 29 ( 13 ), 27 - 28 . [ DOI: 10.3969/ j.issn.1000-3428.2003.13.010 http://dx.doi.org/10.3969/j.issn.1000-3428.2003.13.010 ]
Xue Z X , Yu X C , Liu B , Tan X and Wei X P . 2021 . HResNetAM: Hierarchical residual network with attention mechanism for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 14 : 3566 - 3580 . [ DOI: 10.1109/JSTARS.2021.3065987 http://dx.doi.org/10.1109/JSTARS.2021.3065987 ]
Yang G , Gewali U B , Ientilucci E , Gartley , Micheal M and Sildomar T . 2018 . Dual-channel densenet for hyperspectral image classification. IEEE International Geoscience and Remote Sensing Symposium(IGARSS) . Valencia : IEEE : 2595 - 2598 . [ DOI: 10.1109/igarss.2018.8517520 http://dx.doi.org/10.1109/igarss.2018.8517520 ]
Yang J X , Zhao Y Q , Chan J C W and Yi C . 2016 . IEEE International Geoscience and Remote Sensing Symposium . Beijing : IEEE : 5079 - 5082 [ DOI: 10.1109/igarss.2016.7730324 http://dx.doi.org/10.1109/igarss.2016.7730324
Yao J , Hong D , Li C and Chanussot J . 2024 . Spectralmamba: Efficient mamba for hyperspectral image classification [EB/OL]. https://arxiv.org/pdf/2404.08489 https://arxiv.org/pdf/2404.08489
Ye Z , Bai L and He M Y . 2021 . Review of spatial-spectral feature extraction for hyperspectral image [J]. Journal of image and graphics , 2021, 26 ( 8 ): 1737 - 1763 (叶珍,白璘,何明一. 高光谱图像空谱特征提取综述,中国图象图形学报, 26 ( 8 ), 1737 - 1763 . [ DOI: 10.11834/jig.210198 http://dx.doi.org/10.11834/jig.210198 ]
Yin J R , Qi C S , Chen Q Q and Qu J T . Spatial-spectral network for hyperspectral image classification: A 3-D CNN and Bi-LSTM framework . Remote Sensing , 2021 , 13 ( 12 ): 2353 . [ DOI: 10.3390/rs13122353 http://dx.doi.org/10.3390/rs13122353 ]
Yue J , Zhao W Z , Mao S J and Liu H . 2015 . Spectral–spatial classification of hyperspectral images using deep convolutional neural networks . Remote Sensing Letters , 6 ( 6 ): 468 - 477 . [ DOI: 10.1080/2150704x.2015.1047045 http://dx.doi.org/10.1080/2150704x.2015.1047045 ]
Zhang X R , Sun Y J , Jiang K , Li C , Jiao L C and Zhou H Y . 2018 . Spatial sequential recurrent neural network for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 11 ( 11 ): 4141 - 4155 . [ DOI: 10.1109/jstars.2018.2844873 http://dx.doi.org/10.1109/jstars.2018.2844873 ]
Zhao Z T , Tang P , Zhao L J and Zhang Z . 2021 . Few-shot object detection of remote sensing images via two-stage fine-tuning . IEEE Geoscience and Remote Sensing Letters , 19 : 1 - 5 . [ DOI: 10.1109/LGRS.2021.3116858 http://dx.doi.org/10.1109/LGRS.2021.3116858 ]
Zhao J L , Wang J J , Ruan C and Dong Y Y . 2024a . Dual-branch spectral-spatial attention network for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 18 . [ DOI: 10.1109/TGRS.2024.3351997 http://dx.doi.org/10.1109/TGRS.2024.3351997 ]
Zhao Z Y , Xu X , Li S T and Plaza A . 2024b . Hyperspectral image classification using groupwise separable convolutional vision transformer network . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 17 . [ DOI: 10.1109/TGRS.2024. 3377610 http://dx.doi.org/10.1109/TGRS.2024.3377610 ]
Zhong Z L , Li J H and Luo Z M and Chapman M . 2018 . Spectral-Spatial residual network for hyperspectral image classification: A 3-D deep learning framework . IEEE Transactions on Geoscience and Remote Sensing , 56 ( 2 ): 847 - 858 [ DOI: 10.1109/ TGRS.2017.2755542 http://dx.doi.org/10.1109/TGRS.2017.2755542 ]
相关作者
相关机构