公共场所社交行为理解及隐密社团发现
Understanding public social behavior and discovering hidden groups
- 2025年 页码:1-29
收稿日期:2024-12-29,
修回日期:2025-02-18,
录用日期:2025-02-25,
网络出版日期:2025-02-26
DOI: 10.11834/jig.240784
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-12-29,
修回日期:2025-02-18,
录用日期:2025-02-25,
网络出版日期:2025-02-26,
移动端阅览
公共场所中的社交群体检测旨在分析监控视频数据,采用社交互动、时空位置关系或计算机视觉等技术手段去表达人类的社交行为特征,进而识别交互群体。挖掘人类的社交行为模式并识别正在交互的行人群组对于轨迹预测、群体异常活动识别、人机交互等研究领域意义重大,已成为计算机视觉领域的热门研究课题。尽管取得了一些进展,群体交互现象仍然缺乏正式的规则和精确的社会解释。且由于数据采集困难,社交群体检测面临着轻量化网络设计与小样本学习困难。在这篇文章中,我们全面回顾了现有的社交行为理解与群体检测工作:首先,我们依据不同的社交行为建模角度,将公共场所中的群体检测方法分为基于启发式规则与基于学习的方法两大类,其中重点介绍了基于空间、视觉内容、行为模式的方法与主流深度学习框架;其次,我们归纳总结了评价指标、数据集与检测性能;最后,我们讨论了当前研究所面临的挑战和局限性,以及该领域未来可能的研究方向。通过对主要期刊/会议论文的调查分析,结果表明图神经网络与Transformer等的融合模型仍是主要发展趋势,但最近的基于行为模式的方法报告了最优的检测性能。因此,如何挖掘人类的本质社交模式将极具发展潜力。同时还应探索此前未被关注的隐式交互模式挖掘:隐秘犯罪团体发现。
Social group detection in public spaces has become a popular research topic in computer vision and social behavior analysis in recent years. This research aims to analyze surveillance video data, utilizing technologies such as social interaction, spatiotemporal relationships, and computer vision to identify and understand human social behavior patterns, thereby detecting pedestrian groups that are actively interacting. With the advancement of urbanization, the demand for public safety and social behavior monitoring has increased significantly. Social group detection is crucial in various research fields, including trajectory prediction, group anomaly detection, human-computer interaction, and intelligent surveillance. Exploring and identifying human social behavior patterns, especially recognizing pedestrian groups in interaction, provides strong support for applications such as predicting pedestrian behavior, detecting abnormal group activities, and enhancing public safety. This, in turn, propels further developments in computer vision and artificial intelligence. Despite some progress in this field, accurately modeling group interaction phenomena remains challenging. First, social group behaviors are diverse and complex, lacking formal rules and clear social interpretations, which makes social group detection a difficult task. Secondly, most existing methods rely on high-quality annotated data, which poses significant costs and technical challenges, especially in real-world scenarios where the number and behavior patterns of social groups are constantly changing. As a result, existing datasets often fail to cover all possible scenarios. Furthermore, social group detection faces challenges related to lightweight network design and few-shot learning. Particularly in the absence of large-scale annotated data, how to effectively train models and improve detection accuracy remains a key issue in current research. This paper reviews the existing research on social behavior understanding and social group detection. It categorizes methods for social group detection in public spaces into two main categories: heuristic-rule-based methods and learning-based methods. In heuristic-rule-based methods, researchers define a series of rules to determine the interaction features of pedestrian groups, such as using distance, speed change, relative direction, and visual descriptors to define the occurrence of social behavior, or extracting high-level semantic expressions of human interaction patterns, such as social force models or social interaction fields. However, the applicability of these methods is often limited by the accuracy and complexity of the rules. Learning-based methods, on the other hand, leverage machine learning or deep learning techniques to automatically learn the patterns of social behaviors from large datasets, thereby achieving higher detection accuracy. In recent years, deep learning methods, particularly convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs), have been widely applied in social group detection and have achieved significant results. In terms of evaluation, this paper summarizes common evaluation metrics, datasets, and detection performance. Common evaluation metrics include accuracy, recall, and F1 score, which effectively reflect the performance of social group detection algorithms. For example, when using mainstream deep learning frameworks for group detection, the average precision and recall are typically above 85%, while state-of-the-art (SOTA) behavior pattern-based methods achieve F1 scores of up to 89%. This highlights the potential of behavior patterns in recognizing social behavior and detecting interacting groups. Significant performance differences exist across various datasets, such as detection accuracy reaching 87% on the Crowd-Tracking dataset and slightly lower performance (around 83%) on the ETH dataset. These differences suggest that the diversity and complexity of datasets affect detection results to some extent, and current datasets are insufficient to cover all possible social behavior patterns. Lastly, the paper discusses the challenges and limitations of social group detection and outlines future research directions. Current challenges mainly focus on how to effectively process large-scale video data, achieve accurate group detection in data-scarce environments, and address algorithms' real-time performance and computational efficiency. Furthermore, social group detection research faces challenges in integrating cross-disciplinary knowledge, such as incorporating behavioral patterns and social psychology theories to enhance detection accuracy. Future research could expand in the following areas: first, exploring implicit social patterns, particularly covert criminal group detection; second, extracting interpretable fundamental social patterns to enhance the accuracy and robustness of social group detection; third, employing unsupervised and self-supervised learning methods to address the issue of few-shot learning, thereby improving the applicability of algorithms in real-world scenarios. In conclusion, social group detection is not only a technical challenge but also an interdisciplinary research issue with vast application potential. With continuous advancements in algorithms and hardware, future social group detection technologies will play an increasingly important role in public safety, smart cities, and human-computer interaction.
Adam Kendon . 1990 . Conducting interaction: Patterns of behavior in focused encounters . Cambridge : CUP Archive
Al Masum , Abdullah , Mahady Hasan Rafy , and SM Mahbubur Rahman . 2014 . Video-Based Affinity Group Detection Using Trajectories of Multiple Subjects // Proceedings of the 8th International Conference on Electrical and Computer Engineering . Dhaka, Bangladesh : IEEE: 120 - 123 [ https://doi.org/10.1109/ICECE.2014.7026935 https://doi.org/10.1109/ICECE.2014.7026935 ]
Alexandre Nicolas and Fadratul Hafinaz Hassan . 2023 . Social groups in pedestrian crowds: review of their influence on the dynamics and their modelling , Transportmetrica A: Transport Science , 19 ( 1 ): 1970651 [ DOI: 10.1080/23249935.2021.1970651 http://dx.doi.org/10.1080/23249935.2021.1970651 ]
Atıcı E. , Gökberk , B. Akarun, L. 2022 . Detection of Free-Standing Conversational Groups with Graph Convolutional Networks // Proceedings of the 26th International Conference on Pattern Recognitio . Montreal, QC, Canada : IEEE: 1041 - 1047 [ DOI: https://doi.org/10.1109/ICPR56361.2022.9956536 http://dx.doi.org/https://doi.org/10.1109/ICPR56361.2022.9956536 ]
Barua H. B. , Pramanick P. , Sarkar C. and Mg T . H . 2020 . Let Me Join You! Real-time F-formation Recognition by a Socially Aware Robot . // Proceedings of the 29th IEEE International Conference on Robot and Human Interactive Communicatio . Naples, Italy : IEEE: 371 - 377 [ DOI: https://doi.org/10.1109/RO-MAN.2020.9256419 http://dx.doi.org/https://doi.org/10.1109/RO-MAN.2020.9256419 ]
Basalamah S . and Khan S . D. 2020 . Pedestrian Crowd Detection and Segmentation using Multi-Source Feature Descriptors. International Journal of Advanced Computer Science and Applications , 11 ( 1 ): 707 - 713 [ DOI: https://doi.org/10.14569/IJACSA.2020.0110189 http://dx.doi.org/https://doi.org/10.14569/IJACSA.2020.0110189 ]
Bhaskara R. , Chiu M. and Bera A . 2023 . SG-LSTM: Social Group LSTM for Robot Navigation Through Dense Crowds // IEEE/RSJ International Conference on Intelligent Robots and Systems . Detroit, MI, USA : IEEE: 3835 - 3840 [ DOI: https://doi.org/10.1109/IROS55552.2023.10341954 http://dx.doi.org/https://doi.org/10.1109/IROS55552.2023.10341954 ]
Bisagno N. , Zhang B. and Conci N . 2018 . Group LSTM: Group Trajectory Prediction in Crowded Scenarios // Proceedings of ECCV 2018 . Munich, Germany : springer: 317 - 329 [ DOI: https://doi.org/10.1007/978-3-030-01231-0_24 http://dx.doi.org/https://doi.org/10.1007/978-3-030-01231-0_24 ]
Chandran A. K. , Loh A. P. and Vadakkepat P . 2015 . Identifying Social Groups in Pedestrian Crowd Videos // Proceedings of the IEEE International Conference on Computer Vision Workshops . Kolkata, India : IEEE: 830 - 837 [ DOI: https://doi.org/10.1109/ICCVW.2015.830 http://dx.doi.org/https://doi.org/10.1109/ICCVW.2015.830 ]
Chen M. , Banitaan S. and Maleki M . 2023 . Enhancing Pedestrian Group Detection and Tracking Through Zone-Based Clustering . IEEE Access , 11 : 132162 - 132177 [ DOI: https://doi.org/10.1109/ACCESS.2023.3336592 http://dx.doi.org/https://doi.org/10.1109/ACCESS.2023.3336592 ]
Chen M. , Banitaan S. , Maleki M . and Li, Y. 2022. GDSCAN: Pedestrian Group Detection using Dynamic Epsilon // Proceedings of the 21st IEEE International Conference on Machine Learning and Applications , Nassau, Bahamas : IEEE: 1747 - 1753 [ DOI: https://doi.org/10.1109/ICMLA55696.2022.00267 http://dx.doi.org/https://doi.org/10.1109/ICMLA55696.2022.00267 ]
Chen V. K. and Liang C . 2024 . Persistent Homology for Capturing Social Structure and Cohesion of F-Formation Groups //Proceedings of the IEEE International Conference on Robotics andAutomation. Yokohama, Japan : IEEE: DOI: https://doi.org/10.1109/ICRA.2024.9376589& http://dx.doi.org/https://doi.org/10.1109/ICRA.2024.9376589& #820 #820
Chen X . -H . and Lai J. -H . 2019 . Salient Points Driven Pedestrian Group Retrieval//Proceedings of Image and Graphics: 10th International Conference. Beijing, China : Springer: 644 – 656 [ DOI: https://doi.org/10.1007/978-3-030-34120-6_52 http://dx.doi.org/https://doi.org/10.1007/978-3-030-34120-6_52 ]
Cheng H. , Li Y. and Sester M . 2019 . Pedestrian Group Detection in Shared Space // Proceedings of the 2019 IEEE Intelligent Vehicles Symposium . Paris, France : IEEE: 1707 - 1713 [ DOI: 10.1109/IVS.2019.8813849 http://dx.doi.org/10.1109/IVS.2019.8813849 ]
Choi W. , Chao Y . -W. , Pantofaru C. and Savarese S . 2014 . Discovering Groups of P eople in Images//Proceedings of ECCV 2014. Zurich, Switzerland : Springer: 417 - 433 [ DOI: https://doi.org/10.1007/978-3-319-10593-2_27 http://dx.doi.org/https://doi.org/10.1007/978-3-319-10593-2_27 ]
Cristani M. , Bazzani L. , Paggetti G. , Fossati A. , Del Bue A. , Menegaz G. and Murino V . 2011 . Social interaction discovery by statistical analysis of F-formations // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Dundee, UK : BMVC Press: 10 - 5244 [ DOI: 10.5244/C.25 http://dx.doi.org/10.5244/C.25 ]
Cristani M. , Raghavendra R. , Del Bue A. and Murino V . 2013 . Human behavior analysis in video surveillance: A Social Signal Processing perspective , Neurocomputing , 100 : 86 - 97 [ DOI: 10.1016/j.neucom.2011.12.038 http://dx.doi.org/10.1016/j.neucom.2011.12.038 ]
D. Helbing and P. Molnar . 1995 . Social force model for pedestrian dynamics . Physical Review E , 51 ( 5 ): 4282 [ DOI: https://doi.org/10.1103/PhysRevE.51.4282 http://dx.doi.org/https://doi.org/10.1103/PhysRevE.51.4282 ]
Dai P. , Di H. , Dong L. , Tao L. and Xu G . 2008 . Group Interaction Analysis in Dynamic Context . IEEE Transactions on Systems, Man, and Cybernetics—Part B : Cybernetics , 38 ( 1 ): 275 - 282 [ DOI: https://doi.org/10.1109/TSMCB.2007.909939 http://dx.doi.org/https://doi.org/10.1109/TSMCB.2007.909939 ]
Dim E. and Kuflik T . 2010 . Social Signal Processing: Detecting Small Group Interaction in Leisure Activity //Proceedings of the 15th International Conference on Intelligent User Interfaces. Hong Kong China : ACM: 309 - 312 [ DOI: https://doi.org/10.1145/1719970.1720009 http://dx.doi.org/https://doi.org/10.1145/1719970.1720009 ]
Ding L. and Yilmaz A . 2011 . Inferring Social Relations from Visual Concepts //2011 IEEE International Conference on Computer Vision. Barcelona, Spain : IEEE: 699 - 706 [ DOI: https://doi.org/10.1109/ICCV.2011.6126275 http://dx.doi.org/https://doi.org/10.1109/ICCV.2011.6126275 ]
Ehsanpour M. , Abedin A. , Saleh F. , Shi J. , Reid I. and Rezatofighi H . 2020 . Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos // Proceedings of ECCV 2020 . Glasgow, UK : Springer: 177 - 195 [ DOI: https://doi.org/10.1007/978-3-030-58545-7_11 http://dx.doi.org/https://doi.org/10.1007/978-3-030-58545-7_11 ]
Eyal Dim and Tsvi Kuflik . 2013 . Social F-formation in blended reality // Proceedings of the International Conference on Intelligent User Interfaces . California, USA : 25 – 28
Favaretto R. M. , Araujo V . F. de A., Vilanova F., Costa A. B. and Musse S . R. 2021 . Cultural behaviors analysis in video sequences. Machine Vision and Applications , 32 : 1 - 24 [ DOI: https://doi.org/10.1007/s00138-021-01225-2 http://dx.doi.org/https://doi.org/10.1007/s00138-021-01225-2 ]
Favaretto R. M. , Dihl L. and Musse S . R . 2016 . Detecting Crowd Features in Video Sequences // 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images . Sao Paulo, Brazil : IEEE: 2377 - 5416 [ 10.1109/SIBGRAPI.2016.036 http://dx.doi.org/10.1109/SIBGRAPI.2016.036 ]
Feng L . and Bhanu B . 2015 . Understanding Dynamic Social Grouping Behaviors of Pedestrians. IEEE Journal of Selected Topics in Signal Processing , 9 ( 2 ): 317 - 329 [ DOI: https://doi.org/10.1109/JSTSP.2014.2365765 http://dx.doi.org/https://doi.org/10.1109/JSTSP.2014.2365765 ]
Fernández-Ramírez J. , Álvarez-Meza A. , Pereira E. M. , Orozco-Gutiérrez A . and Castellanos-Dominguez G . 2019 . Video-based social behavior recognit ion based on kernel relevance analysis. The Visual Computer , 36 ( 8 ): 1535 – 1547 [ DOI: https://doi.org/10.1007/s00371-019-01754-y http://dx.doi.org/https://doi.org/10.1007/s00371-019-01754-y ]
Fernando T. , Denman S. , Sridharan S. and Fookes C . 2019 . GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds // Proceedings of ACCV 2018 . Perth, Australia : Springer: 314 – 330 [ DOI: https://doi.org/10.1007/978-3-030-20887-5_20 http://dx.doi.org/https://doi.org/10.1007/978-3-030-20887-5_20 ]
Ferrera-Cedeño E. , Acosta-Mendoza N. , Gago-Alonso A . and García-Reyes E . 2019 . Detecting Free Standing Conversational Group in Video Using Fuzzy Relations. Informatica , 30 ( 1 ): 21 – 32 [ DOI: https://doi.org/10.15388/Informatica.2019.195 http://dx.doi.org/https://doi.org/10.15388/Informatica.2019.195 ]
GAO J J and QING L B . 2019 . Survey on social relationship recognition based on images . Computer Engineering and Applications , 55 ( 21 ): 36 - 45
高建军 , 卿粼波 . 2019 . 基于图像的社会关系识别研究综述 . 计算机工程与应用 , 55 ( 21 ): 36 - 45 [ Doi: 10.3778/j.issn.1002-8331.1908-0308 http://dx.doi.org/10.3778/j.issn.1002-8331.1908-0308 ]
Ge W. , Collins R. T. and Ruback B . 2009 . Automatically Detecting the Small Group Structure of a Crowd .// IEEE International Conference on Computer Vision . Snowbird, UT, USA : IEEE: 1 - 8 [ DOI: https://doi.org/10.1109/ICCV.2009.5459207 http://dx.doi.org/https://doi.org/10.1109/ICCV.2009.5459207 ]
Ghasemi M. , Yang Z. , Sun M. , Ye H. , Xiong Z. , Ghaderi J. , Kostic Z. and Zussman G . 2024 . Video-Based Social Distancing: Evaluation in the COSMOS Testbed . IEEE Internet of Things Journal , 11 ( 3 ): 4987 - 4996 [ DOI: https://doi.org/10.1109/JIOT.2023.3305587 http://dx.doi.org/https://doi.org/10.1109/JIOT.2023.3305587 ]
Groh G. , Lehmann A. , Reimers J. , Frieß M . R . and
Schwarz L . 2010 . Detecting Social Situations from Interaction Geometry // Proceedings of the 2010 IEEE Second International Conference on Social Computing . Minneapolis, MN, USA : IEEE: 1 - 8 [ DOI: https://doi.org/10.1109/SocialCom.2010.11 http://dx.doi.org/https://doi.org/10.1109/SocialCom.2010.11 ]
Habe H. , Hashimoto T. , Mitsugami I. , Sumi K. and Yagi Y . 2017 . Pedestrian Group Detection with Gesture Features . 知能と情報 (Web) , 2017, 29 ( 3 ): 605-610
Han R. , Yan H. , Li J. , Wang S. , Feng W. and Wang S . 2022 . Panoramic Human Activity Recognition // Proceedings of the European Conference on Computer Vision . Tel Aviv, Israel : Springer: 244 - 261 [ https://doi.org/10.1007/978-3-031-19772-7_15 https://doi.org/10.1007/978-3-031-19772-7_15 ]
Hayley Hung , Chirag Raman , Ekin Gedik , Stephanie Tan , and Jose Vargas Quiros . 2019 . Multimodal data collection for social interaction analysis in-the-wild // In Proceedings of the 27th ACM International Conference on Multimedia . New York, United States : ACM: 2714 – 2715 [ DOI: https://doi.org/10.1145/3343031.3351320 http://dx.doi.org/https://doi.org/10.1145/3343031.3351320 ]
Hedayati H. , Muehlbradt A. , Szafir D. J. and Andrist S . 2020 . REFORM: Recognizing F-formations for Social Robots // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System . Las Vegas, NV, USA : IEEE: 11181 - 11188 [ DOI: https://doi.org/10.1109/IROS45743.2020.9340708 http://dx.doi.org/https://doi.org/10.1109/IROS45743.2020.9340708 ]
Hoang G. , Dinh T.N. , Hoang T.C. , Duy S.L. , Hihara K. , Utada Y. , Torii A. , Izumi N. , Quoc L.T. , 2022 . F 2 SD: A dataset for end-to-end group detection algorithms // Proceedings of the Fifteenth International Conference on Machine Vision . Rome, Italy : Springer: 54 - 63 [ DOI: https://doi.org/10.1117/12.2679967 http://dx.doi.org/https://doi.org/10.1117/12.2679967 ]
Hrishav Bakul Barua , Theint Haythi Mg , Pradip Pramanick , and Chayan Sarkar . 2024 . Enabling Social Robots to Perceive and Join Socially Interacting Groups using F-formation: A Comprehensive Overview . ACM Transactions on Human-Robot Interaction , 13 ( 4 ): 1 - 48 [ DOI: https://doi.org/10.1145/3682072 http://dx.doi.org/https://doi.org/10.1145/3682072 ]
Huang L. , J. Gong , W. Li , T. Xu , S. Shen , J. Liang and J. Sun . 2018 . Social Force Model-Based Group Behavior Simulation in Virtual Geographic Environments . ISPRS International Journal of GeoInformation , 7 ( 2 ): 79 [ DOI: 10.3390/ijgi7020079 http://dx.doi.org/10.3390/ijgi7020079 ]
Huang S. , Huang D. and Khuhro M . A . 2018 . Social Pedestrian Group Detection Based on Spatiotemporal-Oriented Energy for Crowd Video Understanding. KSII Transactions on Internet and Information Systems , 12 ( 8 ): 3769 - 3789 [ DOI: 10.3837/tiis.2018.08.012 http://dx.doi.org/10.3837/tiis.2018.08.012 ]
Huang Z. , Wang Z. , Tsai C . -C., Satoh S . and Lin C.-W . 2021 . DotSCN: Group Re-Identification via Domain-Transferred Single and Couple Representation Learning. IEEE Transactions on Circuits and Systems for Video Technology, 31 ( 7 ): 2739 - 2749 [ DOI: 10.1109/TCSVT.2020.3031303 http://dx.doi.org/10.1109/TCSVT.2020.3031303 ]
Hung H. and Kröse B . 2011 . Detecting F-formations as Dominant Sets //Proceedings of ICMI 2011. Alicante, Spain : ACM: 231 – 238 . [ DOI: https://doi.org/10.1145/2070481.2070525 http://dx.doi.org/https://doi.org/10.1145/2070481.2070525 ]
Inaba S. and Aoki Y . 2016 . Conversational group detection based on social context using graph clustering algorithm //2016 12th International Conference on Signal-Image Technology & Internet-Based Systems. Tokyo, Japan : IEEE: 526 - 530 . [ DOI: 10.1109/SITIS.2016.89 http://dx.doi.org/10.1109/SITIS.2016.89 ]
Islas Ramírez O. A. , Varni G. , Andries M. , Chetouani M. and Chatila R . 2016 . Modeling the Dynamics of Individual Behaviors for Group Detection in Crowds Using Low-Level Features // Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) . New York . USA : IEEE: 1104 - 1110 . [ DOI: 10.1109/ROMAN.2016.7745186 http://dx.doi.org/10.1109/ROMAN.2016.7745186 ]
Jahangard S. , Hayat M. and Rezatofighi H . 2023 . Real-Time Trajectory-Based Social Group Detection using Graph Transformers // Proceedings of ICCV 2023 . Montreal. Canada : IEEE: 345 - 358 . [ DOI: 10.1109/ICCV.2023.4567 http://dx.doi.org/10.1109/ICCV.2023.4567 ]
Jeni Paay, Jesper Kjeldskov, Mikael B. Skov and Kenton O’hara . 2013 . F-formations in cooking together: A digital ethnography using youtube //IFIP Conference on Human-Computer Interaction. Berlin, Germany : Springer: 37 - 54 . [ DOI: 10.1007/978-3-642-40603-5_4 http://dx.doi.org/10.1007/978-3-642-40603-5_4 ]
Joo H. , Liu H. , Tan L. , Gui L. , Nabbe B. , Matthews I. , Kanade T. , Nobuhara S. and Sheikh Y . 2015 . Panoptic Studio: A Massively Multiview System for Social Motion Capture // Proceedings of the IEEE International Conference on Computer Vision (ICCV) . Santiago, Chile : IEEE: 3334 - 3342 . [ DOI: 10.1109/ICCV.2015.381 http://dx.doi.org/10.1109/ICCV.2015.381 ]
Joo H. , Simon T. , Li X. , Liu H. , Tan L. , Gui L. , Banerjee S. , Godisart T. , Nabbe B. , Matthews I. , et al . 2017 . Panoptic studio: A massively multiview system for social interaction capture . IEEE Transactions on Pattern Analysis and Machine Intelligence , 41 ( 1 ): 190 - 204 [ DOI: 10.1109/TPAMI.2018.2804135 http://dx.doi.org/10.1109/TPAMI.2018.2804135 ]
Kalnis P. , Mamoulis N. , and Bakiras S . 2005 . On Discovering Moving Clusters in Spatio-temporal Data // Proceedings of SSTD 2005 , LNCS 3633 . Berlin, Germany : Springer: 364 - 381 . [ DOI: 10.1007/11535331_22 http://dx.doi.org/10.1007/11535331_22 ]
Kang D. , Mok Y. , Kim Y. , Kwon S. and Paik J . 2023 . Human Group Clustering in a Crowded Public Place Using Multiple Object Detection and Tracking // Proceedings of the International Conference on Electronics, Information, and Communication . Singapore : IEEE: 1 - 3 [ DOI: https://doi.org/10.1109/ICEIC57457.2023.10049978 http://dx.doi.org/https://doi.org/10.1109/ICEIC57457.2023.10049978 ]
Kendon A . 2010 . Spacing and Orientation in Co-present Interaction //A. Esposito et al. (Eds.), COST 2102 International Training School 2009 . Berlin, Germany : Springer: 1 - 15 . [ DOI: 10.1007/978-3-642-12397-9_1 http://dx.doi.org/10.1007/978-3-642-12397-9_1 ]
Khai N. Tran, Apurva Bedagkar-Gala, Ioannis A. Kakadiaris and Shishir K . Shah. 2013 . Social Cues in Group Formation and Local Interactions for Collective Activity Analysis // Proceedings of the International Conference on Computer Vision Theory and Applications. Barcelona, Spain : SciTePress: 539 - 548 [ DOI: 10.5220/0004256505390548 http://dx.doi.org/10.5220/0004256505390548 ]
Khan S. D. , Vizzari G. , Bandini S. , and Basalamah S . 2015 . Detection of social groups in pedestrian crowds using computer vision // Proceedings of the Advanced Concepts for Intelligent Vision Systems (ACIVS) . Catania, Italy : Springer: 1 - 12 . [ DOI: 10.1007/978-3-319-25903-1_22 http://dx.doi.org/10.1007/978-3-319-25903-1_22 ]
Kjærgaard M. B. , Wirz M. , Roggen D. , and Tröster G . 2012 . Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones // Proceedings of UbiComp 2012 . Pittsburgh, USA : ACM: 87 - 96 . [ DOI: 10.1145/2370216.2370256 http://dx.doi.org/10.1145/2370216.2370256 ]
Kong Y. , Jia Y. , and Fu Y . 2012 . Learning Human Interaction by Interactive Phrases // Proceedings of ECCV 2012 , LNCS 7572 . Florence, Italy : Springer: 300 - 313 . [ DOI: 10.1007/978-3-642-33712-3_22 http://dx.doi.org/10.1007/978-3-642-33712-3_22 ]
Küpper M . and Seyfried A . 2023 . Identification of social groups and waiting pedestrians at railway platforms using trajectory data. PLOS ONE , 18 ( 3 ): e0282526 [ DOI: 10.1371/journal.pone.0282526 http://dx.doi.org/10.1371/journal.pone.0282526 ]
Lathuilière S. , Evangelidis G. and Horaud R . 2017 . Recognition of Group Activities in Videos Based on Single- and Two-Person Descriptors // 2017 IEEE Winter Conference on Applications of Computer Vision . Santa Rosa, USA : IEEE , 217 - 224 . [ DOI: 10.1109/WACV.2017.31 http://dx.doi.org/10.1109/WACV.2017.31 ]
Leach M . J .
, Baxter R. , Robertson N. M. and Sparks E . P . 2014 . Detecting Social Groups in Crowded Surveillance Videos Using Visual Attention // Proceedings of ICIAP 2014 . Genoa, Italy : IEEE , 461 - 467 . [ DOI: 10.1109/ICCVW.2013.71 http://dx.doi.org/10.1109/ICCVW.2013.71 ]
Leal-Taixé L., Pons-Moll G. and Rosenhahn B . 2011 . Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker //2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain : IEEE , 120 - 127 . [ DOI: 10.1109/ICCVW.2011.6130359 http://dx.doi.org/10.1109/ICCVW.2011.6130359 ]
Li H and. Chen N N. 2023. Graph attention-based dual-branch method for social relationship recognition [J]. Application Research of Computers , 40 ( 11 ): 3315 - 3320
李欢 , 陈念年 . 2023 . 一种基于图注意力的双分支社会关系识别方法 [J]. 计算机应用研究 , 40 11 ): 3315-3320 ([西南科技大学 计算机科学与技术学院, 四川 绵阳 621010 [ DOI: 10.19734/j.issn.1001-3695.2023.03.0102 http://dx.doi.org/10.19734/j.issn.1001-3695.2023.03.0102 ]
Li J. , Han R. , Yan H. , Qian Z. , Feng W. and Wang S . 2022 . Self-supervised Social Relation Representation for Human Group Detection // Proceedings of ECCV 2022 , LNCS 13695 . Tel Aviv, Israel : Springer: 142 - 159 . [ DOI: 10.1007/978-3-031-19833-5_9 http://dx.doi.org/10.1007/978-3-031-19833-5_9 ]
Li J. , Li Z. , Li X. , Feng Y. , Hu Y. and Xu B . 2020 . Skill learning strategy based on dynamic motion primitives for human–robot cooperative manipulation . IEEE Transactions on Cognitive and Developmental Systems , 13 ( 1 ): 105 - 117 [ DOI: 10.1109/TCDS.2020.2964379 http://dx.doi.org/10.1109/TCDS.2020.2964379 ]
Li L. , Qing L. , Guo L. and Peng Y . 2023 . Relationship existence recognition-based social group detection in urban public spaces . Neurocomputing , 516 : 92 - 105 [ DOI: 10.1016/j.neucom.2022.10.042 http://dx.doi.org/10.1016/j.neucom.2022.10.042 ]
Li M. , Chen T. , Du H. , Ma N. and Xi X . 2023 . Social group detection based on multi-level consistent behaviour characteristics . Transportmetrica A: Transport Science , 19 ( 1 ): 1976877 [ DOI: 10.1080/23249935.2021.1976877 http://dx.doi.org/10.1080/23249935.2021.1976877 ]
Li R. , Porfilio P. and Zickler T . 2013 . Finding Group Interactions in Social Clutter // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Portland, USA : IEEE: 2720 - 2727 [DOI: 10.1109/CVPR.2013.351].
Li X. , Chen M. , Nie F. and Wang Q . 2017 . A Multiview-Based Parameter Free Framework for Group Detection // Proceedings of the AAAI Conference on Artificial Intelligence . San Francisco, USA : AAAI Press: 4147 - 4152 [DOI: 10.1609/aaai.v31i1.11494].
Li X. , Xiong S. and Duan P . 2015 . A Study on the Dynamic Spatial-temporal Trajectory Features of Pedestrian Small Group // Proceedings of the 2015 Second International Symposium on Dependable Computing and Internet of Things . Hong Kong, China : IEEE: 112 - 115 [DOI: 10.1109/DCIT.2015.9].
Lin S. and Yang H . 2019 . Social MIL: Interaction-Aware for Crowd Anomaly Detection //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA : IEEE: 6479 - 6488 [DOI: 10.1109/CVPR.2019.00648].
Li S. , Hu R. , Li S. , and Liao L . 2024 . Hidden Follower Detection: How Is the Gaze-Spacing Pattern Embodied in Frequency Domain? // Proceedings of the AAAI Conference on Artificial Intelligence , Vancouver, Canada : AAAI Press , 38 ( 1 ): 538 - 546 [DOI: 10.1609/aaai.v38i1.27809].
Liu J. , Li H. , and Kong W . 2023 . Multi-level learning counting via pyramid vision transformer and CNN. Eng. Appl. Artif . Intell . 123 , 106184. [DOI: 10.1016/j.engappai.2023.106184].
Liu X . 2016 . Multi-view 3D human tracking in crowded scenes // Proceeding of the AAAI Conference on Artificial Intelligence . Phoenix, USA : AAAI Press : 30(1)3553 – 3559 .[ DOI: https://doi.org/10.1609/aaai.v30i1.10463 http://dx.doi.org/https://doi.org/10.1609/aaai.v30i1.10463 ]
Livramento R. , Avelino J. and Moreno P . 2020 . Natural Data-driven Approaching Behaviors of Humanoid Mobile Robots for F-Formations // Proceedings of the 19th European Control Conference (ECC) . Naples, Italy : IEEE , 2284 - 2291 . [ DOI: 10.23919/ECC51683.2020.9164814 http://dx.doi.org/10.23919/ECC51683.2020.9164814 ]
Lu X. , Li X. , Hu C. , Deng J. , Sheng W. and Zhu L . 2023 . Two-branch deep learning with spatial and pose constraints for social group detection . Engineering Applications of Artificial Intelligence , 124 : 106583 [ DOI: https://doi.org/10.1016/j.engappai.2023.106583 http://dx.doi.org/https://doi.org/10.1016/j.engappai.2023.106583 ]
Lv K. , Yuan L. and Ni X . 2024 . Learning Autoencoder Diffusion Models of Pedestrian Group Relationships for Multimodal Trajectory Prediction . IEEE Transactions on Instrumentation and Measurement , 73 : 2511412 [ DOI: https://doi.org/10.1109/TIM.2024.3375973 http://dx.doi.org/https://doi.org/10.1109/TIM.2024.3375973 ]
Lyu Y. , Qin P. , Xu T. , Zhu C. and Chen E . 2024 . InteractNet: Social Interaction Recognition for Semantic-rich Videos . ACM Transactions on Multimedia Computing, Communications, and Applications , 20 ( 8 ): Article 240 [ DOI: https://doi.org/10.1145/3663668 http://dx.doi.org/https://doi.org/10.1145/3663668 ]
Ayazoglu M. , Yilmaz B. , Sznaier M. , Camps O . 2013 . Finding causal interactions in video sequences // Proceedings of the IEEE International Conference on Computer Vision (ICCV 2013) . Sydney, Australia : IEEE , 3575 – 3582 [DOI: 10.1109/ICCV.2013.459].
Chen M. , Wang Q. , Li X . 2017 . Anchor-based group detection in crowd scenes // Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . New Orleans, USA : IEEE , 1378 – 1382 [DOI: 10.1109/ICASSP.2017.7952656].
Ehsanpour M. , Saleh F. , Savarese S. , Reid I. and Rezatofighi H . 2022 . JRDB-Act: A large-scale dataset for spatio-temporal action, social group and activity detection // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , New Orleans, USA : IEEE , 20983 – 20992 [DOI: 10.1109/CVPR52688.2022.02058].
Mazzon R. , Poiesi F. and Cavallaro A . 2013 . Detection and tracking of groups in crowd // Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) , Cardiff, UK : IEEE , 202 - 207 [DOI: 10.1109/AVSS.2013.6636641].
Montesdeoca J. , Toibero J.M. , Jordan J. , Zell A. and Carelli R . 2022 . Person-following controller with socially acceptable robot motion . Robotics and Autonomous Systems , 153 : 104075 [DOI: 10.1016/j.robot.2022.104075] .
Moussaïd M. , Perozo N. , Garnier S. , Helbing D. and Theraulaz G . 2010 . The walking behaviour of pedestrian social groups and its impact on crowd dynamics . PLOS ONE , 5 ( 4 ): e10047 [DOI: 10.1371/journal.pone.0010047] .
Nabi M. , Del Bue A. and Murino V . 2013 . Temporal poselets for collective activity detection and recognition // Proceedings of ICCVW 2013 . Sydney, Australia : IEEE , 500 - 507 [DOI: 10.1109/ICCVW.2013.71].
Nakamura K. , Ono T. and Babaguchi N . 2016 . Detection of groups in crowd considering their activity state // Proceedings of 2016 23rd International Conference on Pattern Recognition (ICPR) . Cancún, Mexico : IEEE , 277 - 282 [DOI: 10.1109/ICPR.2016.7899651].
Nasri M. , Maliappis T. , Rieffe C. and Baratchi M . 2024 . T-DANTE: Detecting group behaviour in spatio-temporal trajectories using context information // Proceedings of IDA 2024 . Salamanca, Spain : Springer: 28 - 39 [DOI: 10.1007/978-3-031-58553-1_3].
Nunes I. O. , Vaz de Melo P . O. S. and Loureiro A . A .
F . 2016 . Group mobility : Detection, tracking and characterization// Proceedings of IEEE ICC 2016 SAC Social Networking . Kuala Lumpur, Malaysia : IEEE: [ DOI: 10.1109/ICC.2016.7511207 http://dx.doi.org/10.1109/ICC.2016.7511207 ]
Palanisamy G . and Manikandan T . T . 2017 . Group behaviour profiling for detection of anomaly in crowd // Proceedings of International Conference on Technical Advancements in Computers and Communications (ICTACC) . Melmaurvathur, India: 11 - 15 .
Pandey M. , Singhal S. and Tripathi V . 2019 . An Efficient Vision-Based Group Detection Framework in Crowded Scene . Advances in Intelligent Systems and Computing , 1014 : 202 – 209 [ DOI: https://doi.org/10.1007/978-981-13-9920-6_21 http://dx.doi.org/https://doi.org/10.1007/978-981-13-9920-6_21 ]
Pang S. K. , Li J. and Godsill S . J . 2008 . Models and Algorithms for Detection and Tracking of Coordinated Groups // Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis . Ljubljana, Slovenia : IEEE , 2008.
Pathi S. K. , Kiselev A. and Loutfi A . 2022 . Detecting Groups and Estimating F-Formations for Social Human–Robot Interactions . Multimodal Technologies and Interaction , 6(18 ) [ DOI: https://doi.org/10.3390/mti6030018 http://dx.doi.org/https://doi.org/10.3390/mti6030018 ].
Pavan M . and Pelillo M . 2006 . Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell . 29 ( 1 ): 167 – 172 .
Poiesi F . and Cavallaro A . 2014 . Predicting and recognizing human interactions in public spaces. Journal of Real-Time Image Processing , 10 ( 4 ): 785 – 803 [DOI: 10.1007/s11554-014-0428-8] .
Pouw C . A . S., Toschi F. , van Schadewijk F. and Corbetta A. 2020 . Monitoring physical distancing for crowd management: Real-time trajectory and group analysis. PLOS ONE, 15 ( 10 ): e0240963 [DOI: 10.1371/journal.pone.0240963] .
Han R. , Yan H. , Li J. , Wang S. , Feng W. and Wang S . 2022 . Panoramic human activity recognition // Proceedings of Computer Vision–ECCV 2022: 17th European Conference . Tel Aviv, Israel : Springer , 244 – 261 .
Raman C. , Hung H. , Loog M . 2023 . Social processes: self-supervised meta-learning over conversational groups for forecasting nonverbal social cues . In: Karlinsky L., Michaeli T., Nishino K. (Eds.), Computer Vision – ECCV 2022 Workshops . Lecture Notes in Computer Science, Cham : Springer Nature Switzerland , 639 – 659 .
Rivas M. , Alvarez P. , Barrientos A. and Cuadros M . 2021 . Proxemics Toolkit For F-formation Patterns Detection // Proceedings of the 30th Conference of FRUCT Association . Oulu, Finland : IEEE: 216 - 222 [ DOI: 10.23919/FRUCT53335.2021.9599996 http://dx.doi.org/10.23919/FRUCT53335.2021.9599996 ]
Robinson N. , Tidd B. , Campbell D. , Kulić D . and Corke P . 2023 . Robotic vision for human-robot interaction and collaboration: A survey and systematic review. ACM Transactions on Human-Robot Interaction , 12 ( 1 ): 1 – 66 [DOI: 10.1145/3577665] .
Rota P. , Conci N. , Sebe N. and Rehg J . M . 2015 . Real-life violent social interaction detection // Proceedings of the IEEE International Conference on Image Processing (ICIP) . Quebec, Canada : IEEE , 3456 - 3459 [DOI: 10.1109/ICIP.2015.7351234].
Pang S. K. , Li J. and Godsill S . J . 2011 . Detection and tracking of coordinated groups. IEEE Transactions on Aerospace and Electronic Systems , 47 ( 1 ): 472 – 502 [ DOI: 10.1109/TAES.2011.5705687 http://dx.doi.org/10.1109/TAES.2011.5705687 ]
Sawas A. , Abuolaim A. , Afifi M. and Papagelis M . 2018 . Tensor methods for group pattern discovery of pedestrian trajectories // Proceedings of the 19th IEEE International Conference on Mobile Data Management (MDM) . Hong Kong, China : IEEE: 256 - 265 [DOI: 10.1109/MDM.2018.00024].
Sawas A. , Abuolaim A. , Afifi M. and Papagelis M . 2019 . A versatile computational framework for group pattern mining of pedestrian trajectories . Geoinformatica , 23 ( 4 ): 501 – 531 [ DOI: 10.1007/s10707-019-00353-2 http://dx.doi.org/10.1007/s10707-019-00353-2 ].
Schmuck V. and Celiktutan O . 2021 . GROWL: Group Detection With Link Prediction // Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG), Jodhpur, India : IEEE: 1 - 8 [DOI: 10.1109/FG52635.2021.9667061].
Setti F. , Hung H. and Cristani M . 2013 . Group Detection in Still Images by F-Formation Modeling: A Comparative Study // Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW) . Paris, France : IEEE: 1110 – 1117 [DOI: 10.1109/WIAMIS.2013.6616147].
Setti F. , Lanz O. , Ferrario R. , Murino V. and Cristani M . 2013 . Multi-Scale F-Formation Discovery for Group Detection // Proceedings of the IEEE International Conference on Image Processing (ICIP) . Melbourne, Australia : IEEE: 3547 – 3550 [DOI: 10.1109/ICIP.2013.6738833].
Setti F. , Russell C. , Bassetti C. and Cristani M . 2015 . F-Formation Detection: Individuating Free-Standing Conversational Groups in Images . PLOS ONE , 10 ( 5 ): e0123783 [DOI: https://doi.org/10.1371/journal.pone.0123783] .
Shao J. , Dong N. and Zhao Q . 2015 . An Adaptive Clustering Approach for Group Detection in the Crowd // Proceedings of the IEEE International Conference on Computer Vision Workshops . Santiago, Chile : IEEE: 77 - 80 [DOI: https://doi.org/10.1109/ICCVW.2015.77].
Sheng W . and Li X . 2021 . Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network. Pattern Recognition , 114 : 107868 [DOI: 10.1016/j.patcog.2021.107868] .
Shuaibu A. N. , Malik A. S. , Faye I. and Ali Y . S . 2017 . Pedestrian Group Attributes Detection in Crowded Scenes . Proceedings of the 3rd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). Fez, Morocco : IEEE , 1 - 6 [DOI: 10.1109/ATSIP.2017.8075561] .
Sochman J . and Hogg D . C . 2011 . Who Knows Who – Inverting the Social Force Model for Finding Groups. Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain : IEEE: 830 - 837 [DOI: 10.1109/ICCVW.2011.6130359].
Solera F . and Calderara S . 2013 . Social Groups Detection in Crowd through Shape-Augmented Structured Learning. Proceedings of ICIAP 2013, LNCS 8156. Siena, Italy : Springer: 542 - 551 [DOI: 10.1007/978-3-642-41181-6_56].
Solera F. , Calderara S. and Cucchiara R . 2016 . Socially Constrained Structural Learning for Groups Detection in Crowd . IEEE Transactions on Pattern Analysis and Machine Intelligence , 38 ( 5 ): 995 – 1008 [ DOI: https://doi.org/10.1109/TPAMI.2015.2470658 http://dx.doi.org/https://doi.org/10.1109/TPAMI.2015.2470658 ].
Solera F. , Calderara S. , Ristani E. , Tomasi C. and Cucchiara R . 2017 . Tracking Social Groups Within and Across Cameras . IEEE Transactions on Circuits and Systems for Video Technology , 27 ( 3 ): 441 – 455 [ DOI: https://doi.org/10.1109/TCSVT.2016.2607378 http://dx.doi.org/https://doi.org/10.1109/TCSVT.2016.2607378 ].
Su J. , Huang J. , Qing L. , He X. and Chen H . 2022 . A new approach for social group detection based on spatio-temporal interpersonal distance measurement . Heliyon , 8 : e11038 [DOI: https://doi.org/10.1016/j.heliyon.2022.e11038] .
Sun J. , Jiang Q. and Lu C . 2020 . Recursive Social Behavior Graph for Trajectory Prediction // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . IEEE : 660 – 667 .
Swofford M. , Peruzzi J. , Tsoi N. , Thompson S. , Martín-Martín R. , Savarese S. and Vázquez M . 2020 . Improving Social Awareness Through DANTE: Deep Affinity Network for Clustering Conversational Interactants. Proceedings of the ACM on Human-Computer Interaction, 4 (CSCW 1 ): 1 – 23 [ DOI: https://doi.org/10.1145/3392824 http://dx.doi.org/https://doi.org/10.1145/3392824 ].
Tamura M., Vishwakarma R. and Vennelakanti R . 2022 . Hunting Group Clues with Transformers for Social Group Activity Recognition //Proceedings of the European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel : Springer: 19 - 35 [ DOI: https://doi.org/10.1007/978-3-031-19772-7_2 http://dx.doi.org/https://doi.org/10.1007/978-3-031-19772-7_2 ]
Tan K. , Xu L. , Liu Y. and Luo B . 2017 . Small Group Detection in Crowds using Interaction Information . IEICE Transactions on Information and Systems , E100 -D( 7 ): 1542 - 1545 [ DOI: https://doi.org/10.1587/transinf.2016EDL8192 http://dx.doi.org/https://doi.org/10.1587/transinf.2016EDL8192 ]
Tan S. , Tax D . M. J. and Hung H . 2022 . Conversation Group Detection With Spatio-Temporal Context . Proceedings of the International Conference on Multimodal Interaction (ICMI ’22), Bengaluru, India : ACM: 7 – 11 [ DOI: https://doi.org/10.1145/3536221.3556611 http://dx.doi.org/https://doi.org/10.1145/3536221.3556611 ]
Taylor A . and Riek L . D . 2022 . REGROUP: A Robot-Centric Group Detection and Tracking System. Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan : IEEE: 412 - 421 [ DOI: https://doi.org/10.1109/HRI53351.2022.9889634 http://dx.doi.org/https://doi.org/10.1109/HRI53351.2022.9889634 ]
Taylor A. , Chan D. M. and Riek L . D . 2020 . Robot-Centric Perception of Human Groups. ACM Transactions on Human-Robot Interaction , 9 ( 3 ): 1 - 23 [ DOI: https://doi.org/10.1145/3375798 http://dx.doi.org/https://doi.org/10.1145/3375798 ]
Thompson S. , Gupta A. , Chen A. and Vázquez M . 2021 . Conversational Group Detection with Graph Neural Networks // Proceedings of the 2021 International Conference on Multimodal Interaction . Montreal, Canada : ACM: 1 - 5 [ DOI: https://doi.org/10.1145/3462244.3479963 http://dx.doi.org/https://doi.org/10.1145/3462244.3479963 ]
Tzelepi M . and Tefas A . 2019 . Graph Embedded Convolutional Neural Networks in Human Crowd Detection for Drone Flight Safety. IEEE Transactions on Emerging Topics in Computational Intelligence , 5 ( 2 ): 191 - 203 [ DOI: 10.1109/TETCI.2019.2891491 http://dx.doi.org/10.1109/TETCI.2019.2891491 ]
Tzelepi M . and Tefas A . 2021 . Graph Embedded Convolutional Neural Networks in Human Crowd Detection for Drone Flight Safety. IEEE Transactions on Emerging Topics in Computational Intelligence , 5 ( 2 ): 191 - 203 [ DOI: https://doi.org/10.1109/TETCI.2019.2897815 http://dx.doi.org/https://doi.org/10.1109/TETCI.2019.2897815 ]
Varadarajan J. , Subramanian R. , Rota Bulò S. , Ahuja N. , Lanz O. and Ricci E . 2018 . Joint Estimation of Human Pose and Conversational Groups from Social Scenes . International Journal of Computer Vision , 126 : 410 - 429 [ DOI: https://doi.org/10.1007/s11263-017-1026-6 http://dx.doi.org/https://doi.org/10.1007/s11263-017-1026-6 ]
Vascon S . and Bazzani L . 2017 . Group Detection and Tracking Using Sociological Features. In Group and Crowd Behavior for Computer Vision . Elsevier Inc. : 67 - 87 [ DOI: https://doi.org/10.1016/B978-0-12-809276-7.00004-7 http://dx.doi.org/https://doi.org/10.1016/B978-0-12-809276-7.00004-7 ]
Wang Q. , Chen M. , Nie F. and Li X . 2020 . Detecting Coherent Groups in Crowd Scenes by Multiview Clustering . IEEE Transactions on Pattern Analysis and Machine Intelligence , 42 ( 1 ): 46 - 56 [ DOI: https://doi.org/10.1109/TPAMI.2018.2875002 http://dx.doi.org/https://doi.org/10.1109/TPAMI.2018.2875002 ]
Wang X . 2024 . Social Force Model-Based Video Anomaly Detection Approaches . Anomaly Detection in Video Surveillance , 273 - 285 [ DOI: https://doi.org/10.1007/978-981-97-3023-0_11 http://dx.doi.org/https://doi.org/10.1007/978-981-97-3023-0_11 ]
Wang X. , Chen X. , Jiang P. , Yuan X. , Ji M. and Huang R . 2024 . Group interaction field for learning and explaining pedestrian anticipation . Journal of Human-Machine Interaction , 34 : 70 - 82 [ DOI: https://doi.org/10.21203/rs.3.rs-1383531/v1 http://dx.doi.org/https://doi.org/10.21203/rs.3.rs-1383531/v1 ]
Wang Z , Wu B , Wang W Z , Teng Y Y , Shuai J , Xiao Y P and Bai T . 2021 . A Survey of Social Relation Understanding Based on Image and Video Information . Chinese journal of computers , 44 ( 6 ): 1168 - 1199
王正 , 吴斌 , 王文哲 , 滕一阳 , 帅杰 , 肖云鹏 , 白婷 . 2021 . 基于图像和视频信息的社交关系理解研究综述 [J]. 计算机学报 . 44 ( 6 ): 1168 - 1199 [ DOI: 10.11897/SP.J.1016.2021.01168 http://dx.doi.org/10.11897/SP.J.1016.2021.01168 ]
Wong P. V. , Mustapha N. , Affendey L. S. and Khalid F . 2016 . A New Clustering Approach for Group Detection in Scene-Independent Dense Crowds // Proceedings of the 2016 3rd International Conference on Computer and Information Sciences (ICCOINS) . Kuala Lumpur, Malaysia : IEEE: 414 - 417 [ DOI: https://doi.org/10.1109/ICCOINS.2016.7844825 http://dx.doi.org/https://doi.org/10.1109/ICCOINS.2016.7844825 ]
Xie Z. , Wu T. , Yang X. , Zhang L. and Wu K . 2019 . Jointly social grouping and identification in visual dynamics with causality-induced hierarchical Bayesian model . Journal of Visual Communication and Image Representation , 59 : 62 - 75 [ DOI: https://doi.org/10.1016/j.jvcir.2019.01.006 http://dx.doi.org/https://doi.org/10.1016/j.jvcir.2019.01.006 ]
Xu D. , Hu R. , Wang Z. , Luo L. , Li D. and Zeng W . 2022 . Gaze- and Spacing-Flow Unveil Intentions: Hidden Follower Discovery // Proceedings of the 30th ACM International Conference on Multimedia , MM ’ 22 , New York, NY, USA : ACM , 2115 – 2123 . [ DOI: 10.1145/3503161.3548207 http://dx.doi.org/10.1145/3503161.3548207 ]
Yan Y. , Qin J. , Ni B. , Chen J. , Liu L. , Zhu F. , Zheng W. , Yang X. and Shao L . 2023 . Learning Multi-Attention Context Graph for Group-Based Re-Identification . IEEE Transactions on Pattern Analysis and Machine Intelligence , 45 ( 6 ): 7001 – 7015 [ DOI: 10.1109/TPAMI.2020.3032542 http://dx.doi.org/10.1109/TPAMI.2020.3032542 ]
Yang M. , Rashidi L. , Rao A. S. , Rajasegarar S. , Ganji M. , Palaniswami M. and Leckie C . 2018 . Cluster-based Crowd Movement Behavior Detection // Proceedings of 2018 Digital Image Computing: Techniques and Applications . Canberra, ACT, Australia : IEEE: 1 - 8 [ DOI: 10.1109/DICTA.2018.8615809 http://dx.doi.org/10.1109/DICTA.2018.8615809 ]
Yang Z. , Sun M. , Ye H. , Xiong Z. , Zussman G. , & Kostic Z . ( 2022 ). B-SDA: Bird’s-eye View Social Distancing Analysis System . *arXiv preprint arXiv : 2112 . 07159* .
Yi S. , Li H. and Wang X . 2015 . Understanding Pedestrian Behaviors from Stationary Crowd Groups // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Boston, MA, USA : IEEE: 3488 - 3495 [DOI: 10.1109/CVPR.2015.7298993].
Yi S. , Li H. and Wang X . 2016 . Pedestrian Behavior Modeling From Stationary Crowds With Applications to Intelligent Surveillance . IEEE Transactions on Image Processing , 25 ( 9 ): 4354 - 4368 [ DOI: 10.1109/TIP.2016.2590322 http://dx.doi.org/10.1109/TIP.2016.2590322 ]
Yin Y. , Yang G. and Man H . 2013 . Small Human Group Detection and Event Representation Based on Cognitive Semantics // Proceedings of the IEEE Seventh International Conference on Semantic Computing . Irvine, CA, USA : IEEE: 64 - 68 [ DOI: 10.1109/ICSC.2013.20 http://dx.doi.org/10.1109/ICSC.2013.20 ]
Yoo H. , Eom T. , Seo J. and Choi S . I . 2019 . Detection of interacting groups based on geometric and social relations between individuals in an image. Pattern Recognition , 93 : 498 – 506 [ DOI: 10.1016/j.patcog.2019.05.001 http://dx.doi.org/10.1016/j.patcog.2019.05.001 ]
Yu J. , Yang J. , Yang H. , Pan R. , Lai P. and Zhai G . 2024 . Psychology-Guided Environment Aware Network for Discovering Social Interaction Groups from Videos . ACM Transactions on Multimedia Computing, Communications, and Applications , 20 ( 8 ): 233 [ DOI: 10.1145/3657295 http://dx.doi.org/10.1145/3657295 ]
Yuan Y. , Fang J. and Wang Q . 2015 . Online Anomaly Detection in Crowd Scenes Via Structure Analysis . IEEE Transactions on Cybernetics , 45 ( 3 ): 548 – 561 [ DOI: 10.1109/TCYB.2014.2349059 http://dx.doi.org/10.1109/TCYB.2014.2349059 ]
Yucel Z. , Zanlungo F. , Feliciani C. , Gregorj A. and Kanda T . 2018 . Estimating social relation from trajectories // Proceedings of the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018 ), Lund, Sweden : Linköping University Electronic Press: 222 - 228 [ DOI: 10.17815/CD.2020.54 http://dx.doi.org/10.17815/CD.2020.54 ]
Yücel Z. , Zanlungo F. , Ikeda T. , Miyashita T. and Hagita N . 2013 . Deciphering the crowd: Modeling and identification of pedestrian group motion . Sensors , 13 ( 1 ): 875 – 897 [ DOI: 10.3390/s130100875 http://dx.doi.org/10.3390/s130100875 ]
Zaki M . H. and Sayed T . 2018 . Automated Analysis of Pedestrian Group Behavior in Urban Settings. IEEE Transactions on Intelligent Transportation Systems , 19 ( 6 ): 1880 – 1889 [ DOI: 10.1109/TITS.2017.2747516 http://dx.doi.org/10.1109/TITS.2017.2747516 ]
Zanlungo F. , Ikeda T. and Kanda T . 2014 . Potential for the Dynamics of Pedestrians in a Socially Interacting Group . Physical Review E , 89 ( 1 ): 012811 [ DOI: 10.1103/PhysRevE.89.012811 http://dx.doi.org/10.1103/PhysRevE.89.012811 ]
Zanotto M. , Bazzani L. , Cristani M. and Murino V . 2012 . Online Bayesian Nonparametrics for Group Detection // Proceedings of BMVC 2012 . Surrey, UK : BMVA Press: 1 - 12 [ DOI: 10.5244/C.26.74 http://dx.doi.org/10.5244/C.26.74 ]
Zhang L . and Hung H . 2018 . On Social Involvement in Mingling Scenarios: Detecting Associates of F-Formations in Still Images. IEEE Transactions on Affective Computing , 12 ( 1 ): 165 - 176 [ DOI: 10.1109/TAFFC.2018.2855750 http://dx.doi.org/10.1109/TAFFC.2018.2855750 ]
Zhang X. , Ma D. , Yu H. , Huang Y. , Howell P. and Stevens B . 2020 . Scene perception guided crowd anomaly detection . Neurocomputing , 414 : 291 - 302 [ DOI: 10.1016/j.neucom.2020.07.019 http://dx.doi.org/10.1016/j.neucom.2020.07.019 ]
Zhang X. , Xie X. , Wen L. and Lai J . 2024 . Grouptron: Dynamic Multi-Scale Graph Convolutional Network for Group-Aware Trajectory Prediction in Dense Crowds . Neurocomputing , 574 : 127281 [ DOI: 10.1016/j.neucom.2024.127281 http://dx.doi.org/10.1016/j.neucom.2024.127281 ]
Zhang Y. , Qin L. , Ji R. , Yao H. and Huang Q . 2015 . Social Attribute-Aware Force Model: Exploiting Richness of Interaction for Abnormal Crowd Detection . IEEE Transactions on Circuits and Systems for Video Technology , 25 ( 7 ): 1231 - 1244 [ DOI: 10.1109/TCSVT.2014.2355711 http://dx.doi.org/10.1109/TCSVT.2014.2355711 ]
Zhang Y. , Qin L. , Zhang S. , Yao H. and Huang Q . 2015 . Formation Period Matters: Towards Socially Consistent Group Detection via Dense Subgraph Seeking // Proceedings of ACM ICMR 2015 . Shanghai, China : ACM: 475 - 478 [ DOI: 10.1145/2671188.2749305 http://dx.doi.org/10.1145/2671188.2749305 ]
Zhao Q. , Shao J. and Zhao Y . 2016 . A Multistage Filtering for Detecting Group in the Crowd // Proceedings of ICALIP 2016 . Lanzhou, China : IEEE: 771 - 774 [ DOI: 10.1109/ICALIP.2016.7846682 http://dx.doi.org/10.1109/ICALIP.2016.7846682 ]
Zhao R. , Li M. , Wang Y. , Liu Q. and Dong D . 2020 . An Improved Dynamic Pedestrian Grouping Model in Public Transport Space // Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things (CNIOT) . Chongqing, China : IEEE: 1 - 6 [ DOI: 10.1145/3398329.3398363 http://dx.doi.org/10.1145/3398329.3398363 ]
Zhao Y. , Hu Z. , Zhou L. , Liu M. and Liu J . 2020 . Data-driven Online Group Detection Based on Structured Prediction // Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE) . Virtual Conference : IEEE: 1220 - 1225 [ DOI: 10.1109/CASE.2020.1225 http://dx.doi.org/10.1109/CASE.2020.1225 ]
Zhou C. , Han M. , Liang Q. , Hu Y. and Kuai S . -G . 2019 . A social interaction field model accurately identifies static and dynamic social groupings. Nature Human Behaviour , 3 ( 8 ): 847 - 855 [ DOI: 10.1038/s41562-019-0618-2 http://dx.doi.org/10.1038/s41562-019-0618-2 ]
Zhou Z. , Li K. , He X. and Li M . 2016 . A Generative Model for Recognizing Mixed Group Activities in Still Images // Proceedings of IJCAI 2016 . New York, NY, USA : IJCAI: 3654 - 3660 [ DOI: 10.24963/ijcai.2016/514 http://dx.doi.org/10.24963/ijcai.2016/514 ]
Zitouni M. S. , Sluzek A. and Bhaskar H . 2020 . Towards understanding socio-cognitive behaviors of crowds from visual surveillance data . Multimedia Tools and Applications , 79 ( 3 ): 1781 – 1799 [ DOI: 10.1007/s11042-019-08201-z http://dx.doi.org/10.1007/s11042-019-08201-z ]
Zitouni M. S. , Sluzek A. and Bhaskar H . 2019 . Visual analysis of socio-cognitive crowd behaviors for surveillance: A survey and categorization of trends and methods . Engineering Applications of Artificial Intelligence , 82 : 294 – 312 [ DOI: 10.1016/j.engappai.2019.04.012 http://dx.doi.org/10.1016/j.engappai.2019.04.012 ]
相关文章
相关作者
相关机构