小行星抵近探测中的图像智能处理技术
The image intelligence processing technology in asteroid exploration
- 2025年 页码:1-19
收稿日期:2024-12-26,
修回日期:2025-02-18,
录用日期:2025-02-25,
网络出版日期:2025-02-26
DOI: 10.11834/jig.240776
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-12-26,
修回日期:2025-02-18,
录用日期:2025-02-25,
网络出版日期:2025-02-26,
移动端阅览
小行星是太阳系中重要的天体,保留了早期形成和演化的历史信息,可能提供地球生命与水起源的线索。自20世纪90年代以来,针对小行星的科学探测和在轨处置活动逐渐增多,成为深空探测领域的热点。在小行星抵近探测任务中,探测器在不同距离拍摄的图像数据是研究小行星表面特征和物理特性的主要来源。然而,小行星表面复杂的地貌结构、动态变化的光照条件以及探测器与目标之间不断变化的姿态,导致获取的图像数据具有高度的独特性和多样性,使传统图像处理技术在适应性上存在不足。引入图像智能技术进行自动化处理与分析,将增强小行星探测任务对深空环境的认知能力,提升科学效益和成功率。本报告将系统综述小行星抵近探测任务中图像智能处理技术的研究现状与发展趋势,围绕表面地物识别、三维形貌重建和物理特性反演三个关键方向,全面分析了现有技术的优势与局限,结合深度学习、多源数据融合等最新技术,讨论了其在小行星复杂表面环境中的适应性与应用潜力。本文还对国内外产业界和学术界的成功经验与技术路径进行了总结,剖析了当前技术在数据标准化、模型泛化性及实际任务应用中的不足。最后,探讨了未来研究的发展趋势,为推进小行星探测任务的技术创新提供参考。
Asteroids are critical celestial bodies in our solar system, holding essential information about the early stages of planetary formation and evolution. These small rocky bodies are considered remnants from the early solar system, providing potential insights into the origins of life and water on Earth. Since the 1990s, asteroid exploration missions have steadily increased, becoming a central focus in deep space exploration. These missions aim not only to study asteroids as ancient objects but also to explore their potential as resources for future space exploration.The origins of asteroid exploration can be traced back to the 1970s. As interest in these bodies grew, space agencies like NASA and the European Space Agency (ESA) began conducting successful unmanned missions. NASA’s Galileo spacecraft, for example, made the first flyby of asteroid 951 Gaspra in 1991, marking a key milestone and laying the groundwork for subsequent missions. The Dawn spacecraft, launched later, conducted detailed observations of asteroids Vesta and Ceres, providing substantial data on asteroid composition and origin. Furthermore, China’s Chang’e-2 mission performed a successful flyby of asteroid 4179 Toutatis in 2012, demonstrating the feasibility of asteroid exploration. In the coming years, a sample-return mission targeting Earth’s quasi-satellites and main-belt comets is planned. These early missions not only proved the feasibility of exploring asteroids but also provided valuable technical experience that has been integral in advancing scientific understanding and future exploration strategies. Close-range asteroid exploration involves spacecraft capturing image data from various distances, which is essential for studying the asteroid's surface features and physical properties. However, acquiring high-quality images presents significant challenges. The asteroid's surface is often irregular and complex, with a wide range of topographical features such as craters, boulders, and ridges. Moreover, dynamic lighting conditions and the constantly changing attitude of the spacecraft introduce further complications, making the captured images highly unique and diverse. Traditional image processing techniques often struggle to adapt to this variability. To overcome these challenges, integrating intelligent image processing technologies is crucial. AI-driven automation can enhance the spacecraft's ability to perceive and analyze the environment in real-time, thereby improving the overall scientific outcomes and increasing the success rates of asteroid exploration missions. One of the primary objectives of asteroid exploration is the intelligent analysis of surface images to identify key features, such as surface objects and obstacles, and to predict the scientific value of surface deposits. This ability to analyze surface data is critical for hazard avoidance and selecting safe landing and sampling locations. The uniqueness of asteroid surface morphology, coupled with the scarcity of relevant datasets, poses a major challenge. Recent research has increasingly focused on combining deep neural networks (DNNs) with techniques such as transfer learning and few-shot learning. These approaches are particularly useful when large datasets are unavailable, allowing the models to generalize from smaller sets of data. The generalization capability of large pre-trained models, which have been trained on extensive image datasets, offers new possibilities for improving recognition accuracy and performance in asteroid exploration. Another significant aspect of asteroid exploration is the intelligent perception and reconstruction of the asteroid’s 3D topography. Detailed 3D models are essential for making decisions about landing, attachment, and sample collection. Typically, generating these models requires the spacecraft to orbit the asteroid multiple times, which is one of the most time-consuming phases of close-range exploration. Additionally, asteroid surface images often have a large dynamic range and high texture similarity, complicating the restoration of the 3D surface and its use in accurate localization. As a result, there has been considerable research into efficient methods for gathering image data, integrating this information, and reconstructing accurate 3D models of asteroid surfaces. Recent advancements in implicit 3D representations and generative models have shown promise in overcoming these challenges. These approaches enable more precise mapping and facilitate the use of 3D topographic data, significantly enhancing spacecraft navigation and surface analysis capabilities. The inversion of asteroid physical properties—such as surface material composition, weathering processes, and weak gravitational fields—is another key objective of exploration. Inversion of these properties requires combining image data with multi-source data, such as spectral and orbital data, which allows for a more direct method of studying the asteroid's physical characteristics. However, the wide variety in asteroid composition, structure, and surface conditions complicates this task. Limited pre-mission knowledge about the target asteroid means that traditional inversion models often need to be tailored specifically to each new mission. To address this, researchers are working on developing generalized models that can be adapted to various types of asteroids, enabling more accurate predictions of their physical properties. Such advancements are critical for understanding the formation and evolution of asteroids, as well as their potential for resource extraction. The integration of artificial intelligence and advanced image processing techniques has significant potential for enhancing asteroid exploration. As AI and machine learning, particularly deep learning, evolve, they are increasingly applied to challenges such as asteroid surface analysis, 3D topography reconstruction, and physical property inversion. The future of asteroid exploration will focus on improving AI algorithms' adaptability to handle diverse data types and conditions. Developing robust and generalizable models capable of understanding complex asteroid surfaces, integrating multi-source data, and accurately modeling 3D topographies will be key to mission success. As technology advances, on-board, real-time processing of asteroid images using intelligent algorithms will likely become feasible, enabling spacecraft to make immediate decisions about landing and sampling, enhancing mission efficiency and safety. In conclusion, the field of image intelligence in asteroid exploration is evolving rapidly. The use of machine learning, especially deep learning and large pre-trained models, is improving the accuracy of surface analysis, topography reconstruction, and physical property inversion. These advancements will play a crucial role in future deep space missions, offering essential insights into the origins of life and water on Earth. As asteroid exploration develops, intelligent image processing will be vital to maximize the scientific return of these missions, ensuring their safety and efficiency, and advancing humanity's understanding of our solar system.
Barker M K , Mazarico E , Neumann G A , Zuber M T , Haruyama J and Smith D E . 2016 . A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera . Icarus , 273 : 346 - 355 [ DOI: 10.1016/j.icarus.2015.07.039 http://dx.doi.org/10.1016/j.icarus.2015.07.039 ]
Barnouin O S , Daly M G , Palmer E E , Johnson C L , Gaskell R W , Al Asad M , Bierhaus E B , Craft K L , Ernst C M , Espiritu R C , Nair H , Neumann G A , Nguyen L , Nolan M C , Mazarico E M , Perry M E , Philpott L C , Roberts J H , Steele R J , Seabrook J , Susorney H C M , Weirich J R and Lauretta D S . 2020 . Digital terrain mapping by the OSIRIS-REx mission . Planetary and Space Science , 180 : 104764 [ DOI: 10.1016/j.pss.2019.104764 http://dx.doi.org/10.1016/j.pss.2019.104764 ]
Bart G D and Melosh H J . 2010 . Distributions of boulders ejected from lunar craters . Icarus , 209 ( 2 ): 337 - 357 [ DOI: 10.1016/j.icarus.2010.05.023 http://dx.doi.org/10.1016/j.icarus.2010.05.023 ]
Canny J . 1986 . A computational approach to edge detection . IEEE Transactions on Pattern Analysis and Machine Intelligence , 6 : 679 - 698 [ DOI: 10.1109/TPAMI.1986.4767851 http://dx.doi.org/10.1109/TPAMI.1986.4767851 ]
Caroselli E , Belien F , Falke A , Curti F and Förstner R . 2022 . Deep learning-based passive hazard detection for asteroid landing in unexplored environment // Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference , 2022. Reston, Virginia : Springer, Cham: 319 - 334 .
Cauligi A , Swan R M , Ono H , Daftry S , Elliott J , Matthies L and Atha D . 2023 . Shadownav: Crater-based localization for nighttime and permanently shadowed region lunar navigation // 2023 IEEE Aerospace Conference . Big Sky, Montana : IEEE: 1 - 12
Chen H , Hu X , Willner K , Ye Z , Damme F , Gläser P , Zheng Y , Tong X , Hußmann H and Oberst J . 2024 . Neural implicit shape modeling for small planetary bodies from multi-view images using a mask-based classification sampling strategy . ISPRS Journal of Photogrammetry and Remote Sensing , 212 : 122 - 145 [ DOI: 10.1016/j.isprsjprs.2024.04.029 http://dx.doi.org/10.1016/j.isprsjprs.2024.04.029 ]
Chen S , Wu B , Li H , Li Z and Liu Y . 2024 . Asteroid-NeRF: A deep-learning method for 3D surface reconstruction of asteroids . Astronomy & Astrophysics , 687 : A 278 [ DOI: 10.1051/0004-6361/202450053 http://dx.doi.org/10.1051/0004-6361/202450053 ]
Cheng A F , Rivkin A S , Michel P , Atchison J , Barnouin O , Benner L , Chabot N L , Ernst C , Fahnestock E G , Kueppers M , Pravec P , Rainey E , Richardson D C , Stickle A M and Thomas C . 2018 . AIDA DART asteroid deflection test: Planetary defense and science objectives . Planetary and Space Science , 157 : 104 - 115 [ DOI: 10.1016/j.pss.2018.02.015 http://dx.doi.org/10.1016/j.pss.2018.02.015 ]
Cheng Y , Johnson A E , Matthies L H and Olson C F . 2003 . Optical landmark detection for spacecraft navigation . 13th AAS/AIAA Space Flight Mechanics Meeting
Chesley S R , Farnocchia D , Nolan M C , Vokrouhlický D , Chodas P W , Milani A , Spoto F , Rozitis B , Benner L A M , Bottke W F , Busch M W , Emery J P , Howell E S , Lauretta D S , Margot J L and Taylor P A . 2014 . Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu . Icarus , 235 : 5 - 22 [ DOI: 10.1016/j.icarus.2014.02.020 http://dx.doi.org/10.1016/j.icarus.2014.02.020 ]
Cui H T , Zhang Z J and Yu M . 2012 . Computing and analysis of gravity field of Eros 433 using polyhedron model . Journal of Harbin Institute of Technology , 44 ( 3 ): 17 - 22
崔祜涛 , 张振江 , 余萌 . 多面体模型的 Eros433 引力场计算与分析 . 哈尔滨工业大学学报 , 2012 , 44 ( 3 ): 17 - 22 [ DOI: 10.11918/j.issn.0367-6234.2012.03.004 http://dx.doi.org/10.11918/j.issn.0367-6234.2012.03.004 ]
Cui P Y , Jia H , Zhu S Y and Lu X X . 2020 . Research Progress on Optical Navigation Feature Recognition and Extraction for Small Celestial Bodies . Journal of Astronautics , 41 ( 7 ): 880 - 888
崔平远 , 贾贺 , 朱圣英 , 陆晓萱 . 小天体光学导航特征识别与提取研究进展 . 宇航学报 , 2020 , 41 ( 7 ): 880 - 888 [ DOI: 10.3873/j.issn.1000-1328.2020.07.006 http://dx.doi.org/10.3873/j.issn.1000-1328.2020.07.006 ]
Daftry S , Chen Z , Cheng Y , Tepsuporn S , Khattak S , Matthies L , Coltin B , Naal U , Ma L M and Deans M . 2023 . LunarNav: Crater-based Localization for Long-range Autonomous Lunar Rover Navigation // Proceedings of the 2023 IEEE Aerospace Conference . Big Sky, MT, USA : IEEE: 1 - 15 .
Daly R T , Ernst C M , Barnouin O S , Chabot N L , Rivkin A S , Cheng A F , Adams E Y , Agrusa H F , Abel E D , Alford A L , Asphaug E I , Atchison J A , Badger A R , Baki P , Ballouz R L , Bekker D L , Bellerose J , Bhaskaran S , Buratti B J , Cambioni S , Chen M H , Chesley S R , Chiu G , Collins G S , Cox M W , DeCoster M E , Ericksen P S , Espiritu R C , Faber A S , Farnham T L , Ferrari F , Fletcher Z J , Gaskell R W , Graninger D M , Haque M A , Harrington-Duff P A , Hefter S , Herreros I , Hirabayashi M , Huang P M , Hsieh S Y W , Jacobson S A , Jenkins S N , Jensenius M A , John J W , Jutzi M , Kohout T , Krueger T O , Laipert F E , Lopez N R , Luther R , Lucchetti A , Mages D M , Marchi S , Martin A C , McQuaide M E , Michel P , Moskovitz N A , Murphy I W , Murdoch N , Naidu S P , Nair H , Nolan M C , Ormö J , Pajola M , Palmer E E , Peachey J M , Pravec P , Raducan S D , Ramesh K T , Ramirez J R , Reynolds E L , Richman J E , Robin C Q , Rodriguez L M , Roufberg L M , Rush B P , Sawyer C A , Scheeres D J , Scheirich P , Schwartz S R , Shannon M P , Shapiro B N , Shearer C E , Smith E J , Steele R J , Steckloff J K , Stickle A M , Sunshine J M , Superfin E A , Tarzi Z B , Thomas C A , Thomas J R , Trigo-Rodríguez J M , Tropf B T , Vaughan A T , Velez D , Waller C D , Wilson D S , Wortman K A , Zhang Y . 2023 . Successful kinetic impact into an asteroid for planetary defence . Nature , 616 ( 7957 ): 443 - 447 [ DOI: 10.1038/s41586-023-05810-5 http://dx.doi.org/10.1038/s41586-023-05810-5 ]
De Santayana R P and Lauer M . 2015 . Optical measurements for Rosetta navigation near the comet // Proceedings of the 25th International Symposium on Space Flight Dynamics (ISSFD) . Munich : International Symposium on Space Flight Dynamics
DeLatte D M , Crites S T , Guttenberg N , Tasker E J and Yairi T . 2019 . Segmentation convolutional neural networks for automatic crater detection on Mars . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 12 ( 8 ): 2944 - 2957 [ DOI: 10.1109/JSTARS.2019.2918302 http://dx.doi.org/10.1109/JSTARS.2019.2918302 ]
DellaGiustina D N , Emery J P , Golish D R , Rozitis B , Bennett C A , Burke K N , Ballouz R-L , Becker K J , Christensen P R , Drouet d’Aubigny C Y , Hamilton V E , Reuter D C , Rizk B , Simon A A , Asphaug E , Bandfield J L , Barnouin O S , Barucci M A , Bierhaus E B , Binzel R P , Bottke W F , Bowles N E , Campins H , Clark B C , Clark B E , Jr. Connolly H C , Daly M G , de Leon J , Delbo M , Deshapriya J D P , Elder C M , Fornasier S , Hergenrother C W , Howell E S , Jawin E R , Kaplan H H , Kareta T R , Le Corre L , Li J-Y , Licandro J , Lim L F , Michel P , Molaro J , Nolan M C , Pajola M , Popescu M , Rizos Garcia J L , Ryan A , Schwartz S R , Shultz N , Siegler M A , Smith P H , Tatsumi E , Thomas C A , Walsh K J , Wolner C W V , Zou X-D , Lauretta D S and The OSIRIS-REx Team . 2019 . Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis . Nature Astronomy , 3 ( 4 ): 341 - 351 [ DOI: 10.1038/s41550-019-0731-1 http://dx.doi.org/10.1038/s41550-019-0731-1 ]
Garmier R , Barriot J P , Konopliv A S and Yeomans D K . 2002 . Modeling of the Eros gravity field as an ellipsoidal harmonic expansion from the NEAR Doppler tracking data . Geophysical Research Letters , 29 ( 8 ): 72- 1 -72 - 3 [ DOI: 10.1029/2001GL013768 http://dx.doi.org/10.1029/2001GL013768 ]
Gaskell R W , Barnouin-Jha O S , Scheeres D J , Konopliv A S , Mukai T , Abe S , Saito J , Ishiguro M , Kubota T , Hashimoto T , Kawaguchi J , Yoshikawa M , Shirakawa K , Kominato T , Hirata N and Demura H . 2008 . Characterizing and navigating small bodies with imaging data . Meteoritics & Planetary Science , 43 ( 6 ): 1049 - 1061 [ DOI: 10.1111/j.1945-5100.2008.tb00692.x http://dx.doi.org/10.1111/j.1945-5100.2008.tb00692.x ]
Glassmeier K H , Boehnhardt H , Koschny D , Kührt E and Richter I . 2007 . The Rosetta mission: flying towards the origin of the solar system . Space Science Reviews , 128 : 1 - 21 [ DOI: 10.1007/s11214-006-9140-8 http://dx.doi.org/10.1007/s11214-006-9140-8 ]
He K , Gkioxari G , Dollár P and Girshick R . 2017 . Mask R-CNN // Proceedings of the IEEE International Conference on Computer Vision . Venice, Italy : IEEE: 2961 - 2969 .
Hood D R , Sholes S F , Karunatillake S , Fassett C I , Ewing R C and Levy J S . 2022 . The Martian boulder automatic recognition system, MBARS . Earth and Space Science , 9 ( 9 ): e2022 EA 002410 [ DOI: 10.1029/2022EA002410 http://dx.doi.org/10.1029/2022EA002410 ]
Kerbl B , Kopanas G , Leimkühler T and Drettakis G . 2023 . 3D Gaussian Splatting for Real-Time Radiance Field Rendering . ACM Transactions on Graphics , 42 ( 4 ): 139 : 1 - 139 : 14 [ DOI: 10.1145/3592433 http://dx.doi.org/10.1145/3592433 ]
Kirillov A , Mintun E , Ravi N , Mao H , Rolland C , Gustafson L , Xiao T , Whitehead S , Berg A C , Lo W-Y , Dollár P and Girshick R . 2023 . Segment anything // Proceedings of the IEEE/CVF International Conference on Computer Vision . IEEE : 4015 - 4026 [ DOI: 10.1109/ICCV51070.2023.00371 http://dx.doi.org/10.1109/ICCV51070.2023.00371 ]
Konopliv A S , Asmar S W , Bills B G , Mastrodemos N , Park R S , Raymond C A , Smith D E and Zuber M T . 2011 . The Dawn gravity investigation at Vesta and Ceres . Space Science Reviews , 163 : 461 - 486 [ DOI: 10.1007/978-1-4614-4903-4_15 http://dx.doi.org/10.1007/978-1-4614-4903-4_15 ]
Latorre F , Spiller D , Sasidharan S T and Curti F . 2023 . Transfer learning for real-time crater detection on asteroids using a Fully Convolutional Neural Network . Icarus , 394 : 115434 [ DOI: 10.1016/j.icarus.2023.115434 http://dx.doi.org/10.1016/j.icarus.2023.115434 ]
Lauer M , Kielbassa S and Pardo R . 2012 . Optical measurements for attitude control and shape reconstruction at the Rosetta flyby of asteroid Lutetia // ISSFD2012 paper , International Symposium of Space Flight Dynamics. Pasadena, California, USA : International Symposium of Space Flight Dynamics
Lauretta D S , Balram-Knutson S S , Beshore E , Boynton W V , Drouet d'Aubigny C , DellaGiustina D N , Enos H L , Gholish D R , Hergenrother C W , Howell E S , Johnson C A , Morton E T , Nolan M C , Rizk B , Roper H L , Bartels A E , Bos B J , Dworkin J P , Highsmith D E , Lorenz D A , Lim L F , Mink R , Moreau M C , Nuth J A , Reuter D C , Simon A A , Bierhaus E B , Bryan B H , Ballouz R , Barnouin O S , Binzel R P , Bottke W F , Hamilton V E , Walsh K J , Chesley S R , Christensen P R , Clark B E , Connolly H C , Crombie M K , Daly M G , Emery J P , McCoy T J , McMahon J W , Scheeres D J , Messenger S , Nakamura-Messenger K , Righter K and Sandford S A . 2017 . OSIRIS-REx: sample return from asteroid (101955) Bennu . Space Science Reviews , 212 : 925 - 984 [ DOI: 10.1007/s11214-017-0405-1 http://dx.doi.org/10.1007/s11214-017-0405-1 ]
Lauretta D S , Bartels A E , Barucci M A , Bierhaus E B , Binzel R P , Bottke W F , Campins H , Chesley S R , Clark B C , Clark B E , Cloutis E A , Connolly H C , Crombie M K , Delbó M , Dworkin J P , Emery J P , Glavin D P , Hamilton V E , Hergenrother C W , Johnson C L , Keller L P , Michel P , Nolan M C , Sandford S A , Scheeres D J , Simon A A , Sutter B M , Vokrouhlický D and Walsh K J . 2015 . The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations . Meteoritics & Planetary Science , 50 ( 4 ): 834 - 849 [ DOI: 10.1111/maps.12353 http://dx.doi.org/10.1111/maps.12353 ]
Li C , Liu J J , Ren X . Yan W . Zhang Z B , Li H Y. Ouyang Z Y. 2024 . Scientific Objectives and Payloads Configuration of the Tianwen-2 Mission, 11 ( 3 ): 304 - 310
李春来 , 刘建军 , 任鑫 , 严韦 , 张舟斌 , 李海英 , 欧阳自远 . 2024 . “天问二号” 任务科学目标和有效载荷配置 . 深空探测学报 (中英文) , 11 ( 3 ): 304 - 310 [ DOI: 10.15982/j.issn.2096-9287.2024.20230185 http://dx.doi.org/10.15982/j.issn.2096-9287.2024.20230185 ]
Li Y and Wu B . 2018 . Analysis of rock abundance on lunar surface from orbital and descent images using automatic rock detection . Journal of Geophysical Research : Planets , 123 ( 5 ): 1061 - 1088 [ DOI: 10.1029/2017JE005496 http://dx.doi.org/10.1029/2017JE005496 ]
Liu S , Zeng Z , Ren T , Li F , Zhang H , Yang J , Jiang Q , Li C , Yang , J , Su H , Zhu J , Zhang L . 2025 . Grounding dino: Marrying dino with grounded pre-training for open-set object detection // European Conference on Computer Vision . Springer , Cham : 38 - 55 [ DOI: 10.1007/978-3-031-72970-6_3 http://dx.doi.org/10.1007/978-3-031-72970-6_3 ]
Liu Y , Wu X , Liu Z H and Zou Y L . 2021 . Geological evolution and habitable environment of Mars: Progress and prospects . Reviews of Geophysics and Planetary Physics , 52 ( 4 ): 416 - 436
刘洋 , 吴兴 , 刘正豪 , 邹永廖 . 火星的地质演化和宜居环境研究进展与展望 . 地球与行星物理论评 , 2021 , 52 ( 4 ): 416 - 436 [ DOI: 10.19975/j.dqyxx.2021-025 http://dx.doi.org/10.19975/j.dqyxx.2021-025 ]
Matthies L , Daftry S , Tepsuporn S , Cheng Y , Atha D , Swan R M , Ravichandar S and Ono M . 2022 . Lunar rover localization using craters as landmarks // 2022 IEEE Aerospace Conference (AERO) . Big Sky, Montana : IEEE: 1 - 17
Michel P , Küppers M , Campo Bagatin A , Carry B , Charnoz S , de Leon J , Fitzsimmons A , Gordo P , Green S F , Hérique A , Juzi M , Karatekin Ö , Kohout T , Lazzarin M , Murdoch N , Okada T , Palomba E , Pravec P , Snodgrass C , Tortora P , Tsiganis K , Ulamec S , Vincent J B , Wünnemann K , Zhang Y , Raducan S D , Dotto E , Chabot N , Cheng A F , Rivkin A , Barnouin O , Ernst C , Stickle A , Richardson D C , Thomas C , Arakawa M , Miyamoto H , Nakamura A , Sugita S , Yoshikawa M , Abell P , Asphaug E , Ballouz R L , Jr Bottke W F , Lauretta D S , Walsh K J , Martino P and Carnelli I . 2022 . The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos . The Planetary Science Journal , 3 ( 7 ): 160 [ DOI: 10.3847/PSJ/ac6f52 http://dx.doi.org/10.3847/PSJ/ac6f52 ] [11] CampagnolaS, YamCH, TsudaY, OgawaN and KawakatsuY. 2018. Mission analysis for the Martian Moons Explorer (MMX) mission. Acta Astronautica, 146 : 409 - 417 [ DOI: 10.1016/j.actaastro.2018.03.024 http://dx.doi.org/10.1016/j.actaastro.2018.03.024 ] [12] VeverkaJ, ThomasPC, RobinsonM, MurchieS, Chap manC, BellM, HarchA, MerlineWJ, BellJF III, BusseyB, CarcichB, ChengA, ClarkB, DomingueD, DunhamD, FarquharR, GaffeyMJ, HawkinsE, IzenbergN, JosephJ, KirkR, LiH, LuceyP, MalinM, McFaddenL, MillerJK, MJrOwenW, PetersonC, ProckterL, WarrenJ, WellnitzD, WilliamsB G and YeomansDK. 2001. Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science, 292 ( 5516 ): 484 - 488 [ DOI: 10.1126/science.1058651 http://dx.doi.org/10.1126/science.1058651 ]
Mildenhall B , Srinivasan P P , Tancik M , Barron J T , Ramamoorthi R and Ng R . 2021 . NeRF: Representing scenes as neural radiance fields for view synthesis . Communications of the ACM , 65 ( 1 ): 99 - 106 [ DOI: 10.1007/978-3-030-58452-8_24 http://dx.doi.org/10.1007/978-3-030-58452-8_24 ]
Miller J K , Konopliv A S , Antreasian P G , Bordi J J , Chesley S , Helfrich C E , Owen W M , Wang T C , Williams B G , Yeomans D K and Scheeres D J . 2002 . Determination of shape, gravity, and rotational state of asteroid 433 Eros . Icarus , 155 ( 1 ): 3 - 17 [ DOI: 10.1006/icar.2001.6753 http://dx.doi.org/10.1006/icar.2001.6753 ]
Muñoz P , Budnik F , Companys V , Godard B , Casas C M , Morley T and Janarthanan V . 2015 . Rosetta navigation during lander delivery phase and reconstruction of Philae descent trajectory and rebound // 25th International Symposium on Space Flight Dynamics . Munich, Germany : European Space Operations Centre: 1 - 20
Murez Z , Van As T , Bartolozzi J , Sinha A , Badrinarayanan V and Rabinovich A . Atlas: End-to-end 3D scene reconstruction from posed images // Computer Vision–ECCV 2020: 16th European Conference , Proceedings, Part VII 16 . Glasgow, UK : Springer, Cham: 414 - 431 [ DOI: 10.1007/978-3-030-58571-6_25 http://dx.doi.org/10.1007/978-3-030-58571-6_25 ]
Nagle-McNaughton T P , Williams J M , Gallegos Z E , Wilkie H A , Martinez D C and Scuderi L A . 2020 . Geographic information system based detection and quantification of boulders using HiRISE imagery: a case study in Jezero Crater . Journal of Applied Remote Sensing , 14 ( 1 ): 014522 [ DOI: 10.1117/1.JRS.14.014522 http://dx.doi.org/10.1117/1.JRS.14.014522 ]
Ogawa N , Terui F , Yasuda S , Matsushima K , Masuda T , Sano J , Hihara H , Matsuhisa T , Danno S , Yamada M , Mimasu Y , Yoshikawa K , Ono G , Yokota Y , Saiki T and Tsuda Y . 2020 . Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu . Astrodynamics , 4 : 89 - 103 [ DOI: 10.2514/6.2020-0225 http://dx.doi.org/10.2514/6.2020-0225 ]
Prieur N C , Amaro B , Gonzalez E , Kerner H , Medvedev S , Rubanenko L , Werner S C , Xiao Z , Zastrozhnov D and Lapôtre M G A . 2023 . Automatic characterization of boulders on planetary surfaces from high‐resolution satellite images . Journal of Geophysical Research : Planets , 128 ( 11 ): e2023 JE 008013 [ DOI: 10.1029/2023JE008013 http://dx.doi.org/10.1029/2023JE008013 ]
Pugliatti M and Topputo F . 2022 . Navigation about irregular bodies through segmentation maps. Advances in the Astronautical Sciences . [2022-01-01] . https://re.public.polimi.it/bitstream/11311/1163932/1/PUGLM02-21.pdf https://re.public.polimi.it/bitstream/11311/1163932/1/PUGLM02-21.pdf
Pugliatti M , Maestrini M , Di Lizia P and Topputo F . 2022 . On-board Small-Body Semantic Segmentation Based on Morphological Features with U-Net . Advances in the Astronautical Sciences , 176 : 603 - 622 [ DOI: 10.2514/1.A35447 http://dx.doi.org/10.2514/1.A35447 ]
Qiao D , Huang J C , Cui P Y , Rao W , Jiang X J , Meng L Z , Huang H , Huang X F . 2013 . Target selection for Chang'e-2 satellite flyby to detect asteroids . Science China : Technological Sciences , 43 ( 6 ): 602 - 608
乔栋 , 黄江川 , 崔平远 , 饶炜 , 姜晓军 , 孟林智 , 黄昊 , 黄晓峰 . 2013 . 嫦娥二号卫星飞越探测小行星的目标选择 . 中国科学 : 技术科学) , 43 ( 6 ): 602 - 608 [ DOI: 10.1360/092013-313 http://dx.doi.org/10.1360/092013-313 ]
Reuter D C , Simon A A , Hair J , Lunsford A , Manthripragada S , Bly V , Bos B , Brambora C , Caldwell E , Casto G , Dolch Z , Finneran P , Jennings D , Jhabvala M , Matson E , McLelland M , Roher W , Sullivan T , Weigle E , Wen Y , Wilson D and Lauretta D S . 2018 . The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): spectral maps of the asteroid Bennu . Space Science Reviews , 214 : 1 - 22 [ DOI: 10.1007/s11214-018-0482-9 http://dx.doi.org/10.1007/s11214-018-0482-9 ]
Roatsch Th , Kersten E , Matz K-D , Preusker F , Scholten F , Jaumann R , Raymond C A and Russell C T . 2016 . High-resolution Ceres high altitude mapping orbit atlas derived from Dawn framing camera images . Planetary and Space Science , 129 : 103 - 107 [ DOI: 10.1016/j.pss.2016.05.011 http://dx.doi.org/10.1016/j.pss.2016.05.011 ]
Russell C T and Raymond C A . 2012 . The dawn mission to Vesta and Ceres . Springer New York
Scholten F , Preusker F , Elgner S , Matz K-D , Jaumann R , Hamm M , Schröder S E , Koncz A , Schmitz N , Trauthan F , Grott M , Biele J , Ho T-M , Kameda S , Sugita S . 2019 . The Hayabusa2 lander MASCOT on the surface of asteroid (162173) Ryugu—Stereo-photogrammetric analysis of MASCam image data . Astronomy & Astrophysics , 632 : L 5 [ DOI: 10.1051/0004-6361/201936760 http://dx.doi.org/10.1051/0004-6361/201936760 ]
Schönberger J L , Zheng E , Frahm J M and Pollefeys M . 2016 . Pixelwise view selection for unstructured multi-view stereo // Computer Vision–ECCV 2016: 14th European Conference , Proceedings, Part III 14 . Amsterdam, The Netherlands : Springer, Cham: 501 - 518 [ DOI: 10.1007/978-3-319-46487-9_31 http://dx.doi.org/10.1007/978-3-319-46487-9_31 ]
Sebera J , Bezděk A , Pešek I and Henych T . 2016 . Spheroidal models of the exterior gravitational field of asteroids Bennu and Castalia . Icarus , 272 : 70 - 79 [ DOI: 10.1016/j.icarus.2016.02.038 http://dx.doi.org/10.1016/j.icarus.2016.02.038 ]
Shi X , Ping J S , Ye S H and Oberst J . 2012 . Analysis of Shape-based Gravity Field Model for Phobos . Spacecraft Engineering , 21 ( 2 ): 6 - 11
史弦 , 平劲松 , 叶叔华 , J. Oberst . 基于形状的火卫一重力场研究 . 航天器工程 , 2012 , 21 ( 2 ): 6 - 11 [ DOI: 10.3969/j.issn.1673-8748.2012.02.002 http://dx.doi.org/10.3969/j.issn.1673-8748.2012.02.002 ]
Silburt A , Ali-Dib M , Zhu C , Jackson A , Valencia D , Kissin Y , Tamayo D and Menou K . 2019 . Lunar crater identification via deep learning . Icarus , 317 : 27 - 38 [ DOI: 10.1016/j.icarus.2018.06.022 http://dx.doi.org/10.1016/j.icarus.2018.06.022 ]
Tsuda Y , Yoshikawa M , Abe M , Minamino H and Nakazawa S . 2013 . System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 . Acta Astronautica , 91 : 356 - 362 [ DOI: 10.1016/j.actaastro.2013.06.028 http://dx.doi.org/10.1016/j.actaastro.2013.06.028 ]
Veverka J , Belton M , Klaasen K and Chapman C . 1994 . Galileo's encounter with 951 Gaspra: Overview . Icarus , 107 ( 1 ): 2 - 17 [ DOI: 10.1006/icar.1994.1002 http://dx.doi.org/10.1006/icar.1994.1002 ]
Veverka J , Farquhar B , Robinson M , Thomas P , Murchie S , Harch A , Antreasian P G , Chesley S R , Miller J K , Jr Owen W M , Williams B G , Yeomans D , Dunham D , Heyler G , Holdridge M , Nelson R L , Whittenburg K E , Ray J C , Carcich B , Cheng A , Chapman C , Bell J F III , Bell M , Bussey B , Clark B , Domingue D , Gaffey M J , Hawkins E , Izenberg N , Joseph J , Kirk R , Lucey P , Malin M , McFadden L , Merline W J , Peterson C , Prockter L , Warren J and Wellnitz D . 2001 . The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros , Nature , 413 ( 6854 ): 390 - 393 [ DOI: 10.1038/35096507 http://dx.doi.org/10.1038/35096507 ]
Wang F , Zhu Q , Chang D , Gao Q , Han J , Zhang T , Hartley R and Pollefeys M . 2023 . Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection . [2024-12-09] . https://doi.org/10.48550/arXiv.2408.15235 https://doi.org/10.48550/arXiv.2408.15235
Watanabe S , Hirabayashi M , Hirata N , Hirata Na , Noguchi R , Shimaki Y , Ikeda H , Tatsumi E , Yoshikawa M , Kikuchi S , Yabuta H , Nakamura T , Tachibana S , Ishihara Y , Morota T , Kitazato K , Sakatani N , Matsumoto K , Wada K , Senshu H , Honda R , Michikami T , Takeuchi H , Kouyama T , Honda C , Kameda S , Fuse T , Miyamoto H , Komatsu G , Sugita S , Okada T , Namiki N , Arakawa M , Ishiguro M , Abe M , Gaskell R , Palmer E , Barnouin O S , Michel P , French A S , McMahon J W , Scheeres D J , Abell P A , Yamamoto Y , Tanaka S , Shirai K , Matsuoka M , Yamada M , Yokota Y , Suzuki H , Yoshioka K , Cho Y , Tanaka S , Nishikawa N , Sugiyama T , Kikuchi H , Hemmi R , Yamaguchi T , Ogawa N , Ono G , Mimasu Y , Yoshikawa K , Takahashi T , Takei Y , Fujii A , Hirose C , Iwata T , Hayakawa M , Hosoda S , Mori O , Sawada H , Shimada T , Soldini S , Yano H , Tsukizaki R , Ozaki M , Iijima Y , Ogawa K , Fujimoto M , Ho T-M , Moussi A , Jaumann R , Bibring J-P , Krause C , Terui F , Saiki T , Nakazawa S and Tsuda Y . 2019 . Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile . Science , 364 ( 6437 ): 268 - 272 [ DOI: 10.1126/science.aav8032 http://dx.doi.org/10.1126/science.aav8032 ]
Williams B , Antreasian P , Carranza E , Jackman C , Leonard J , Nelson D , Page B , Stanbridge D , Wibben D , Williams K , Moreau M , Berry K , Getzandanner K , Liounis A , Mashiku A , Highsmith D , Sutter B and Lauretta D S . 2018 . OSIRIS-REx flight dynamics and navigation design . Space Science Reviews , 214 : 1 - 43 [ DOI: 10.1007/s11214-018-0501-x http://dx.doi.org/10.1007/s11214-018-0501-x ]
Wu B , Huang J , Li Y , Wang Y , Peng J and others . 2018 . Rock abundance and crater density in the candidate Chang'E-5 landing region on the Moon . Journal of Geophysical Research : Planets , 123 ( 12 ): 3256 - 3272 [ DOI: 10.1029/2018JE005820 http://dx.doi.org/10.1029/2018JE005820 ]
Xu Q , Wang D , Xing S and Lan C Z . 2016 . Mapping and characterization techniques of asteroid topography . Journal of Deep Space Exploration , 3 ( 4 ): 356 - 362
徐青 , 王栋 , 邢帅 , 蓝朝桢 . 小行星形貌测绘与表征技术 . 深空探测学报 (中英文) , 2016 , 3 ( 4 ): 356 - 362 [ DOI: 10.15982/j.issn.2095-7777.2016.04.007 http://dx.doi.org/10.15982/j.issn.2095-7777.2016.04.007 ]
Li S , Gu T , Liu Y and Shao W . 2024 . Accurate semantic segmentation of small-body craters for navigation . Acta Astronautica , 219 : 183 - 194 [ DOI: 10.1016/j.actaastro.2024.03.012 http://dx.doi.org/10.1016/j.actaastro.2024.03.012
Yang X , Yan J G , Liu S H , Ye M , Jin W T and Li F . 2019 . Inversion of the low-order gravity field of Phobos based on Mars Express flyby data . Science China : Physics, Mechanics & Astronomy , 49 : 059501 (杨轩, 鄢建国, 刘山洪, 叶茂, 金炜桐, 李斐. 基于火星快车飞掠数据的火卫一低阶重力场反演 . 中国科学: 物理学 力学 天文学), 2019 , 49 : 059501 [ DOI: 10.1360/SSPMA2018-00249 http://dx.doi.org/10.1360/SSPMA2018-00249 ]
Yu D Y and Ma J N . 2022 . Progress and Prospect of Deep Space Exploration in China . Forward-looking Science and Technology , 1 ( 1 ): 17 - 27
于登云 , 马继楠 . 2022 . 中国深空探测进展与展望 . 前瞻科技 , 1 ( 1 ): 17 - 27 [ DOI: 10.3981/j.issn.2097-0781.2022.01.002 http://dx.doi.org/10.3981/j.issn.2097-0781.2022.01.002 ]
Zhang Z J , Cui H T and Ren G F . 2010 . Modeling for the gravitation potential environment of an irregular-shaped asteroid and the spherical harmonic coefficient estimation . Spacecraft Environment Engineering , 27 ( 3 ): 383 - 388
张振江 , 崔祜涛 , 任高峰 . 不规则形状小行星引力环境建模及球谐系数求取方法 . 航天器环境工程 , 2010 , 27 ( 3 ): 383 - 388 [ DOI: 10.3969/j.issn.1673-1379.2010.03.024 http://dx.doi.org/10.3969/j.issn.1673-1379.2010.03.024 ]
Zhou T , Tang H , Miao B K , Zeng X J , Xia Z P , Yu W , Zhou C J and He E C . 2023 . Review of the Spectral Effects of Space Weathering on C-type Asteroids . Chinese Journal of Space Science , 43 ( 4 ): 647 - 660
周婷 , 唐红 , 缪秉魁 , 曾小家 , 夏志鹏 , 于雯 , 周传娇 , 贺恩成 . 空间风化对 C 型小行星的光谱影响研究概述 . 空间科学学报 , 2023 , 43 ( 4 ): 647 - 660 [ DOI: 10.11728/cjss2023.04.2022-0058 http://dx.doi.org/10.11728/cjss2023.04.2022-0058 ]
Zhu L , Geng X , Li Z an d Liu C . 2021 . Improving YOLOv5 with attention mechanism for detecting boulders from planetary images . Remote Sensing , 13 ( 18 ): 3776 [ DOI: 10.3390/rs13183776 http://dx.doi.org/10.3390/rs13183776 ]
相关作者
相关机构