星载合成孔径雷达技术研究进展
Advancements in the Research of Spaceborne Synthetic Aperture Radar
- 2025年 页码:1-20
收稿日期:2024-12-26,
修回日期:2025-02-12,
录用日期:2025-02-25,
网络出版日期:2025-02-26
DOI: 10.11834/jig.240771
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-12-26,
修回日期:2025-02-12,
录用日期:2025-02-25,
网络出版日期:2025-02-26,
移动端阅览
星载合成孔径雷达(SAR)一直是空间遥感信息获取手段的主旋律之一。凭借全天时、全天候、穿透性等优势,星载SAR已成为国防建设和国民经济的重要技术支撑,在军事侦察、应急保障和信息服务等方面均具有广泛应用。星载SAR信号主要涉及回波获取、成像处理和图像应用等环节,本文以星载SAR数据链路为主线,综合分析了星载SAR领域的发展现状、前沿动态、热点问题等。首先,回顾了星载SAR系统及其数据集的发展现状,对比了国内外星载SAR系统的关键参数,梳理了不同空间分辨率、极化分式和频段的星载SAR数据集。其次,分析了成像技术体制的创新,重点阐述了星载SAR在多维度观测和高分宽幅成像方面的进展。最后,介绍了智能处理技术与SAR图像应用的融合,探讨了机器学习和深度学习在SAR数据处理和分析的潜力。本文总结了星载SAR技术的现状、未来发展趋势以及面临的主要挑战。
Mounted on satellites or spaceborne platforms, Spaceborne Synthetic Aperture Radar (SAR) utilizes transmitted signals to capture detailed surface information, irrespective of the time of day or weather conditions. The combination of all-weather, all-time operational capacity and deep penetration into the atmosphere makes spaceborne SAR an indispensable tool for a broad spectrum of applications, including military reconnaissance, environmental monitoring, disaster management, and resource management. The signals from spaceborne SAR involve echo acquisition, imaging processing, and image applications. This paper focuses on the data link of spaceborne SAR and comprehensively analyzes the current state of development, cutting-edge trends, and pressing issues in the field of spaceborne SAR. It begins by reviewing the current state of spaceborne SAR systems, with an emphasis on the development of SAR platforms and the datasets they produce. A comparative analysis of the key parameters of domestic and international spaceborne SAR systems is presented, highlighting the technological capabilities, operational constraints, and strategic goals behind these systems. Notable parameters include the system’s frequency bands, spatial resolution, polarization modes, and swath width, which all influence the potential applications and limitations of the data generated. Recent advances in spaceborne SAR imaging technology have significantly expanded the capabilities of these systems. One of the most prominent innovations is multi-dimensional observation, which allows SAR systems to acquire data from multiple viewpoints or angles within a single acquisition cycle. It involves several key innovations, including multiband, multipolarity, and double/multi-base cooperative detection, all of which contribute to enhanced imaging and a more comprehensive understanding of the observed area. Each of these components offers unique advantages that complement each other in providing more detailed, accurate, and varied insights into the Earth's surface. Multiband SAR refers to the use of different frequency bands in a single SAR system or through the combination of different systems operating in different bands. The use of multiple frequency bands allows for the capture of complementary information about the target area. Multipolarity refers to the use of multiple polarization modes in SAR systems, where the transmitted and received radar waves are polarized in different orientations. This approach significantly enhances the ability to distinguish between different surface types and materials based on their interaction with polarized electromagnetic waves. Double or multi-base cooperative detection refers to the integration of data from multiple SAR platforms or sensor locations, operating cooperatively to observe the same area from different angles or baselines. By leveraging multiple sensors operating in different locations or with different baselines, multi-base cooperative detection enhances the depth and precision of SAR observations, providing richer datasets for change detection and surface movement analysis. Another critical advancement is the development of high-resolution wide-swath imaging, which involves multichannel technique, varied pulse repetition frequency, and MIMO SAR. The multichannel technique involves the use of multiple receiving channels within the SAR system, allowing for simultaneous reception of signals from different parts of the radar beam. By utilizing multiple channels, SAR systems can cover a larger area with greater detail, as the signals from various channels are processed in parallel. The varied pulse repetition frequency is a technique used to adjust the interval between successive radar pulses based on the specific operational requirements of the SAR system. By dynamically changing the pulse repetition rate, the system can optimize the trade-off between resolution and coverage, depending on the target’s distance from the radar and the desired imaging resolution. MIMO SAR represents a groundbreaking innovation in radar technology that employs multiple transmitting and receiving antennas simultaneously. By using a combination of multiple input and output signals, MIMO SAR enhances the radar system’s ability to gather detailed information from a large area while maintaining high resolution. This technique allows for the simultaneous acquisition of data from different angles, which improves both the swath width and the resolution of the imagery. The increasing volume, complexity, and diversity of data produced by spaceborne SAR systems have created a demand for advanced processing and analytical techniques capable of handling large datasets and extracting meaningful insights efficiently. Traditional image processing methods, which often rely on manual intervention and domain expertise, have limitations in terms of speed, scalability, and adaptability. In contrast, intelligent processing leveraging machine learning (ML) and deep learning (DL) has revolutionized SAR data analysis, enabling automated, accurate, and scalable solutions for various applications, including classification, target detection, change detection, and anomaly detection. These intelligent techniques enhance SAR systems by improving their data interpretation capabilities, reducing the reliance on manual processes, and enabling real-time data analysis. Common machine learning methods include Support Vector Machine, Markov Random Field, Dictionary Learning, Decision Trees, and Unsupervised Clustering, among others. Compared to traditional image processing techniques, ML methods offer significant advantages in rapidly selecting from large volumes of known information. These advantages include fewer hyperparameters, high processing efficiency, and strong adaptability, making ML methods particularly suitable for tasks that involve complex data analysis and real-time decision-making. DL is an advanced artificial intelligence approach characterized by its ability to learn effective features from large datasets in a hierarchical manner, significantly reducing the complexity and error associated with manual feature extraction. Common DL architectures include Convolutional Neural Networks, Deep Belief Networks, Stacked Autoencoders, and Transformer networks, among others. The DL-based image data processing methods, through the stacking of multiple layers of neural networks, can automatically extract more abstract and higher-level target features directly from raw data, thereby enhancing the overall accuracy of prediction and recognition tasks. Over the past decades, significant progress has been made in spaceborne SAR technology, with notable developments in several key areas. These include the advancement of constellation-based SAR and lightweight SAR systems, high-resolution and wide-swath imaging, multi-polarization and arbitrary frequency band imaging, intelligent data processing, and the application of InSAR (Interferometric SAR) and DInSAR (Differential InSAR) for complex scene analysis. However, several challenges persist, including the control of attitude and orbit errors, the transmission and storage of massive data volumes, target interpretation in complex scenes, and susceptibility to electromagnetic interference and external noise. These issues continue to pose significant obstacles to the further advancement and operational deployment of spaceborne SAR systems, necessitating ongoing research and technological innovation to address them.
Bordoni F , Laux C , Wollstadt S , Youni Ms , Mittermayer J and Krieger G . 2014 . First demonstration of Azimuth Phase Coding Technique by TerraSAR-X. EUSAR 2014; 10th European Conference on Synthetic Aperture Radar, Berlin , Germany , 1 - 4 .
Caltagirone F , Spera P and Vigliotti R . 1998 . SkyMed/COSMO mission overview . Proceedings of International Geoscience and Remote Sensing Symposium, USA, IEEE Press , 683 - 685 [ DOI: 10.1109/IGARSS.1998.699550 http://dx.doi.org/10.1109/IGARSS.1998.699550 ]
Chai B , Nie X , Zhou Q and Zhou X . 2024 . Enhanced Cascade R-CNN for Multi-scale Object Detection in Dense Scenes from SAR Images, IEEE Sensors Journal, vol. 24 , no. 12 , pp. 20143 - 20153 [ DOI: 10.1109/JSEN.2024.3393750 http://dx.doi.org/10.1109/JSEN.2024.3393750 ]
Chen J , Huang Z X , Xia R F , Wu B C , Sheng L , Sun L and Yao B D . 2022 . Large-scale multi-class SAR image target detection dataset-1.0 . Journal of Radars
Chen J , Wang G L , Wang D , Zhu Y L , Mei M X , Wang S L and Jia S L . 2022 . Overview on HJ-2 05 Satellite . Space International ,( 12 ): 33 - 36
陈娟 , 王国良 , 王迪 , 朱雅琳 , 梅名宣 , 王帅雷 , 贾松霖 . 2022 . 环境减灾二号05卫星概览 . 国际太空 ,( 12 ): 33 - 36 [ DOI: 10.3969/j.issn.1009-2366.2022.12.008 http://dx.doi.org/10.3969/j.issn.1009-2366.2022.12.008 .]
Chen J , Yang W , Wang P B , Zeng H C , Men Z R and Li C S . 2020 . Review of Novel Azimuthal Multi-angle Observation Spaceborne SAR Technique . Journal of Radars , 9 ( 2 ): 205 – 220 .
陈杰 , 杨威 , 王鹏波 , 曾虹程 , 门志荣 , 李春升 . 2020 . 多方位角观测星载SAR技术研究 . 雷达学报 , 9 ( 2 ): 205 – 220 .[ DOI: 10.12000/JR20015 http://dx.doi.org/10.12000/JR20015 .]
Cloude S R and Papathanassiou K P . Polarimetric SAR interferometry . 1998 . IEEE Transactions on geoscience and remote sensing , 36 ( 5 ): 1551 - 1565 . [ DOI: 10.1109/36.718859 http://dx.doi.org/10.1109/36.718859 ]
Currie A and Brown M A . 1992 . Wide-swath SAR . Radar and Signal Processing , 139 ( 2 ): 122 - 135 [ DOI: 10.1049/ip-f-2.1992.0016 http://dx.doi.org/10.1049/ip-f-2.1992.0016 ]
D’Elia C , Ruscino S , Abbate M , Aiazzi B , Baronti S and Alparone L . 2014 . SAR image classification through information-theoretic textural features, MRF segmentation, and object-oriented learning vector quantization . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 4 ): 1116 - 1126 [ DOI: 10.1109/JSTARS.2014.2304700 http://dx.doi.org/10.1109/JSTARS.2014.2304700 ]
Dasari K and Lokam A . 2018 . Exploring the Capability of Compact Polarimetry (Hybrid Pol) C Band RISAT-1 Data for Land Cover Classification . in IEEE Access , 6 : 57981 - 57993 [ DOI: 10.1109/ACCESS.2018.2873348 http://dx.doi.org/10.1109/ACCESS.2018.2873348 ]
Deng Y , Yu W , Zhang H , Wang W , Liu D and Wang Y . 2020 . Forthcoming Spaceborne SAR Development . Journal of Radars , 9 ( 1 ): 1 - 33
邓云凯 , 禹卫东 , 张衡 , 王伟 , 刘大成 , 王宇 . 2020 . 未来星载SAR技术发展趋势 . 雷达学报 , 9 ( 1 ): 1 - 33 [ DOI: 10.12000/JR2000S http://dx.doi.org/10.12000/JR2000S ]
Deng L , Fu S S , Zhang R X . 2016 . Application of deep belief network in polarimetric SAR image classification . Journal of Image and Graphics , 21 ( 7 ) : 933 - 941
邓磊 , 付姗姗 , 张儒侠 . 2016 . 深度置信网络在极化SAR图像分类中的应用 . 中国图象图形学报 , 21 ( 7 ) : 933 - 941 [ DOI: 10. 11834 / jig. 20160711 http://dx.doi.org/10.11834/jig.20160711 ].
Ender J and Brenner A . 2003 . PAMIR - a wideband phased array SAR/MTI system . Radar, Sonar and Navigation , 150 ( 3 ): 165 - 172 [ DOI: 10.1049/ip-rsn:20030445 http://dx.doi.org/10.1049/ip-rsn:20030445 ]
Fan J C , Wang D E , Zhao J H , Song D R , Han M and Jiang D W . 2017 . National Sea Area Use Dynamic Monitoring Based on GF-3 SAR Imagery . Journal of Radars , 2017, 6 ( 5 ): 456 - 472 .
范剑超 , 王德毅 , 赵建华 , 宋德瑞 , 韩敏 , 姜大伟 . 2017 . 高分三号SAR影像在国家海域使用动态监测中的应用 . 雷达学报 , 6 ( 5 ): 456 - 472 . [ DOI: 10.12000/JR17080 http://dx.doi.org/10.12000/JR17080 .]
Feng S M , Dai K R , Sun T G , Deng J , Tang G M , Han Y K , Ren W J , Sang X R , Zhang C W and Wang H . 2024 . Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1 . Remote Sensing , 16 ( 18 ): 3457 [ https://doi.org/10.3390/rs16183457 https://doi.org/10.3390/rs16183457 ]
Fox P , Tyc G and Beckett K . 2017 . The UrtheCast SAR-XL multi-band, multi-aperture spaceborne SAR system . IEEE [ DOI: 10.1109/RADAR.2017.7944492 http://dx.doi.org/10.1109/RADAR.2017.7944492 ]
Gebert N and Krieger G . 2010 . Ultra-Wide Swath SAR Imaging with Continuous PRF Variation. European Conference on Synthetic Aperture Radar . VDE , 1 - 4
Girshick R , Donahue J , Darrell T and Malik J . 2014 . Rich feature hierarchies for accurate object detection and semantic segmentation . IEEE Computer Society [ DOI: 10.1109/CVPR.2014.81 http://dx.doi.org/10.1109/CVPR.2014.81 ]
Guo L . 2022 . SAR image classification based on multi-feature fusion decision convolutional neural network . IET image processing , 2022 ( 1 ): 16 [ DOI: 10.1049/ipr2.12323 http://dx.doi.org/10.1049/ipr2.12323 ]
Han H , Lu W and Feng F . 2023 . SAR Image Target Recognition Method by Global and Local Dictionary Sparse Representation . Applied Artificial Intelligence , 37 ( 1 ), 2189674 [ DOI: 10.1080/08839514.2023.2189674 http://dx.doi.org/10.1080/08839514.2023.2189674 ]
Hisea-1: The First Microsat SAR Satellite of China . Radar Science and Technology , 2021 , 19 ( 01 ): 2 . (“海丝一号”中国首颗轻小型SAR卫星. 雷达科学与技术 ,2021, 19 ( 01 ): 2 .
Hou X Y , Ao W , Song Q , Lai J , Wang H P and Xu F . 2020 . FUSAR-Ship:building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition . Science China(Information Sciences) , 63 ( 04 ): 40 - 58 .
Hu J , Wu W , Gui R , Li Z and Zhu J . 2022 . Deep learning-based homogeneous pixel selection for multitemporal SAR interferometry . IEEE Transactions on Geoscience and Remote Sensing , 60 , 1 - 18 [ DOI: 10.1109/TGRS.2022.3203975 http://dx.doi.org/10.1109/TGRS.2022.3203975 ]
Ignatenko V , Dogan O , Muff D , Lamentowski L , Radius A and Nottingham M . 2022 . ICEYE Microsatellite SAR Constellation Status Update: Spotlight Extended Area Mode, Daily Coherent Ground Tracks and Waveform Diversity . IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia , 4145 - 4148
Jia C C , Wang J and Qiu F . 2021 . A ship target recognition method based on multi-feature extraction and multi-kernel SVM . Electronics Optics & Control , 28 ( 11 ): 106 - 111 .
贾程澄 , 王军 , 邱峰 . 多特征提取和多核SVM的舰船目标识别方法 . 2021 . 电光与控制 , 28 ( 11 ): 106 - 111 [ DOI: 10.3969/j.issn.1671-637X. 2021.11.022 http://dx.doi.org/10.3969/j.issn.1671-637X.2021.11.022 ]
Jiang X P . 2024 . Taijing-4 03 Satellite . Satellite Application , 2024 ,( 03 ): 62
姜秀鹏 . 2024 . 泰景四号03卫星 . 卫星应用 , 03 : 62 [ DOI: 10.3969/j.issn.1674-9030.2024.03.014 http://dx.doi.org/10.3969/j.issn.1674-9030.2024.03.014 ]
Klare J , Weiss M , Peters O , Brenner AR and Ender J . 2006 . ARTINO: A New High Resolution 3D Imaging Radar System on an Autonomous Airborne Platform . IEEE [ DOI: 10.1109/IGARSS.2006.985 http://dx.doi.org/10.1109/IGARSS.2006.985 ]
Konaka M , Motohka T , Yamamoto K , Kankaku Y , Arikawa Y and Suzuki S . 2021 . Current Status of Developing ALOS-4 with Key Missions: Palsar-3 and SPAISE3 . 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium , 387 - 390 [ doi: 10.1109/IGARSS47720.2021.9554316 http://dx.doi.org/10.1109/IGARSS47720.2021.9554316 .]
Kong W Y , Jin M Q , He D H , Xiao F , Zhao Y and Wang S H . 2023 . First validation of ocean current measurement by along-track interferometry mode of Luojia-2 satellite . IET International Radar Conference (IRC 2023 ), Chongqing, China, 290 - 297 , [ DOI: 10.1049/icp.2024.1093 http://dx.doi.org/10.1049/icp.2024.1093 .]
Krieger G , Gebert N and Moreira A . 2004 . Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling . IEEE Geoence and Remote Sensing Letters , 1 ( 4 ): 260 - 264 [ DOI: 10.1109/LGRS.2004.832700 http://dx.doi.org/10.1109/LGRS.2004.832700 ]
Krieger G , Gebert N and Moreira A . 2007 . Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing . IEEE Transactions on Geoscience & Remote Sensing , 46 ( 1 ): 31 - 46 [ DOI: 10.1109/TGRS.2007.905974 http://dx.doi.org/10.1109/TGRS.2007.905974 ]
Kroupnik G , Lisle D D , Côté S , Lapointe M , Casgrain C and Fortier R . 2021 . RADARSAT Constellation Mission Overview and Status . 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA , 1 - 5 [ DOI: 10.1109/RadarConf2147009.2021.9455298 http://dx.doi.org/10.1109/RadarConf2147009.2021.9455298 .]
Lehner S , Schulz-Stellenfleth J , Brusch S and Li X M . 2005 . Use of TerraSAR-X data for oceanography . European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany , 1 - 4 [ DOI: 10.1109/IGARSS.2005.1526769 http://dx.doi.org/10.1109/IGARSS.2005.1526769 ]
Lei S L , Lu D D , Qiu X L and Ding C B . 2021 . SRSDD-v1.0: A High-Resolution SAR Rotation Ship Detection Dataset . Remote Sensing [ DOI: 10.3390/rs13245104 http://dx.doi.org/10.3390/rs13245104 ]
Li J and Stoica P . 2009 . MIMO Radar Signal Processing . New Jersey : Wiley-IEEE Press , 787 – 788
Li B Y , Liu B , Huang L Q , Guo W W , Zhang Z H and Yu W X . 2017 . OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in Sentinel-1 imagery . 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China , 1 - 5 [ DOI: 10.1109/BIGSARDATA.2017.8124929 http://dx.doi.org/10.1109/BIGSARDATA.2017.8124929 ]
Li C S , Yu Z and Chen J . 2019 . Overview of Techniques for Improving Spaceborne SAR Imaging and Image Quality . Journal of Radars , 8 ( 06 ): 717 - 731 .
李春升 , 于泽 , 陈杰 . 2019 . 高分辨率星载SAR成像与图像质量提升方法综述 . 雷达学报 , 8 ( 06 ): 717 - 731 . [ DOI: 10.12000/JR19085 http://dx.doi.org/10.12000/JR19085 ]
Li H , Cui X and Chen S . 2021 . PolSAR ship detection with optimal polarimetric rotation domain features and SVM . Remote Sensing , 13 ( 19 ), 3932 [ DOI: 10.3390/rs13193932 http://dx.doi.org/10.3390/rs13193932 ]
Li X M , Sun Y and Zhang Q . 2020 . Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 4 ), 3040 - 3053 [ DOI: 10.1109/TGRS.2020.3007789 http://dx.doi.org/10.1109/TGRS.2020.3007789 ]
Li X W , Guo H D , Peng X , Zhang L , Fu W X , Liang L and Wu W J . 2020 . The New Progress in SAR Earth Observation Technology and Applications . Journal of Nanjing University of Information Science and Technology , 12 ( 2 ): 170 - 180
李新武 , 郭华东 , 彭星 , 张露 , 傅文学 , 梁雷 , 吴文瑾 . 2002 . SAR对地观测技术及应用新进展 . 南京信息工程大学学报 , 2020 , 12 ( 2 ): 170 - 180 [ DOI: 10.13878/j.cnki.jnuist.2020.02.004 http://dx.doi.org/10.13878/j.cnki.jnuist.2020.02.004 .]
Li Y X , Li X , Li W J , Hou Q B , Liu L , Cheng M M and Yang J . 2024 . SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection, NeurIPS 2024 .
Lin C C , Li G T , Sun J , Lu X J , Liu X and Chen Y B . 2024 . On-orbit autonomously phase compensation method for microwave channels of LT- 4 ( 01 ). Space Electronic Technology , 21 ( 02 ): 17 - 22 .
林晨晨 , 李光廷 , 孙娟 , 路小军 , 刘鑫 , 陈一波 . 2024 . 陆探四号01星微波通道在轨自主相位补偿方法 . 空间电子技术 , 21 ( 02 ): 17 - 22 .
Liu G , Li L , Jiao L , Dong Y and Li X . 2019 . Stacked Fisher autoencoder for SAR change detection . Pattern Recognition , 96 : 106971 [ DOI: 10.1016/j.patcog.2019.106971 http://dx.doi.org/10.1016/j.patcog.2019.106971 ]
Liu M , Chen S , Lu F and Liu J . 2020 . Product dictionary learning-based sar target configuration recognition . International Journal of Antennas and Propagation , ( 8 ), 1 - 8 [ DOI: 10.1155/2020/9704829 http://dx.doi.org/10.1155/2020/9704829 ]
Liu M , Deng Y , Han C , Hou W , Gao Y , Wang C and Liu X . 2022 . An Innovative Supervised Classification Algorithm for PolSAR Image Based on Mixture Model and MRF . Remote Sensing , 14 ( 21 ), 5506 [ DOI: 10.3390/rs14215506 http://dx.doi.org/10.3390/rs14215506 ]
Ludi Tance-1 Group 01 A Satellite Successfully Launched by CZ-4C Vehicle . Aerospace China , 2022 ,( 02 ): 72 .
“长征”四号C成功发射“陆地探测”一号 01 组A星 . 中国航天 , 2022 , 02 : 72 [ DOI: 10.3969/j.issn.1674-7135.2024.02.002 http://dx.doi.org/10.3969/j.issn.1674-7135.2024.02.002 ]
Luo J , Lv Y and Guo J . 2022 . Multi-temporal PolSAR Image Classification Using F-SAE-CNN . 2022 3rd China International SAR Symposium (CISS) , pp. 1 - 5 [ DOI: 10.1109/CISS57580.2022.9971318 http://dx.doi.org/10.1109/CISS57580.2022.9971318 ]
Luo X , Wang R , Xu W , Deng Y and Guo L . 2014 . Modification of Multichannel Reconstruction Algorithm on the SAR With Linear Variation of PRI . IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing , 7 ( 7 ): 3050 - 3059 [ DOI: 10.1109/JSTARS.2014.2298242 http://dx.doi.org/10.1109/JSTARS.2014.2298242 ]
Ma M , Chen J , Liu W and Yang W . 2018 . Ship classification and detection based on CNN using GF-3 SAR images . Remote Sensing , 10 ( 12 ): 2043 [ DOI: 10.3390/rs10122043 http://dx.doi.org/10.3390/rs10122043 ]
Ma X J , Ji K F , Zhang L B , Feng S J , Xiong B L and Kuang G Y . 2024 . SAR Target Open-Set Recognition Based on Joint Training of Class-Specific Sub-Dictionary Learning . IEEE Geoscience and Remote Sensing Letters, vol . 21 , pp. 1 - 5 [ DOI: 10.1109/LGRS.2023.3342904 http://dx.doi.org/10.1109/LGRS.2023.3342904 ]
Mahdianpari , Mohammadimanesh , McNairn , Davidson , Homayouni . 2019 . Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM) . Remote Sensing , 11 ( 13 ): 1582 [ DOI: 10.3390/rs11131582 http://dx.doi.org/10.3390/rs11131582 ]
Miao S S . 2023 . Break New Ground for Our Own High Orbit Spaceborne SAR . China Aerospace News (苗珊珊 . 2023.蹚出一条属于我们的高轨SAR路.中国航天报 [DOI:10.28083/n.cnki.nchtb.2023.000351.]
Moreira A , Krieger G , Hajnsek I , Papathanassiou K , Younis M , Lopez-Dekker P , Huber S , Villano M , Pardini M and Eineder M . 2015 . Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface . Geoscience & Remote Sensing Magazine IEEE , 3 ( 2 ): 8 - 23 [ DOI: 10.1109/MGRS.2015.2437353 http://dx.doi.org/10.1109/MGRS.2015.2437353 ]
Motohka T , Kankaku Y , Miura S and Suzuki S . 2019 . Alos-4 L-Band SAR Mission and Observation," IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama , Japan , 5271 - 5273 [ DOI: 10.1109/IGARSS.2019.8898169 http://dx.doi.org/10.1109/IGARSS.2019.8898169 .]
Naftaly U and Levy-Nathansohn R . 2008 . Overview of the TecSAR satellite hardware and Mosaic mode . IEEE Geoscience and Remote Sensing Letters , 5 ( 3 ): 423 - 426 [ DOI: 10.1109/LGRS.2008.915926 http://dx.doi.org/10.1109/LGRS.2008.915926 ]
Naftaly U and Oron O . 2013 . TECSAR - Program Status . IEEE , 1 - 4 [ DOI: 10.1109/COMCAS.2013.6685314 http://dx.doi.org/10.1109/COMCAS.2013.6685314 ]
Paek S W , Balasubramanian S , Kim S , Weck D O . Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review . Remote Sensing . 2020 ; 12 ( 16 ): 2546 .
Potin P , Rosich B , Miranda N , Grimont P , Bargellini P and Monjoux E . 2017 . Sentinel-1 mission status . 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA , 5525 - 5528 , [ DOI: 10.1109/IGARSS.2017.8128255 http://dx.doi.org/10.1109/IGARSS.2017.8128255 .]
Qi Y H , Wang L , Zhao C H , Wang N and Chen J K . 2023 . Using Squeeze-and-Excitation Vision Transformer with Local Feature Fusion for Ship Classification in SAR Images . IEEE International Geoscience and Remote Sensing Symposium , pp. 7499 - 7502 [ DOI: 10.1109/IGARSS52108.2023.10283157 http://dx.doi.org/10.1109/IGARSS52108.2023.10283157 ].
Raney R K , Freeman A and Jordan R L . 2012 . Improved Range Ambiguity Performance in Quad-Pol SAR . IEEE Transactions on Geoscience & Remote Sensing , 50 ( 2 ): 349 - 356 [ DOI: 10.1109/TGRS.2011.2121075 http://dx.doi.org/10.1109/TGRS.2011.2121075 ]
Raney R K . 2008 . Hybrid-Quad-Pol SAR . IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium , 491 - 493 [ DOI: 10.1109/IGARSS.2008.4779765 http://dx.doi.org/10.1109/IGARSS.2008.4779765 ]
Schwerdt M , Schmidt K , Ramon T N , Klenk P , Yague-Martinez N , Prats-Iraola P , Zink M and Geudtner D . 2017 . Independent System Calibration of Sentinel-1B . Remote Sensing , 9 ( 6 ): 511 . [ DOI: 10.3390/rs9060511 http://dx.doi.org/10.3390/rs9060511 ]
Shah Hosseini R , Entezari I. , Homayouni S , Motagh M and Mansouri B . 2011 . Classification of polarimetric SAR images using Support Vector Machines . Canadian Journal of Remote Sensing , 37 ( 2 ), 220 - 233 [ DOI: 10.5589/m11-029 http://dx.doi.org/10.5589/m11-029 ]
Shi C Y , Shen D B , Ma X R and Wang H Y . 2024 . Oriented Ship Detection in SAR Image with Data Augmentation Based on Swin Transformer . 2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC) , pp. 434 - 439 [ DOI: 10.1109/YAC63405.2024.10598538 http://dx.doi.org/10.1109/YAC63405.2024.10598538 ].
Srivastava S K , Banik B T , Adamovic M , Gray R , Hawkins R K and Lukowski T I . 1999 . Maintaining image quality and calibration of RADARSAT-1 CDPF products . IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), Hamburg, Germany , 1 : 443 - 445 [ DOI: 10.1109/IGARSS.1999.773527 http://dx.doi.org/10.1109/IGARSS.1999.773527 .]
Stringham C , Farquharson G , Castelletti D , Quist E B , Riggi L , Eddy D and Soenen S . 2019 . The capella X-band SAR constellation for rapid imaging . 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan [ DOI: 10.1109/IGARSS.2019.8900410 http://dx.doi.org/10.1109/IGARSS.2019.8900410 ]
Sugawara K , Ozawa S , Nohmi H , Kujubu O , Miyawaki M and Uetsuhara M . 2024 . In-orbit Demonstration of FPGA-based SAR Imaging Processor for Small Satellite. EUSAR 2024; 15th European Conference on Synthetic Aperture Radar, Munich , Germany , 50 - 53 .
Sun X , Wang Z R , Sun Y R , Diao W H , Zhang Y and Fu K . 2019 . AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset . Journal of Radars , 8 ( 6 ): 852 – 862 .
孙显 , 王智睿 , 孙元睿 , 刁文辉 , 张跃 , 付琨 . 2019 . AIR-SARShip-1.0:高分辨率SAR舰船检测数据集 . 雷达学报 , 8 ( 6 ): 852 – 862 [ DOI: 10.12000/JR19097 http://dx.doi.org/10.12000/JR19097 ]
Thépaut J-N , Dee D , Engelen R and Pinty B . 2018 . The Copernicus Programme and its Climate Change Service," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia , Spain , 1591 - 1593 [ DOI: 10.1109/IGARSS.2018.8518067 http://dx.doi.org/10.1109/IGARSS.2018.8518067 .]
Tian W , Xu X , Bian X L , Chai X , Wang S A , Gong H Z , Xiong W and, Shao Y . 2014 . Applications of Environmental Remote Sensing by HJ-1C SAR Imageries . Journal of Radar , 3 ( 3 ): 339 - 351 .
田维 , 徐旭 , 卞小林 , 柴勋 , 王世昂 , 宫华泽 , 熊文成 , 邵芸 . 2014 . 环境一号C 卫星SAR 图像典型环境遥感应用初探 . 雷达学报 , 3 ( 3 ): 339 - 351 . [ DOI: 10.3724/SP.J.1300.2014.13055 http://dx.doi.org/10.3724/SP.J.1300.2014.13055 ]
Turuk V , Verba V , Golovanova M , Neronskiy L , Zaitsev S and Tolstov E . 2016 . Russian Spaceborne Synthetic Aperture Radar "Strizh" for Light Satellites of "Condor-E" type . Proceedings of EUSAR 2016 : 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany , 1 - 6 .
Villano M , Krieger G and Moreira A . 2013 . The Staggered SAR concept: Imaging a wide continuous swath with high resolution . Radar Symposium : IEEE
Villano M , Krieger G , Jäger M and Moreira A . 2017 . Staggered SAR: Performance Analysis and Experiments With Real Data . IEEE Transactions on Geoscience and Remote Sensing [ DOI: 10.1109/TGRS.2017.2731047 http://dx.doi.org/10.1109/TGRS.2017.2731047 ]
Viter V . 1993 . ALMAZ . Proceedings of the Third Spaceborne Imaging Radar Symposium .
Wang B , Wang Y M , Li L and Deng J H . 2024 . An Experiment on Typhoon Emergency Mapping Using Hisea and Chaohu SAR Satellites . Geospatial Information , 22 ( 09 ): 108 - 111 .
王斌 , 王英谋 , 李雷 , 邓建辉 . 2024 . 利用海丝/巢湖SAR开展台风应急测绘实验 . 地理空间信息 , 22 ( 09 ): 108 - 111
Wang B , Wang Y M , Li L and Deng J H . 2024 . Typhoon Emergency Mapping Experiment Based on Hisea/Chaohu SAR . Geospatial Information , 22 ( 09 ): 108 - 111 .
王斌 , 王英谋 , 李雷 , 邓建辉 . 2024 . 利用海丝/巢湖SAR开展台风应急测绘实验 . 地理空间信息 , 22 ( 09 ): 108 - 111 .
Wang C , Ruan R , Zhao Z C , Li C L and Tang J . 2023 . Category-Oriented Localization Distillation for SAR Object Detection and a Unified Benchmark ," in IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 14 [ DOI: 10.1109/TGRS.2023.3291356 http://dx.doi.org/10.1109/TGRS.2023.3291356 .]
Wang D C , Zhang F , Ma F , Hu W , Tang Y and Zhou Y S . 2024 . A Benchmark Sentinel-1 SAR Dataset for Airport Detection (SAR-Airport-1 . 0 ). Journal of Radars
Wang J , Liu J , Ren P and Qin C X . 2020 . A SAR target recognition based on guided reconstruction and weighted norm-constrained deep belief network . IEEE Access , 8 : 181712 - 181722 [ DOI: 10.1109/ACCESS.2020.3025379 http://dx.doi.org/10.1109/ACCESS.2020.3025379 ]
Wang L , Gui R , Hong H , Hu H Y , Ma L and Shi Y . 2024 . A 3-D Convolutional Vision Transformer for PolSAR Image Classification and Change Detection . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol . 17 , pp. 11503 - 11520 [ DOI: 10.1109/JSTARS.2024.3409775 http://dx.doi.org/10.1109/JSTARS.2024.3409775 ].
Wang R F , Wang L , Li C , Huo C L and Chen J W . 2023 . IIQ-CNN-based cross-domain change detection of SAR images . Journal of Image and Graphics , 28 ( 07 ): 2208 - 2220
王蓉芳 , 王良 , 李畅 , 霍春雷 , 陈佳伟 . 2023 . 整型推理量化 CNN 的 SAR 图像跨域变化检测 . 中国图象图形学报 , 28 ( 07 ): 2208 - 2220 [ DOI: 10. 11834/jig. 211159 http://dx.doi.org/10.11834/jig.211159 ].
Wang X and Wang R . 2016 . A Novel Signal Processing Algorithm for Staggered SAR with low oversampling factors. EUSAR 2016: 11th European Conference on Synthetic Aperture Radar . VDE , 1 - 4
Wang X M , Dai S Z , Lu J F , Zhou S M , Su H M , Kang R , Ren X N and Li W L . 2023 . The Application of Hongtu-1 SAR Satellite in Monitoring “23 · 7” Heavy Rainstorm and Flood Disaster in the Haihe River Basin . Proceedings of the 2023 China Water Conservancy ConferenceVolume 2 .PIESATCompany;Hebei University of Science and Technology;2023:8 (王晓梅, 戴守政, 路聚峰, 周淑梅, 苏慧敏, 康芮, 任小宁, 李文龙. 2023.航天宏图一号SAR卫星在海河流域“ 23 · 7 )”特大暴雨洪涝灾害监测中的应用//中国水利学会.2023中国水利学术大会论文集(第二分册).航天宏图信息技术股份有限公司;河北科技大学经济管理学院;, 2023 : 8 .[ DOI: 10.26914/c.cnkihy.2023.088165 http://dx.doi.org/10.26914/c.cnkihy.2023.088165 .]
Wang X Y . 2024 . The Construction and Innovative Applications of China's Commercial Remote Sensing Satellite Constellation "Nv Wa" . Aerospace China , ( 1 ): 23 - 28 .
王宇翔 . 我国商业遥感卫星“女娲”星座建设及其创新应用 [J]. 中国航天 ,( 1 ): 23 - 28 .
Wang Y L , He J , Hou F C and Liu D . 2023 . Satellites of Qilu Promote the Innovative Progress of Remote Sensing Applications . Aerospace China , ( 3 ): 19 - 25
王玉林 , 贺杰 , 候富城 , 刘丹 . 2023 . “齐鲁”卫星赋能遥感应用创新发展 . 中国航天 ,( 3 ): 19 - 25
Wang Y Y , Wang C , Zhang H , Dong Y B and Wei S S . 2019 . A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds , Remote Sensing , 11 ( 7 ): 765 [ DOI: 10.3390/rs11070765 http://dx.doi.org/10.3390/rs11070765 ]
Wang Z R , Kang Y Z , Zeng X , Wang Y L , Zhang T and Sun X . 2023 . SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset . Journal of Radars , 2023, 12 ( 4 ): 906 – 922 .
王智睿 , 康玉卓 , 曾璇 , 汪越雷 , 张汀 , 孙显 . 2023 . SAR-AIRcraft-1.0:高分辨率SAR飞机检测识别数据集 . 雷达学报 , 12 ( 4 ): 906 – 922 [ DOI: 10.12000/JR23043 http://dx.doi.org/10.12000/JR23043 ]
Wei S J , Zeng X F , Qu Q Z , Wang M , Su H and Shi J . 2020 . HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation . in IEEE Access , 8 : 120234 - 120254 [ DOI: 10.1109/ACCESS.2020.3005861 http://dx.doi.org/10.1109/ACCESS.2020.3005861 .]
Wu C F . 2021 . The Era of Aerospace Information is Upon Arrival as the Project Plan of ""Tianxian Constellation"" is Released . Daily News of Science and Technology . 2021-09-29003. (吴长锋 . 2021. “天仙星座”计划发布空天信息时代来临.科技日报, 2021-09-29 ( 003 ).[ DOI: 10.28502/n.cnki.nkjrb.2021.005378 http://dx.doi.org/10.28502/n.cnki.nkjrb.2021.005378 .]
Xu C A , Su H , Li J W , Liu Y , Yao L B , Gao L , Yan W J and Wang T Y . 2022 . RSDD-SAR: Rotated ship detection dataset in SAR images . Journal of Radars , 2022, 11 ( 4 ): 581 – 599 .
徐从安 , 苏航 , 李健伟 , 刘瑜 , 姚力波 , 高龙 , 闫文君 , 汪韬阳 . 2022 . RSDD-SAR:SAR舰船斜框检测数据集 . 雷达学报 , 11 ( 4 ): 581 – 599 [ DOI: 10.12000/JR22007 http://dx.doi.org/10.12000/JR22007 ]
Xu L , Zhang H , Wang C , Wu F , Zhang B and Tang Y X . 2020 . Progress in the processing and application of compact polarimetric SAR . Journal of Radars , 2020, 9 ( 1 ): 55 – 72 .
许璐 , 张红 , 王超 , 吴樊 , 张波 , 汤益先 . 2020 . 简缩极化SAR数据处理与应用研究进展 . 雷达学报 , 9 ( 1 ): 55 – 72 . [ DOI: 10.12000/JR19106 http://dx.doi.org/10.12000/JR19106 ]
Yang N , Liao T K , Lu J F , Yang R Y , Qian X M , Zhang T , Zhu J L , Liu F J and Qiao J H . 2024 . System Overview and Applications of PIESAT-1 SAR Satellite . Satellite Application , 2024 ,( 07 ): 12 - 19 .
杨娜 , 廖通逵 , 路聚峰 , 杨瑞云 , 钱晓明 , 张添 , 祝佳磊 , 刘凤君 , 乔江河 . 2024 . 航天宏图一号合成孔径雷达卫星系统及应用 [J]. 卫星应用 ,( 07 ): 12 - 19 .
Yin J , Liu X , Yang J. , Chu C . Y and Chang Y L . 2020 . PolSAR image classification based on statistical distribution and MRF. Remote Sensing , 12 ( 6 ), 1027 [ DOI: 10.3390/rs12061027 http://dx.doi.org/10.3390/rs12061027 ]
Younis M , Fischer C and Wiesbeck W . 2003 . Digital beamforming in SAR systems . IEEE Transactions on Geoscience & Remote Sensing , 41 ( 7 ): 1735 - 1739 . [ DOI: 10.1109/TGRS.2003.815662 http://dx.doi.org/10.1109/TGRS.2003.815662 ]
Yuan L , Chi X and Wei H . 2022 . Achievement of Small Target Detection for Sea Ship Based on CFAR‐DBN . Wireless Communications and Mobile Computing , 1 , 4630155 [ DOI: 10.1155/2022/4630155 http://dx.doi.org/10.1155/2022/4630155 ]
Zeng L . 2011 . A Study on Multi-bands and Multi-polarimetric SAR Image Fusion Interpretation . Hangzhou Dianzi University (曾亮 . 2011.多波段多极化SAR图像融合解译研究. 杭州电子科技大学
Zhang M , An J B , Yu D H , L , Yang L D , Wu L and Lu X Q . 2020 . Convolutional Neural Network with Attention Mechanism for SAR Automatic Target Recognition. IEEE Geoscience and Remote Sensing Letters . vol. 19 , pp. 1 - 5 [ DOI: 10.1109/LGRS.2020.3031593 http://dx.doi.org/10.1109/LGRS.2020.3031593 ]
Zhang P , Xu H , Tian T , Gao P , Li L F and Zhao T M . 2022 . SEFEPNet: Scale Expansion and Feature Enhancement Pyramid Network for SAR Aircraft Detection With Small Sample Dataset , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 15 : 3365 - 3375 [ DOI: 10.1109/JSTARS.2022.3169339 http://dx.doi.org/10.1109/JSTARS.2022.3169339 .]
Zhang T W , Zhang X L , Li J W , Xu X W , Wang B Y , Zhan X , Xu Y Q , Ke X , Zeng T J , Su H , Ahmad I , Pan D C , Liu C , Zhou Y , Shi J and Wei S J . 2021 . SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis . Remote Sens , 13 : 3690 .
Zhang W F , Goodenough D G , Richardson A , Chen E X and Li Z Y . 2014 . Forest stand level correlation analysis of ALOS-1 PALSAR signatures . 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada , 2332 - 2335 , [ DOI: 10.1109/IGARSS.2014.6946938 http://dx.doi.org/10.1109/IGARSS.2014.6946938 .]
Zhao K , Zhong R F , Yang C K and Li Q Y . 2023 . A Strip Noise Removal Method for TAIJING-IV 01 Satellite Imagery . Remote Sensing Information , 38 ( 03 ): 32 - 39 .
赵可 , 钟若飞 , 杨灿坤 , 李清扬 . 2023 . “泰景四号01星”遥感影像条带噪声去除方法 . 遥感信息 , 38 ( 03 ): 32 - 39 [ DOI: 10.20091/j.cnki.1000-3177.2023.03.005 http://dx.doi.org/10.20091/j.cnki.1000-3177.2023.03.005 .]
Zhao S , Wang R , Deng Y , Zhang Z , Li N , Guo L and Wang W . 2017 . Modifications on Multichannel Reconstruction Algorithm for SAR Processing Based on Periodic Nonuniform Sampling Theory and Nonuniform Fast Fourier Transform . IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing , 8 ( 11 ): 4998 - 5006 [ DOI: 10.1109/JSTARS.2015.2421303 http://dx.doi.org/10.1109/JSTARS.2015.2421303 ]
Zhao Z , Jiao L , Zhao J , Gu J and Zhao J . 2016 . Discriminant deep belief network for high-resolution sar image classification . Pattern Recognition , 61 , 686 - 701 [ DOI: 10.1016/j.patcog.2016.05.028 http://dx.doi.org/10.1016/j.patcog.2016.05.028 .]
Zhou G R , Liu M Q , Xu Z Q , Wang M Z , Zhang B C and Wu Y R . 2022 . Azimuth Ambiguities Suppression Using Group Sparsity and Nonconvex Regularization for Sliding Spotlight Mode: Results on QILU-1 SAR Data . IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia , 1660 - 1663 , [DOI 10 .1109/IGARSS46834.2022.9884638.]
Zhu W J . 2023 . Observe From Satellite to get Full Situation, Realizing Space Dream Through Construction of Space ""Infrastruction"" where ""Weina Xingkong"" Launch the First Chinese Commercial X-band SAR Satellite, the Taijing-4 01 . Information Construction , ( 10 ): 51 - 52 .
朱伟娟 . 2023 . 以卫星观全局,筑梦太空新“基建”微纳星空“中国首颗X波段商业SAR卫星——泰景四号01星 ”. 信息化建设 , ( 10 ): 51 - 52 .
相关文章
相关作者
相关机构