光学遥感小目标检测深度学习算法综述
Review of deep learning algorithms for small objects detection in optical remote sensing images
- 2025年 页码:1-29
收稿日期:2024-12-04,
修回日期:2025-03-31,
录用日期:2025-04-09,
网络出版日期:2025-04-09
DOI: 10.11834/jig.240740
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-12-04,
修回日期:2025-03-31,
录用日期:2025-04-09,
网络出版日期:2025-04-09,
移动端阅览
遥感目标检测(Remote Sensing Object Detection, RSOD)是遥感领域中备受关注的核心任务之一,其复杂性和基础性使其一直受到广泛关注和研究。在遥感领域,小目标检测的挑战在于其尺寸较小、信息量有限,并且容易受到背景干扰的影响,这使得传统的目标检测方法难以有效应对。因此,遥感小目标检测逐渐成为该领域研究的重要难点和焦点。本文旨在对基于深度学习的遥感小目标检测领域的研究现状和发展趋势进行全面回顾。首先,针对小目标检测问题,本文确定了七大挑战,包括但不限于可用特征少、度量不匹配、图像幅面宽、背景干扰大、分布不均匀、方向不确定和数据集稀缺。接着,本文针对这些挑战,依次提出相应的解决方案,并对其进行了深入分析和探讨。然后,概述了遥感小目标检测领域广泛使用的基准数据集和评估指标以及潜在的应用场景。最后,对遥感小目标检测的未来方向进行了深入分析与展望,以探讨潜在的研究方向和技术创新,以解决当前挑战和限制,提高遥感小目标检测的性能和适用性。
Remote Sensing Object Detection (RSOD) has emerged as a critical research direction, drawing significant attention due to its complexity and fundamental importance. The primary objective of RSOD is to accurately classify and regress the position of the objects of interest in remote sensing imagery (RSI). According to the images acquisition platform, RSI can be classified into tree classes, including satellite-based, aerial-based, and drone-based. The sensors equipped on these platforms, capture ground information fr
om different altitudes and views, fulfilling diverse observational needs and applications ranging from urban planning to environmental monitoring. As the advent of deep learning, especially the convolutional neural networks (CNNs) and Transformers, the detection accuracies obtain substantive improvement relying on the powerful feature representative ability and better adaptivity. However, small object detection (SOD), as subfield of object detection, limits the performance improvement in recent years. This paper focuses on the remote sensing small object detection, of which we summarize seven major challenges. 1)
Less available features.
Small objects typically occupy only a few pixels with absolutely small sizes in remote sensing imagery, leading to limited appearance information and detailed spatial feature information. In addition, with multiple convolution and pooling operations in deep CNNs, the information loss becomes severe as the deepening feature layers. In general, the detailed feature information of small objects resides in shallow layers. To address this issue, super-resolution and multi-scale feature fusion are usually employed. Super-resolution methods enhance the details of small objects by reconstructing high-frequency information and refining spatial resolution through advanced up-sampling techniques and feature restoration algorithms, rectifying structural distortions and improving the clarity of features. Additionally, the incorporation of shallow CNN layers can retain rich spatial details, facilitating precise localization. The fusion of shallow and deep features enables networks to capture both fine-grained details of small objects and global semantic information, ultimately improving detection accuracy and robustness. 2)
Misaligned Evaluation Metrics.
The evaluation metric of object detection often relies on Intersection over Union (IoU), but it can be problematic for small objects, which are highly sensitive to even minor localization errors. Such errors can lead
to a significant drop in IoU and an increase in false negatives. To address this issue, several alternative evaluation metrics, such as mean average precision (mAP) at lower IoU thresholds, have been proposed to better capture the performance of models on small objects. Meanwhile, the assignment of anchor boxes further complicates small object detection, as less number of anchors match small objects, making precise localization more difficult. Therefore, it is essential to improve loss functions and evaluation metrics specifically tailored for small object detection. Moreover, the sensitivity of IoU during Non-Maximum Suppression (NMS) can result in the erroneous suppression of small objects, negatively impacting overall detection performance. Developing robust evaluation strategies that account for the unique characteristics of small objects is critical for enhancing detection accuracy. 3)
Large Image Coverage.
Remote sensing images are typically high-resolution and cover wide areas, making the small objects relatively small sizes, which renders small objects even less perceptible. Directly processing entire images leads to high computational costs and can result in missed detections. Many existing detection frameworks are optimized for medium-sized images and objects, necessitating novel methods that effectively enhance object detection within large-area remote sensing imagery. Strategies such as image segmentation or region proposal networks can help mitigate these challenges by allowing models to focus on specific areas of interest rather than processing entire images indiscriminately. 4)
Complex Background Interference.
Remote sensing images encompass a diverse array of terrains, man-made structures, and natural elements, which complicates the separation of small objects from their complex backgrounds. Environmental factors, including atmospheric conditions, terrain variations, lighting, and shadows, can further increase false positive and false negative rates. To tackle these chall
enges, strategies such as context-aware learning and label noise suppression have been developed. Contextual learning utilizes spatial and semantic relationships to enhance object detection accuracy, while label noise suppression techniques help mitigate the impact of labeling uncertainty on model performance, thereby improving the robustness. 5)
Non-Uniform Data Distribution.
Objects in remote sensing images are often sparsely distributed, with certain regions densely populated while others are not. This non-uniform distribution necessitates a focus on clustered areas to enhance detection efficiency. However, traditional uniform or random crop processing methods may prove inefficient for detecting dense objects, leading to wasted computational resources. Developing mechanisms that localize and prioritize these dense areas represents a critical challenge in improving detection performance. 6)
Uncertain Orientation Information.
Due to the bird’s-eye perspective characteristic of remote sensing imagery, objects present arbitrary rotated orientations. Standard horizontal bounding boxes (HBBs) often fail to accurately describe these rotated objects. In contrast, oriented bounding boxes (OBBs) facilitate more precise localization by incorporating rotation angles. However, several issues remain unexplored, including label mismatching, positive-negative sample imbalance, and limited feature supervision for geometrically complex small objects. These challenges can lead to suboptimal learning of key object features, necessitating further research and innovation in bounding box representation. 7)
Scarcity of specialized Datasets.
Existing remote sensing datasets predominantly focus on medium to large objects, with relatively few designed specifically for small object detection. Although some datasets such as AI-TOD, TinyPerson and SODA exist, they are often limited in terms of the number of object categories and instances available. Furthermore, class frequency imbalances exacerbate t
he issues related to model performance in specific applications. The lack of comprehensive small object datasets hinders the development of robust models tailored to this task, necessitating the construction of new datasets that address these limitations. This paper presents a comprehensive review of deep learning-based techniques for small object detection in remote sensing imagery. We analyze the primary challenges associated with this task and highlight recent advancements in key areas such as data augmentation, super-resolution techniques, multi-scale feature fusion, anchor box mechanisms, contextual information integration, and label assignment strategies. Furthermore, we provide an overview of commonly used benchmark datasets, evaluation metrics, and various applications related to small object detection. In conclusion, in despite of significant progress that has been made in the field of RSOD, numerous challenges remain, particularly concerning small object detection. Future research directions should focus on developing innovative solutions to address these challenges, providing insights that will advance the field and enhance the performance of small object detection in remote sensing applications. By addressing these critical areas, researchers can contribute to more effective and accurate remote sensing methodologies, ultimately enhancing our understanding and monitoring of the world.
Akyon F C , Altinuc S O , Temizel A . 2022 . Slicing aided hyper inference and fine - tuning for small object detection // Proceedings of 2022 IEEE International Conference on Image Processing (ICIP) . Bordeaux, France : IEEE: 966 - 970 [ DOI: 10.1109/ICIP46576.2022.9897990 http://dx.doi.org/10.1109/ICIP46576.2022.9897990 ]
Bernhard M and Schubert M . 2021 . Correcting imprecise object locations for training object detectors in remote sensing applications . Remote Sensing , 13 ( 24 ): 4962 [ DOI: 10.3390/rs13244962 http://dx.doi.org/10.3390/rs13244962 ]
Bochkovskiy A , Wang C Y and Liao H Y M . 2020 . Yolov4: Optimal speed and accuracy of object detection . arXiv preprint arXiv: 2004 . 10934 [EB/OL]. [ 2020-04-23 ]. https://arxiv.org/abs/2004.10934 https://arxiv.org/abs/2004.10934
Bosquet B. , Cores D. , Seidenari L. , Brea V. M. , Mucientes M. , & Del Bimbo A . ( 2023 ). A full data augmentation pipeline for small object detection based on generative adversarial networks . Pattern Recognition , 133 , 108998 . DOI: 10.1016/j.patcog.2022.108998 http://dx.doi.org/10.1016/j.patcog.2022.108998
Cai Z W and Vasconcelos N . 2018 . Cascade R-CNN: delving into high quality object detection // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE: 6154 - 6162 [ DOI: 10.1109/CVPR.2018.00644 http://dx.doi.org/10.1109/CVPR.2018.00644 ]
Chalavadi V , Jeripothula P , Datla R and Ch S B . 2022 . mSODANet: A network for multi-scale object detection in aerial images using hierarchical dilated convolutions . Pattern Recognition , 126 : 108548 [ DOI: 10.1016/j.patcog.2022.108548 http://dx.doi.org/10.1016/j.patcog.2022.108548 ]
Chen C R , Zhang Y , Lv Q X , Wei S , Wang X R , Sun X , Dong J Y . 2019 . Rrnet: A hybrid detector for object detection in drone - captured images // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW 2019) . Seoul, South Korea : IEEE: 0 - 0 [ doi: 10.1109/iccvw.2019.00018 http://dx.doi.org/10.1109/iccvw.2019.00018 ]
Chen C Y , Gong W G , Chen Y L and Li W H . 2019 . Object detection in remote sensing images based on a scene-contextual feature pyramid network . Remote Sensing , 11 ( 3 ): 339 [ DOI: 10.3390/rs11030339 http://dx.doi.org/10.3390/rs11030339 ]
Chen J J , Hong H S , Song B , Guo J , Chen C and Xu J J . 2023 . MDCT: Multi-kernel dilated convolution and transformer for one-stage object detection of remote sensing images . Remote Sensing , 15 ( 2 ): 371 [ DOI: 10.3390/rs15020371 http://dx.doi.org/10.3390/rs15020371 ]
Chen K , Li J G , Lin W Y , See J , Wang J , Duan L Y , Chen Z B , He C W , Zou J N . 2019 . Towards accurate one-stage object detection with ap-loss // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) . Long Beach, CA, USA : IEEE: 5119 - 5127 [ DOI: 10.1109/cvpr.2019.00526 http://dx.doi.org/10.1109/cvpr.2019.00526 ]
Chen Y K , Zhang P Z , Li Z M , Li Y W , Zhang X Y , Meng G F , Xiang S M , Sun J and Jia J Y . 2020 . Stitcher: feedback-driven data provider for object detection [EB/OL]. [ 2021-03-14 ]. http://arxiv.org/pdf/2004.12432.pdf http://arxiv.org/pdf/2004.12432.pdf
Chen Z G , Wu K H , Li Y B , Wang M J , and Li W . 2019 . SSD - MSN: an improved multi - scale object detection network based on SSD . IEEE Access , 7 : 80622 - 80632 [ DOI: 10.1109/ACCESS.2019.2923016 http://dx.doi.org/10.1109/ACCESS.2019.2923016 ]
Cheng G , Han J W , Zhou P C , and Guo L . 2014 . Multi - class geospatial object detection and geographic image classification based on collection of part detectors . ISPRS Journal of Photogrammetry and Remote Sensing , 98 : 119 - 132 [ DOI: 10.1016/j.isprsjprs.2014.10.002 http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002 ]
Cheng G , Lang C B , Wu M X , Xie X X , Yao X W and Han J W . 2021 . Feature enhancement network for object detection in optical remote sensing images . Journal of Remote Sensing [ DOI: 10.34133/2021/9805389 http://dx.doi.org/10.34133/2021/9805389 ]
Cheng G , Wang J B , Li K , Xie X X , Lang C B , Yao Y Q and Han J W . 2022 . Anchor-free oriented proposal generator for object detection . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 11 [ DOI: 10.1109/TGRS.2022.3183022 http://dx.doi.org/10.1109/TGRS.2022.3183022 ]
Cheng G , Yuan X , Yao X , Yan K , Zeng Q , Xie X and Han J . 2023 . Towards large-scale small object detection: Survey and benchmarks . IEEE Transactions on Pattern Analysis and Machine Intelligence [ DOI: 10.1109/TPAMI.2023.3290594 http://dx.doi.org/10.1109/TPAMI.2023.3290594 ]
Cubuk E D , Zoph B , Mane D , Vasudevan V and Le Q V . 2018 . Autoaugment: Learning augmentation policies from data . arXiv preprint arXiv: 1805 . 09501 [EB/OL]. [ 2018-05-01 ]. https://arxiv.org/abs/1805.09501 https://arxiv.org/abs/1805.09501
Dai L H , Liu H , Tang H , Wu Z W and Song P H . 2022 . Ao2-detr: Arbitrary-oriented object detection transformer . IEEE Transactions on Circuits and Systems for Video Technology , 33 ( 5 ): 2342 - 2356 [ DOI: 10.1109/TCSVT.2022.3222906 http://dx.doi.org/10.1109/TCSVT.2022.3222906 ]
Dai X Y , Chen Y P , Yang J W , Zhang P C , Yuan L , Zhang L . 2021 . Dynamic detr: End-to-end object detection with dynamic attention // Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV 2021) . Montreal, Canada : IEEE: 2988 - 2997 [ DOI: 10.1109/iccv48922.2021.00298 http://dx.doi.org/10.1109/iccv48922.2021.00298 ]
Deng S T , Li S , Xie K , Song W F , Liao X , Hao A M and Qin H . 2020 . A global-local self-adaptive network for drone-view object detection . IEEE Transactions on Image Processing , 30 : 1556 - 1569 [ DOI: 10.1109/TIP.2020.3045636 http://dx.doi.org/10.1109/TIP.2020.3045636 ]
Ding J , Xue N , Long Y , Xia G S and Lu Q K . 2019 . Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition [C]. IEEE : 2849 - 2858 [ DOI: 10.1109/cvpr.2019.00296 http://dx.doi.org/10.1109/cvpr.2019.00296 ]
Ding P , Zhang Y , Deng W J , Jia P and Kuijper A . 2018 . A light and faster regional convolutional neural network for object detection in optical remote sensing images . ISPRS journal of photogrammetry and remote sensing , 141 : 208 - 218 [ DOI: 10.1109/CVPR.2016.596 http://dx.doi.org/10.1109/CVPR.2016.596 ]
Du D W , Qi Y K , Yu H Y , Yang Y F , Duan K W , Li G R , Zhang W G , Huang Q M , Tian Q . 2018 . The unmanned aerial vehicle benchmark: Object detection and tracking // Proceedings of the 15th European Conference on Computer Vision (ECCV 2018) . Munich, Germany : Springer: 370 - 386 [ DOI: 10.1007/978-3-030-01249-6_23 http://dx.doi.org/10.1007/978-3-030-01249-6_23 ]
Duan C Z , Wei Z W , Zhang C , Qu S Y , Wang H P . 2021 . Coarse-grained density map guided object detection in aerial images // Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV 2021) . Montreal, Canada : IEEE: 2789 - 2798 [ DOI: 10.1109/iccvw54120.2021.00313 http://dx.doi.org/10.1109/iccvw54120.2021.00313 ]
Duan K W , Du D W , Qi H G and Huang Q M . 2019 . Detecting small objects using a channel-aware deconvolutional network . IEEE Transactions on Circuits and Systems for Video Technology , 30 ( 6 ): 1639 - 1652 [ DOI: 10.1109/TCSVT.2019.2906246 http://dx.doi.org/10.1109/TCSVT.2019.2906246 ]
Ferdous S N , Mostofa M , Nasrabadi N M . 2019 . Super resolution-assisted deep aerial vehicle detection // Proceedings of the 2019 SPIE Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications (Vol. 11006) . Orlando, Florida, USA : SPIE: 432 - 443 [ DOI: 10.1117/12.2519045 http://dx.doi.org/10.1117/12.2519045 ]
Fu J M , Sun X , Wang Z R and Fu K . 2020 . An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 2 ): 1331 - 1344 [ DOI: 10.1109/TGRS.2020.3005151 http://dx.doi.org/10.1109/TGRS.2020.3005151 ]
Fu R H , Chen C C , Yan S , Heidari A A and Wang X C , Escorcia-Gutierrez J , Escorcia-Gutierrez J , Mansour R F , Chen H L . 2023 . Gaussian similarity-based adaptive dynamic label assignment for tiny object detection . Neurocomputing , 543 : 126285 [ DOI: 10.1016/j.neucom.2023.126285 http://dx.doi.org/10.1016/j.neucom.2023.126285 ]
Gevorgyan Z . 2022 . SIoU loss: More powerful learning for bounding box regression . arXiv preprint arXiv: 2205 . 12740 [EB/OL]. [ 2022-05-01 ]. https://arxiv.org/abs/2205.12740 https://arxiv.org/abs/2205.12740
Gong H , Mu T K , Li Q X , Dai H S , Li C L , He Z P , Wang W J , Han F , Tuniyazi A , Li H Y , Lang X C , Li Z Y and Wang B . 2022 . Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images . Remote Sensing , 14 ( 12 ): 2861 [ DOI: 10.3390/rs14122861 http://dx.doi.org/10.3390/rs14122861 ]
Halevy A , Norvig P and Pereira F . 2009 . The unreasonable effectiveness of data . IEEE intelligent systems , 24 ( 2 ): 8 - 12 [ DOI: 10.1109/mis.2009.36 http://dx.doi.org/10.1109/mis.2009.36 ]
Han J M , Ding J , Xue N , Xia G S . 2021 . Redet: A rotation - equivariant detector for aerial object detection // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) . Nashville, Tennessee, USA : IEEE: 2786 - 2795 [ DOI: 10.1109/CVPR46437.2021.00281 http://dx.doi.org/10.1109/CVPR46437.2021.00281 ]
He J B , Erfani S , Ma X J , Bailey J , Chi Y and Hua X S . 2021 . Alpha-IoU: A family of power intersection over union losses for bounding box regression . Advances in Neural Information Processing Systems , 34 : 20230 - 20242 [ DOI: 10.48550/arXiv.2110.13675 http://dx.doi.org/10.48550/arXiv.2110.13675 ]
He Y H , Zhu C C , Wang J R , Savvides M , Zhang X Y . 2019 . Bounding box regression with uncertainty for accurate object detection // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) . Long Beach, CA, USA : IEEE: 2888 - 2897 [ DOI: 10.1109/cvpr.2019.00300 http://dx.doi.org/10.1109/cvpr.2019.00300 ]
Hong M B , Li S W , Yang Y C , Zhu F Y , Zhao Q J and Lu L . 2021 . SSPNet: Scale selection pyramid network for tiny person detection from UAV images . IEEE geoscience and remote sensing letters , 19 : 1 - 5 [ DOI: 10.1109/lgrs.2021.3103069 http://dx.doi.org/10.1109/lgrs.2021.3103069 ]
Hou L P , Lu K , Xue J , Li Y Q . 2022 . Shape - adaptive selection and measurement for oriented object detection // Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022) . Virtual Conference : AAAI Press: 923 - 932 [ DOI: 10.1609/aaai.v36i1.19975 http://dx.doi.org/10.1609/aaai.v36i1.19975 ]
Huang W , Li G Y , Jin B H , Chen Q Q , Yin J R and Huang L . 2021 . Scenario context-aware-based bidirectional feature pyramid network for remote sensing target detection . IEEE Geoscience and Remote Sensing Letters , 19 : 1 - 5 [ DOI: 10.1109/lgrs.2021.3135935 http://dx.doi.org/10.1109/lgrs.2021.3135935 ]
Huang Y C , Chen J X , Huang D . 2022 . UFPMP-Det: Toward accurate and efficient object detection on drone imagery // Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022) . Virtual Conference : AAAI Press: 1026 - 1033 [ DOI: 10.1609/aaai.v36i1.19986 http://dx.doi.org/10.1609/aaai.v36i1.19986 ]
Huang Y X , Liu H I , Shuai H H and Cheng W H . 2024 . Dq-detr: Detr with dynamic query for tiny object detection . arXiv preprint arXiv: 2404 . 03507 [EB/OL]. [ 2024-04-01 ]. https://arxiv.org/abs/2404.03507 https://arxiv.org/abs/2404.03507
Jiang N , Yu X H , Peng X K , Gong Y Q , Han Z J . 2021 . SM+: Refined scale match for tiny person detection // Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021) . Online . IEEE : 1815 - 1819 [ DOI: 10.1109/icassp39728.2021.9414162 http://dx.doi.org/10.1109/icassp39728.2021.9414162 ]
Kisantal M , Wojna Z , Murawski J , Naruniec J and Cho K . 2019 . Augmentation for small object detection . arXiv preprint arXiv: 1902 . 07296 [EB/OL]. [ 2019-02-01 ]. https://arxiv.org/abs/2004.12178 https://arxiv.org/abs/2004.12178
Koyun O C , Keser R K , Akkaya I B and Töreyin B U . 2022 . Focus-and-Detect: A small object detection framework for aerial images . Signal Processing : Image Communication , 104 : 116675 [ DOI: 10.1016/j.image.2022.116675 http://dx.doi.org/10.1016/j.image.2022.116675 ]
Krizhevsky A , Sutskever I , Hinton G E . 2012 . ImageNet classification with deep convolutional neural networks // Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012) . Lake Tahoe, Nevada, USA : Curran Associates Inc: 1097 - 1105 [ DOI: 10.1145/3065386 http://dx.doi.org/10.1145/3065386 ]
Lam D , Kuzma R , McGee K , Dooley S , Laielli M , Klaric M , Bulatov Y , and McCord B . 2018 . x view: Objects in context in overhead imagery [EB/OL]. [ 2018-02-01 ]. http://arxiv.org/abs/1802.07856 http://arxiv.org/abs/1802.07856
Law H , Deng J . 2018 . Cornernet: Detecting objects as paired keypoints // Proceedings of the 15th European Conference on Computer Vision (ECCV 2018) . Munich, Germany : Springer: 734 - 750 [ DOI: 10.1007/978-3-030-01264-9_45 http://dx.doi.org/10.1007/978-3-030-01264-9_45 ]
Lee C G , Park S , Song H , Ryu J , Kim S , Kim H , Pereira S , Yoo D . 2022 . Interactive multi - class tiny - object detection // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022) . New Orleans, Louisiana, USA : IEEE: 14136 - 14145 [ DOI: 10.1109/CVPR52688.2022.01374 http://dx.doi.org/10.1109/CVPR52688.2022.01374 ]
Li C L , Yang T J N , Zhu S J , Chen C , Guan S Y . 2020 . Density map guided object detection in aerial images // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2020) . Online. IEEE : 190 - 191 [ DOI: 10.1109/cvprw50498.2020.00103 http://dx.doi.org/10.1109/cvprw50498.2020.00103 ]
Li F , Zhang H , Liu S L , Guo J , Ni L M , Zhang L . 2022 . Dn-detr: Accelerate detr training by introducing query denoising // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022) . New Orleans, Louisiana, USA : IEEE: 13619 - 13627 [ DOI: 10.1109/cvpr52688.2022.01325 http://dx.doi.org/10.1109/cvpr52688.2022.01325 ]
Li K , Wan G , Cheng G , Meng L Q and Han J W . 2020 . Object detection in optical remote sensing images: A survey and a new benchmark . ISPRS journal of photogrammetry and remote sensing , 159 : 296 - 307 [ DOI: 10.1016/j.isprsjprs.2019.11.023 http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023 ]
Li W T , Chen Y J , Hu K X , Zhu J K . 2022 . Oriented reppoints for aerial object detection // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022) . New Orleans, Louisiana, USA : IEEE: 1829 - 1838 [ DOI: 10.1109/cvpr52688.2022.00187 http://dx.doi.org/10.1109/cvpr52688.2022.00187 ]
Li W T , Li W Y , Yang F , Wang P . 2019 . Multi-scale object detection in satellite imagery based on YOLT // Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019) . Waikoloa, Hawaii, USA : IEEE: 162 - 165 [ DOI: 10.1109/IGARSS.2019.8898170 http://dx.doi.org/10.1109/IGARSS.2019.8898170 ]
Li X , Wang W H , Wu L J , Chen S , Hu X L , Li J , Tang J H and Yang J . 2020 . Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection . Advances in Neural Information Processing Systems , 33 : 21002 - 21012 [ DOI: 10.1109/cvpr46437.2021.01146 http://dx.doi.org/10.1109/cvpr46437.2021.01146 ]
Li Y X , Hou Q B , Zheng Z H , Cheng M M , Yang J , Li X . 2023 . Large selective kernel network for remote sensing object detection // Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV 2023) . Paris, France : IEEE: 16794 - 16805 [ DOI: 10.1109/iccv51070.2023.01540 http://dx.doi.org/10.1109/iccv51070.2023.01540 ]
Li Y Y , Huang Q , Pei X , Chen Y Q , Jiao L C and Shang R H . 2020 . Cross-layer attention network for small object detection in remote sensing imagery . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 14 : 2148 - 2161 [ DOI: 10.1109/JSTARS.2020.3046482 http://dx.doi.org/10.1109/JSTARS.2020.3046482 ]
Liang X , Zhang J , Zhuo L , Li Y Z and Tian Q . 2019 . Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis . IEEE Transactions on Circuits and Systems for Video Technology , 30 ( 6 ): 1758 - 1770 [ DOI: 10.1109/tcsvt.2019.2905881 http://dx.doi.org/10.1109/tcsvt.2019.2905881 ]
Lim S , Kim I , Kim T , Kim C and Kim S . 2019 . Fast autoaugment . Advances in neural information processing systems, 32 [EB/OL]. [ 2019-01-01 ]. https://arxiv.org/abs/1905.00397 https://arxiv.org/abs/1905.00397
Lin T Y , Dollár P , Girshick R , He K M , Hariharan B , Belongie S . 2017 . Feature pyramid networks for object detection // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) . Honolulu, Hawaii, USA : IEEE: 2117 - 2125 [ DOI: 10.2139/ssrn.4498139 http://dx.doi.org/10.2139/ssrn.4498139 ]
Lin T Y , Goyal P , Girshick R , He K , Dollár P . 2017 . Focal loss for dense object detection // Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV 2017) . Venice, Italy : IEEE: 2980 - 2988 [ DOI: 10.1109/iccv.2017.324 http://dx.doi.org/10.1109/iccv.2017.324 ]
Lin T Y , Maire M , Belongie S , Hays J , Perona P , Ramanan D , Dollár P , Zitnick C L . 2014 . Microsoft COCO: common objects in context // Proceedings of the 13th European Conference on Computer Vision (ECCV 2014) . Zurich, Switzerland : Springer: 740 - 755 [ DOI: 10.1007/978-3-319-10602-1_48 http://dx.doi.org/10.1007/978-3-319-10602-1_48 ]
Liu C G , Gao G S , Huang Z Y , Hu Z H , Liu Q J , and Wang Y H . 2024 . Yolc: You only look clusters for tiny object detection in aerial images . IEEE Transactions on Intelligent Transportation Systems [ DOI: 10.1109/TITS.2024.3386928 http://dx.doi.org/10.1109/TITS.2024.3386928 ]
Liu C X , Wang K W , Lu H , Cao Z G , Zhang Z M . 2022 . Robust object detection with inaccurate bounding boxes // Proceedings of the 17th European Conference on Computer Vision (ECCV 2022) . Tel Aviv, Israel : Springer: 53 - 69 [ DOI: 10.1007/978-3-031-20080-9_4 http://dx.doi.org/10.1007/978-3-031-20080-9_4 ]
Liu J , Yang S J , Tian L , Guo W , Zhou B Y , Jia J Q and Ling H B . 2019 . Multi-component fusion network for small object detection in remote sensing images . IEEE Access , 7 : 128339 - 128352 [ DOI: 10.1109/ACCESS.2019.2939488 http://dx.doi.org/10.1109/ACCESS.2019.2939488 ]
Liu L L , Muelly M , Deng J , Pfister T , Li L J . 2019 . Generative modeling for small - data object detection // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019) . Seoul, South Korea : IEEE: 6073 - 6081 [ DOI: 10.1109/ICCV.2019.00622 http://dx.doi.org/10.1109/ICCV.2019.00622 ]
Liu S , Qi L , Qin H F , Shi J P , Jia J Y . 2018 . Path aggregation network for instance segmentation // Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018) . Salt Lake City, Utah, USA : IEEE: 8759 - 8768 [ DOI: 10.1109/cvpr.2018.00913 http://dx.doi.org/10.1109/cvpr.2018.00913 ]
Liu W , Anguelov D , Erhan D , Szegedy C , Reed S , Fu C Y , Berg A C . 2016 . SSD: single shot MultiBox detector // Proceedings of the 14th European Conference on Computer Vision (ECCV 2016) . Amsterdam, Netherlands : Springer: 21 - 37 [ DOI: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2 ]
Liu Y , Sun P , Wergeles N and Shang Y . 2021 . A survey and performance evaluation of deep learning methods for small object detection . Expert Systems with Applications , 172 : 114602 [ DOI: 10.1016/j.eswa.2021.114602 http://dx.doi.org/10.1016/j.eswa.2021.114602 ]
Lu W , Chen S B , Shu Q L , Tang J , and Luo B . 2024 . DecoupleNet: A Lightweight Backbone Network With Efficient Feature Decoupling for Remote Sensing Visual Tasks . IEEE Transactions on Geoscience and Remote Sensing [ DOI: 10.1109/TGRS.2024.3465496 http://dx.doi.org/10.1109/TGRS.2024.3465496 ]
Lu X C , Ji J , Xing Z Q and Miao Q G . 2021 . Attention and feature fusion SSD for remote sensing object detection . IEEE Transactions on Instrumentation and Measurement , 70 : 1 - 9 [ DOI: 10.1109/TIM.2021.3052575 http://dx.doi.org/10.1109/TIM.2021.3052575 ]
Lu X Q , Zhang Y L , Yuan Y and Feng Y C . 2019 . Gated and axis-concentrated localization network for remote sensing object detection . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 1 ): 179 - 192 [ DOI: 10.1109/TGRS.2019.2935177 http://dx.doi.org/10.1109/TGRS.2019.2935177 ]
Ma T L , Mao M Y , Zheng H H , Gao P , Wang X D , Han S M , Ding E R , Zhang B C and Doermann D . 2021 . Oriented object detection with transformer . arXiv preprint arXiv: 2106 . 03146 [EB/OL]. [ 2021-06-01 ]. https://arxiv.org/abs/2106.03146 https://arxiv.org/abs/2106.03146
Ma T L , Yang Z , Wang J Q , Sun S Y , Ren X Y and Ahmad U . 2022 . Infrared small target detection network with generate label and feature mapping . IEEE Geoscience and Remote Sensing Letters , 19 : 1 - 5 [ DOI: 10.1109/LGRS.2022.3140432 http://dx.doi.org/10.1109/LGRS.2022.3140432 ]
Muzammul M and Li X . 2021. A survey on deep domain adaptation and tiny object detection challenges , techniques and datasets . arXiv preprint arXiv: 2107 . 07927 [EB/OL]. [ 2021-07-01 ]. https://arxiv.org/pdf/2107.07927 https://arxiv.org/pdf/2107.07927
Ozge Unel F , Ozkalayci B O , Cigla C . 2019 . The power of tiling for small object detection // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2019) . Long Beach, California, USA : IEEE: 0 - 0 [ DOI: 10.1109/cvprw.2019.00084 http://dx.doi.org/10.1109/cvprw.2019.00084 ]
Pan X Y , Jia N X , Mu Y Z and Gao X R . 2023 . Survey of small object detection . Journal of Image and Graphics , 28 ( 09 ): 2587 - 2615
潘晓英 , 贾凝心 , 穆元震 , 高炫蓉 . 2023 . 小目标检测研究综述 . 中国图象图形学报 , 28 ( 09 ): 2587 - 2615 [ DOI: 10. 11834/jig. 220455 http://dx.doi.org/10.11834/jig.220455 ]
Pang J M , Li C , Shi J P , Xu Z H and Feng H J . 2019 . R2 -CNN: fast Tiny object detection in large-scale remote sensing images . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 8 ): 5512 - 5524 [ DOI: 10.1109/TGRS.2019.2899955 http://dx.doi.org/10.1109/TGRS.2019.2899955 ]
Rabbi J , Ray N , Schubert M , Chowdhury S and Chao D . 2020 . Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network . Remote Sensing , 12 ( 9 ): 1432 [ DOI: 10.20944/preprints202003.0313.v2 http://dx.doi.org/10.20944/preprints202003.0313.v2 ]
Ran Q , Wang Q , Zhao B Y , Wu Y F , Pu S L and Li Z J . 2021 . Lightweight oriented object detection using multiscale context and enhanced channel attention in remote sensing images . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 14 : 5786 - 5795 [ DOI: 10.1109/JSTARS.2021.3079968 http://dx.doi.org/10.1109/JSTARS.2021.3079968 ]
Ranjan V , Sharma U , Nguyen T , Hoai M . 2021 . Learning to count everything // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) . Nashville, Tennessee, USA : IEEE: 3394 - 3403 [ DOI: 10.1109/cvpr46437.2021.00340 http://dx.doi.org/10.1109/cvpr46437.2021.00340 ]
Razakarivony S , and Jurie F . 2016 . Vehicle detection in aerial imagery: A small target detection benchmark . Journal of Visual Communication and Image Representation , 34 : 187 - 203 [ DOI: 10.1016/j.jvcir.2015.11.002 http://dx.doi.org/10.1016/j.jvcir.2015.11.002 ]
Rekavandi A M , Rashidi S , Boussaid F , Hoefs S and Akbas E . 2023 . Transformers in small object detection: A benchmark and survey of state-of-the-art . arXiv preprint arXiv: 2309 . 04902 [EB/OL]. [ 2023-09-01 ]. https://arxiv.org/pdf/2309.04902 https://arxiv.org/pdf/2309.04902
Rekavandi A M , Xu L , Boussaid F , Seghouane A K , Hoefs S and Bennamoun M . 2022 . A guide to image and video based small object detection using deep learning: Case study of maritime surveillance . arXiv preprint arXiv: 2207 . 12926 [EB/OL]. [ 2022-07-01 ]. https://arxiv.org/abs/2207.12926 https://arxiv.org/abs/2207.12926
Ren S Q , He K , Girshick R . 2015 . Faster R-CNN: towards real-time object detection with region proposal networks // Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 2015 . Montreal, Canada : MIT Press: [ DOI: 10.1109/TPAMI.2016.2577031 http://dx.doi.org/10.1109/TPAMI.2016.2577031 ]
Rezatofighi H , Tsoi N , Gwak J , Sadeghian A , Reid I , Savarese S . 2019 . Generalized intersection over union: A metric and a loss for bounding box regression // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) . Long Beach, California, USA : IEEE: 658 - 666 [ DOI: 10.1109/cvpr.2019.00075 http://dx.doi.org/10.1109/cvpr.2019.00075 ]
Simard P Y , Steinkraus D , Platt J C . 2003 . Best practices for convolutional neural networks applied to visual document analysis // Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR 2003) . Edinburgh, UK : IEEE: 958 - 963 [ DOI: 10.1109/ICDAR.2003.1227801 http://dx.doi.org/10.1109/ICDAR.2003.1227801 ]
Sun X , Wang P J , Yan Z Y , Xu F , Wang R P , Diao W H , Chen J , Li J B , Feng Y C , Xu T , Weinmann M , Hinz S , Wang C , and Fu K . 2022 . Fair 1 m: A benchmark dataset for fine - grained object recognition in higher - solution remote sensing imagery. ISPRS J. Photogrammetry Remote Sens. , 184 : 116 – 130 [ DOI: 10.1016/j.isprsjprs.2021.12.004 http://dx.doi.org/10.1016/j.isprsjprs.2021.12.004 ]
Tong K and Wu Y . 2022 . Deep learning-based detection from the perspective of small or tiny objects: A survey . Image and Vision Computing , 123 : 104471 [ DOI: 10.1016/j.imavis.2022.104471 http://dx.doi.org/10.1016/j.imavis.2022.104471 ]
Tong Z J , Chen Y H , Xu Z W and Yu R . 2023 . Wise-IoU: bounding box regression loss with dynamic focusing mechanism . arXiv preprint arXiv: 2301 . 10051 [EB/OL]. [ 2023-01-01 ]. https://arxiv.org/abs/2301.10051 https://arxiv.org/abs/2301.10051
Van Etten A . 2019 . Satellite imagery multiscale rapid detection with windowed networks // Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV 2019). Waikoloa , Hawaii, USA : IEEE: 735 - 743 [ DOI: 10.1109/WACV.2019.00083 http://dx.doi.org/10.1109/WACV.2019.00083 ]
Wan L , Zeiler M , Zhang S X , LeCun Y , Fergus R . 2013 . Regularization of neural networks using dropconnect //Proceedings of the 30th International Conference on Machine Learning (ICML 2013 . Atlanta, Georgia, USA: JMLR.org: III - 1058 - III – 1066
Wang G T , Xiong Z W , Liu D , Luo C . 2018 . Cascade mask generation framework for fast small object detection // Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME 2018) . San Diego, California, USA : IEEE: 1 - 6 [ DOI: 10.1109/ICME.2018.8486561 http://dx.doi.org/10.1109/ICME.2018.8486561 ]
Wang J W , Xu C , Yang W and Yu L . 2021 . A normalized Gaussian Wasserstein distance for tiny object detection . arXiv preprint arXiv: 2110 . 13389 [EB/OL]. [ 2021-10-01 ]. https://arxiv.org/abs/2110.13389 https://arxiv.org/abs/2110.13389
Wang J W , Yang W , Guo H W , Zhang R X , Xia G S . 2021 . Tiny object detection in aerial images // Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR 2020) . Online. IEEE : 3791 - 3798 [ DOI: 10.1109/ICPR48806.2021.9413340 http://dx.doi.org/10.1109/ICPR48806.2021.9413340 ]
Wang Y , Bashir S M A , Khan M , Ullah Q , Wang R , Song Y L , Guo Z and Niu Y L . 2022 . Remote sensing image super-resolution and object detection: Benchmark and state of the art . Expert Systems with Applications , 197 : 116793 [ DOI: 10.1016/j.eswa.2022.116793 http://dx.doi.org/10.1016/j.eswa.2022.116793 ]
Wang Y , Yang Y L , Zhao X . 2020 . Object detection using clustering algorithm adaptive searching regions in aerial images // Proceedings of the 16th European Conference on Computer Vision (ECCV 2020) . Online. Springer International Publishing : 651 - 664 [ DOI: 10.1007/978-3-030-66823-5_39 http://dx.doi.org/10.1007/978-3-030-66823-5_39 ]
Wang Z J , Fang J W , Dou J , Xue J R . 2019 . Small object detection on road by embedding focal-area loss // Proceedings of the 10th International Conference on Image and Graphics (ICIG 2019 . Beijing, China, August 23 – 25 , 2019: Springer International Publishing : 657 - 665 [ DOI: 10.1007/978-3-030-34120-6_53 http://dx.doi.org/10.1007/978-3-030-34120-6_53 ]
Wei L H , Zhang S L , Gao W , Tian Q . 2018 . Person transfer gan to bridge domain gap for person re - identification // Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018) . Salt Lake City, Utah, USA : IEEE: 79 - 88 [ doi: 10.1109/CVPR.2018.00016 http://dx.doi.org/10.1109/CVPR.2018.00016 ]
Wei S J , Su H , Ming J , Wang C , Yan M , Kumar D , Shi J and Zhang X L . 2020 . Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet . Remote Sensing , 12 ( 1 ): 167 [ DOI: 10.3390/rs12010167 http://dx.doi.org/10.3390/rs12010167 ]
Wu D , Chen P F , Yu X H , Li G R , Han Z J , Jiao J B . 2023 . Spatial self - distillation for object detection with inaccurate bounding boxes // Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV 2023) . Paris, France : IEEE: 6855 - 6865 [ DOI: 10.1109/ICCV51070.2023.00631 http://dx.doi.org/10.1109/ICCV51070.2023.00631 ]
Xia G S , Bai X , Ding J , Zhu Z , Belongie S J , Luo J B , Datcu M H , Pelillo M , Zhang L P . 2018 . DOTA: A large - scale dataset for object detection in aerial images // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) . Salt Lake City, Utah, USA : IEEE: 3974 - 3983 [ DOI: 10.1109/CVPR.2018.00418 http://dx.doi.org/10.1109/CVPR.2018.00418 ]
Xu C , Ding J , Wang J W , Yang W , Yu H , Yu L , Xia G S . 2023 . Dynamic coarse-to-fine learning for oriented tiny object detection // Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023) . Vancouver, Canada : IEEE: 7318 - 7328 [ DOI: 10.1109/cvpr52729.2023.00707 http://dx.doi.org/10.1109/cvpr52729.2023.00707 ]
Xu C , Wang J W , Yang W , Yu H , Yu L and Xia G S . 2022 . Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark . ISPRS Journal of Photogrammetry and Remote Sensing , 190 : 79 - 93 [ DOI: 10.1016/j.isprsjprs.2022.06.002 http://dx.doi.org/10.1016/j.isprsjprs.2022.06.002 ]
Xu C , Wang J W , Yang W , Yu L . 2021 . Dot distance for tiny object detection in aerial images // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) . Nashville, Tennessee, USA : IEEE: 1192 - 1201 [ DOI: 10.1109/cvprw53098.2021.00130 http://dx.doi.org/10.1109/cvprw53098.2021.00130 ]
Xu C , Wang J , Yang W W , Yu H , Yu L , Xia G S . 2022 . RFLA: Gaussian receptive field based label assignment for tiny object detection // Proceedings of the 17th European Conference on Computer Vision (ECCV 2022) . Tel Aviv, Israel : Springer Nature Switzerland: 526 - 543 [ DOI: 10.1007/978 - 3 - 031 - 20077 - 9_31 http://dx.doi.org/10.1007/978-3-031-20077-9_31
Xu N , Price B , Cohen S , Yang J M , Huang T S . 2016 . Deep interactive object selection // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) . Las Vegas, Nevada, USA : IEEE: 373 - 381 [ DOI: 10.1109/cvpr.2016.47 http://dx.doi.org/10.1109/cvpr.2016.47 ]
Xu Y C , Fu M T , Wang Q M , Wang Y K , Chen K , Xia G S and Bai X . 2020 . Gliding vertex on the horizontal bounding box for multi-oriented object detection . IEEE transactions on pattern analysis and machine intelligence , 43 ( 4 ): 1452 - 1459 [ DOI: 10.1109/TPAMI.2020.2974745 http://dx.doi.org/10.1109/TPAMI.2020.2974745 ]
Xu Y J , Zhu L C , Yang Y and Wu F . 2021 . Training robust object detectors from noisy category labels and imprecise bounding boxes . IEEE Transactions on Image Processing , 30 : 5782 - 5792 [ DOI: 10.1109/tip.2021.3085208 http://dx.doi.org/10.1109/tip.2021.3085208 ]
Yaeger L , Lyon R and Webb B . 1996 . Effective training of a neural network character classifier for word recognition . Advances in neural information processing systems , 9
Yang F , Fan H , Chu P , Blasch E , Ling H B . 2019 . Clustered object detection in aerial images // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019) . Seoul, South Korea : IEEE: 8311 - 8320 [ DOI: 10.1109/iccv.2019.00840 http://dx.doi.org/10.1109/iccv.2019.00840 ]
Yang S J , Tian L , Zhou B Y , Chen D , Zhang D , Xu Z N , Guo W and Liu J . 2020 . Inception parallel attention network for small object detection in remote sensing images. In Chinese conference on pattern recognition and computer vision (PRCV) [C]. Springer International Publishing : 469 - 480 [ DOI: 10.1007/978-3-030-60633-6_39 http://dx.doi.org/10.1007/978-3-030-60633-6_39 ]
Yang X , Yan J C , Liao W L , Yang X K , Tang J , and He T . 2022 . Scrdet++: Detecting small, cluttered and rotated objects via instance - level feature denoising and rotation loss smoothing . IEEE Transactions on Pattern Analysis and Machine Intelligence , 45 ( 2 ): 2384 - 2399 [ DOI: 10.1109/TPAMI.2022.3166956 http://dx.doi.org/10.1109/TPAMI.2022.3166956 ]
Yang X , Yan J C , Ming Q , Wang W T , Zhang X P , Tian Q . 2021 . Rethinking rotated object detection with gaussian wasserstein distance loss // Proceedings of the 38th International Conference on Machine Learning (ICML 2021) . Online. PMLR : 11830 - 11841 [ DOI: 10.1109/ICML.2021.13700 http://dx.doi.org/10.1109/ICML.2021.13700 ]
Yang X , Yang J R , Yan J C , Zhang Y , Zhang T F , Guo Z , Sun X , Fu K . 2019 . Scrdet : Towards more robust detection for small, cluttered and rotated objects// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019 ). Seoul, South Korea : IEEE: 8232 - 8241 [ DOI: 10.1109/iccv.2019.00832 http://dx.doi.org/10.1109/iccv.2019.00832 ]
Yang X , Yang X J , Yang J R , Ming Q , Wang W T , Tian Q and Yan J C . 2021 . Learning high - precision bounding box for rotated object detection via kullback - leibler divergence . Advances in Neural Information Processing Systems, 34 : 18381 - 18394 [EB/OL]. [ 2021 - 01 - 01 ]. https://arxiv.org/abs/2106.01883 https://arxiv.org/abs/2106.01883
Yin Q , Hu Q Y , Liu H , Zhang F , Wang Y Q , Lin Z P , An W , and Guo Y L . 2021 . Detecting and tracking small and dense moving objects in satellite videos: A benchmark . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 18 [ DOI: 10.1109/TGRS.2021.3130436 http://dx.doi.org/10.1109/TGRS.2021.3130436 ]
Yu J h , Jiang Y N , Wang Z Y , Cao Z M , Huang T . 2016 . Unitbox: An advanced object detection network // Proceedings of the 24th ACM International Conference on Multimedia (ACM MM 2016) . Amsterdam, Netherlands : ACM: 516 - 520 [ DOI: 10.1145/2964284.2967274 http://dx.doi.org/10.1145/2964284.2967274 ]
Yu X H , Gong Y Q , Jiang N , Ye Q X , Han Z J . 2020 . Scale match for tiny person detection // Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV 2020) . Waikoloa, Hawaii, USA : IEEE: 1246 - 1254 [ DOI: 10.1109/WACV45572.2020.9093394 http://dx.doi.org/10.1109/WACV45572.2020.9093394 ]
Yuan X , Cheng G , Li G , Dai W , Yin W X , Feng Y C , Yao X W , Huang Z L , Sun X and Han J W . 2023 . Progress in small object detection for remote sensing images . Journal of Image and Graphics , 28 ( 06 ): 1662 - 1684
袁翔 , 程塨 , 李戈 , 戴威 , 尹文昕 , 冯瑛超 , 姚西文 , 黄钟泠 , 孙显 , 韩军伟 . 2023 . 遥感影像小目标检测研究进展 . 中国图象图形学报 , 28 ( 06 ): 1662 - 1684 [ DOI: 10. 11834/jig. 221202 http://dx.doi.org/10.11834/jig.221202 ]
Yun S , Han D , Oh S J , Chun S , Choe J , Yoo Y . 2019 . Cutmix: Regularization strategy to train strong classifiers with localizable features // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019) . Seoul, South Korea : IEEE: 6023 - 6032 [ DOI: 10.1109/iccv.2019.00612 http://dx.doi.org/10.1109/iccv.2019.00612 ]
Zand M , Etemad A and Greenspan M . 2021 . Oriented bounding boxes for small and freely rotated objects . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 15 . [ DOI: 10.1109/tgrs.2021.3076050 http://dx.doi.org/10.1109/tgrs.2021.3076050 ]
Zhang D F , Shi L Y , Leung S C and Wu T . 2016 . A priority heuristic for the guillotine rectangular packing problem . Information Processing Letters , 116 ( 1 ): 15 - 21 . [ DOI: 10.1016/j.ipl.2015.08.008 http://dx.doi.org/10.1016/j.ipl.2015.08.008 ]
Zhang H , Hao C Y , Song W R , Jiang B , and Li B Z . 2023 . Adaptive slicing - aided hyper inference for small object detection in high - resolution remote sensing images . Remote Sensing , 15 ( 5 ): 1249 [ DOI: 10.3390/rs15051249 http://dx.doi.org/10.3390/rs15051249 ]
Zhang J Y , Huang J Y , Chen X K and Zhang D Y . 2019 . How to fully exploit the abilities of aerial image detectors . In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops . [ DOI: 10.1109/iccvw.2019.00007 http://dx.doi.org/10.1109/iccvw.2019.00007 ]
Zhang J , Xie C M , Xu X , Shi Z W and Pan B . 2020 . A contextual bidirectional enhancement method for remote sensing image object detection . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 13 : 4518 - 4531 . [ DOI: 10.1109/JSTARS.2020.3015049 http://dx.doi.org/10.1109/JSTARS.2020.3015049 ]
Zhang Y F , Ren W Q , Zhang Z , Jia Z , Wang L and Tan T N . 2022 . Focal and efficient IOU loss for accurate bounding box regression . Neurocomputing , 506 : 146 - 157 . [ DOI: 10.1016/j.neucom.2022.07.042 http://dx.doi.org/10.1016/j.neucom.2022.07.042 ]
Zhang Y , Ye M , Zhu G Y , Liu Y , Guo P Y , and Yan J H . 2024 . FFCA - YOLO for small object detection in remote sensing images . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 15 [ DOI: 10.1109/TGRS.2024.3363057 http://dx.doi.org/10.1109/TGRS.2024.3363057 ]
Zhao Z C , Du J X , Li C L , Fang X , Xiao Y , and Tang J . 2024 . Dense tiny object detection: A scene context guided approach and a unified benchmark . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 13 [ DOI: 10.1109/TGRS.2024.3357706 http://dx.doi.org/10.1109/TGRS.2024.3357706 ]
Zheng Z H , Wang P , Liu W , Li J Z , Ye R G and Ren D W . 2020 . Distance-IoU loss: Faster and better learning for bounding box regression . In Proceedings of the AAAI conference on artificial intelligence (Vol . 34 , No. 07 ). [ DOI: 10.1609/aaai.v34i07.6999 http://dx.doi.org/10.1609/aaai.v34i07.6999 ]
Zheng Z , Zhong Y F , Ma A L , Han X B , Zhao J , Liu Y F and Zhang L P . 2020 . HyNet: Hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery . ISPRS Journal of Photogrammetry and Remote Sensing , 166 : 1 - 14 . [ DOI: 10.1016/j.isprsjprs.2020.04.019 http://dx.doi.org/10.1016/j.isprsjprs.2020.04.019 ]
Zhou X Y , Wang D Q and Krähenbühl P . 2019 . Objects as points . arXiv preprint arXiv: 1904 . 07850 . [EB/OL].[ 2019-04-01 ]. https://arxiv.org/abs/1904.07850 https://arxiv.org/abs/1904.07850
Zhou Z Z and Zhu Y Y . 2024 . KLDet: Detecting Tiny Objects in Remote Sensing Images via Kullback-Leibler Divergence . IEEE Transactions on Geoscience and Remote Sensing . [ DOI: 10.1109/TGRS.2024.3382099 http://dx.doi.org/10.1109/TGRS.2024.3382099 ]
Zhu H R , Xu C , Yang W , Zhang R X , Zhang Y and Xia G S . 2024 . Robust Tiny Object Detection in Aerial Images amidst Label Noise . arXiv preprint arXiv: 2401 . 08056 . [EB/OL].[ 2024-01-01 ]. https://arxiv.org/abs/2401.08056 https://arxiv.org/abs/2401.08056
Zhu J Y , Park T , Isola P , Efros A A . 2017 . Unpaired image - to - image translation using cycle - consistent adversarial networks // Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV 2017) . Venice, Italy : IEEE: 2223 - 2232 [ DOI: 10.1109/iccv.2017.244 http://dx.doi.org/10.1109/iccv.2017.244 ]
Zhu P F , Wen L Y , Bian X , Ling H B , and Hu Q H . 2018 . Vision meets drones: A challenge . arXiv preprint arXiv: 1804 . 07437 [EB/OL]. [ 2018-04-01 ]. https://arxiv.org/abs/1804.07437 https://arxiv.org/abs/1804.07437
Zhu X X , Tuia D , Mou L , Xia G S , Zhang L , Xu F and Fraundorfer F . 2017 . Deep learning in remote sensing: A comprehensive review and list of resources . IEEE Geoscience and Remote Sensing Magazine , 5 ( 4 ): 8 - 36 . [ DOI: 10.1109/MGRS.2017.2762307 http://dx.doi.org/10.1109/MGRS.2017.2762307 ]
Zhu Y C , Zhou Q Q , Liu N , Xu Z Y , Ou Z C , Mou X F , Tang J T . 2023 . Scalekd: Distilling scale - aware knowledge in small object detector // Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023) . Vancouver, Canada : IEEE: 19723 - 19733 [ DOI: 10.1109/CVPR52729.2023.01889 http://dx.doi.org/10.1109/CVPR52729.2023.01889 ]
相关作者
相关机构