状态空间模型在医学图像处理方面的研究进展
Review of State Space Model in Medical Image Processing
- 2025年 页码:1-16
收稿日期:2024-09-19,
修回日期:2025-02-14,
录用日期:2025-03-03,
网络出版日期:2025-03-04
DOI: 10.11834/jig.240566
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-09-19,
修回日期:2025-02-14,
录用日期:2025-03-03,
网络出版日期:2025-03-04,
移动端阅览
状态空间模型(state-space model,SSM)在长序列计算效率方面表现优异。2024年基于SSM的具有选择机制和硬件感知状态扩展的Mamba模型问世,状态空间模型成为新的备受瞩目的人工智能架构,其性能可能超过Transformer。为了充分了解状态空间模型在医学图像处理领域的研究和应用,本文进行了全面的调查,首先对状态空间模型的发展历程和各种基于SSM的基础模型进行总结,然后按照图像分割、分类、配准和融合、重建,以及疾病预测、医学图像合成、放射治疗剂量预测任务进行分类研究,探讨了每种任务中SSM模型的改进和应用,最后讨论了状态空间模型面临的挑战和今后的研究方向。此外,本文讨论的研究及其开源实现汇编在了GitHub中,地址为:
https://github.com/wyl32123/ssm-medical-paper/tree/main
https://github.com/wyl32123/ssm-medical-paper/tree/main
。
The State-Space Model(SSM)has excelled in computational efficiency over long sequences and with the introduction of the SSM-based Mamba model in 2024 the SSM has become the new high-profile AI architecture.It combines the strengths of CNN and Transformer technologies to efficiently capture local information and remote dependencies while maintaining linear complexity in computation,and has great potential for processing high-resolution data or long-term sequential data.To fully understand the research and application of state space models in the field of medical image processing,we conduct a comprehensive survey to sort out the development lineage,key models and application scenarios of SSM models in the field of medical image processing.First, we summarise the history of state space models, describing the evolution of state space models from SSM-
>
HiPPO-
>
S4-
>
Mamba-
>
Mamba-2. Focusing on SSM and Mamba, we describe the basics of SSM and enumerate important improved models of SSM. We then elaborate on Mamba's selectivity mechanism and hardware-aware state extension, summarising 11 improved models of Mamba in Table 1 and describing the characteristics of each.Second,in the field of medical image processing,the SSM model represented by Mamba has been used for tasks such as image s
egmentation,classification,alignment and fusion,reconstruction,etc.,especially in the task of graphic segmentation,it has achieved excellent results,in addition to breakthroughs in disease prediction,medical image synthesis,radiotherapy dose prediction,and so on.We explore the improvement and application of the SSM model to each of the medical graphics processing tasks.Medical image segmentation is very suitable for the application of SSM model,because the segmentation task corresponds to the long sequence characteristic.Currently,there are nearly forty papers on medical image segmentation based on SSM,and only one model called Vivim performs video segmentation,while the rest of the models perform image segmentation.The vast majority of the models use the U-net architecture,which has achieved remarkable success in various medical image segmentation tasks.The exploration of SSM based medical image segmentation is elaborated and the technical features of each model,the ROI studied,the image modalities involved are analysed one by one and presented in Table 2.Medical image classification is an important task in the field of medical image processing and analysis,but there are not many applications of SSM because the image classification task is not compatible with long sequences or autoregressive properties,so there are only five main models.In medical image registration and fusion,multimodal medical image registration has always been a major challenge in image registration.There are not many researches in medical image registration and fusion based on SSM,and there are only two models,but they break through the challenge of multimodality.There are also two Mamba-based models that have achieved good results in medical image fusion.The task of medical image reconstruction needs to deal with long sequences,which is more suitable for the application of SSM models.At present,researchers have proposed five SSM-based models for medical image reconstruction.One SSM-based model each has been proposed by researchers in the fi
elds of medical image synthesis,disease prediction,radiotherapy dose prediction,and surgical stage identification.We have analysed the technical characteristics of all the models for each of the above tasks,one by one,and described why they achieved good experimental results.Finally,we conclude with a discussion of the challenges facing state-space modelling,which consist of five main areas.The first is the suboptimal performance of the SSM model for visual tasks with non-causal attributes.For data with non-causal attributes,the inherent limitations in the receptive field can be mutually compensated for by using bidirectional scanning and cross-scanning to extend the scanning direction to capture the spatial information inherent in 2D or high-dimensional medical visual data.Despite these adaptations,the task of how to deal with non-causal attributes remains a challenging one.The second is that the scanning scheme needs to be further optimised.Most of the medical image processing tasks are multi-dimensional data,and new scanning schemes need to be designed to enhance the feature learning of SSM,to make full use of the potential of high-dimensional non-causal visual data,and to improve the accuracy of SSM-based models in medical image processing tasks.The third is the need to further improve the generalisation and robustness of the model.Hidden states can accumulate or even amplify domain-specific information,which can,among other things,affect the generalisation performance of the model.The fourth is to improve the efficient fine-tuning of the underlying model.When SSM is developed as an infrastructure,pre-training models on a wide range of datasets such as ImageNet requires research into parameter-efficient fine-tuning techniques.How to perform parameter-efficient fine-tuning in SSM-based models to minimise parameter tuning during the fine-tuning process and to reduce the demand for a large amount of computational resources is a hot research direction with little research at present but with a high demand for app
lications.The fifth is that the adaptability to specific medical image tasks needs to be improved.This is because medical image datasets are usually small and of limited diversity,which makes the model prone to overfitting,and the Mamba model may need to be further optimised in terms of efficient learning using limited data to reduce the reliance on large amounts of annotated data.In addition,the research discussed in this paper and its open source implementation are available on GitHub at
https://github.com/wyl32123/ssm-medical-paper/tree/main
https://github.com/wyl32123/ssm-medical-paper/tree/main
.
Anthony Q , Tokpanov Y , Glorioso P and Millidge B . 2024 . Blackmamba: Mixture of experts for state-space models [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.01771.pdf https://arxiv.org/pdf/2402.01771.pdf
Archit A and Pape C . 2024 . ViM-UNet: Vision Mamba for Biomedical Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.07705.pdf https://arxiv.org/pdf/2404.07705.pdf
Atli O F , Kabas B , Arslan F , Yurt M , Dalmaz O and Çukur T . 2024 . I 2 I-Mamba: Multi-modal medical image synthesis via selective state space modeling [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.14022.pdf https://arxiv.org/pdf/2405.14022.pdf
Cao R , Wang J L and Liu Y H . 2024 . SR-Mamba: Effective Surgical Phase Recognition with State Space Model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2407.08333.pdf https://arxiv.org/pdf/2407.08333.pdf
Dao T and Gu A . 2024 . Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.21060.pdf https://arxiv.org/pdf/2405.21060.pdf
Du C B , Li Y X and Xu C . 2024 . Understanding robustness of visual state space models for image classification [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.10935.pdf https://arxiv.org/pdf/2403.10935.pdf
Fan C , Yu H Y , Wang L , Huang Y , Wang L and Jia X . 2024 . SliceMamba for Medical Image Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2407.08481.pdf https://arxiv.org/pdf/2407.08481.pdf
Fang Z J , Wang Y F , Wang Z , Zhang J , Ji X Y and Zhang Y B . 2024 . Mammil: Multiple instance learning for whole slide images with state space models [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.05160.pdf https://arxiv.org/pdf/2403.05160.pdf
Fu D Y , Dao T , Saab K K , Thomas A W , Rudra A and Ré C . 2022 . Hungry hungry hippos: Towards language modeling with state space models [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2212.14052.pdf https://arxiv.org/pdf/2212.14052.pdf
Fu L J , Li X , Cai X D , Wang Y K , Wang X Y , Shen Y L and Yao Y . 2024 . MD-Dose: A Diffusion Model based on the Mamba for Radiotherapy Dose Prediction [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.08479.pdf https://arxiv.org/pdf/2403.08479.pdf
Gong H F , Kang L Y , Wang Y T , Wan X and Li H F . 2024 . nnmamba: 3d biomedical image segmentation, classification and landmark detection with state space model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.03526.pdf https://arxiv.org/pdf/2402.03526.pdf
Gu A and Dao T . 2023 . Mamba: Linear-time sequence modeling with selective state spaces [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2312.00752.pdf https://arxiv.org/pdf/2312.00752.pdf
Gu A , Dao T , Ermon S , Rudra A and Ré C . 2020 . Hippo:Recurrent memory with optimal polynomial projections . Advances in neural information processing systems , 33 : 1474 - 1487 [ DOI: 10.48550/arXiv.2008.07669 http://dx.doi.org/10.48550/arXiv.2008.07669 ]
Gu A , Goel K and Ré C . 2021 . Efficiently modeling long sequences with structured state spaces [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2111.00396.pdf https://arxiv.org/pdf/2111.00396.pdf
Guo T , Wang Y N and Meng C . 2024 . Mambamorph: a mamba-based backbone with contrastive feature learning for deformable mr-ct registration [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.13934.pdf https://arxiv.org/pdf/2401.13934.pdf
Gupta A , Gu A and Berant J . 2022 . Diagonal state spaces are as effective as structured state spaces . Advances in neural information processing systems , 35 : 22982 - 22994 [ DOI: 10.48550/arXiv.2203.14343 http://dx.doi.org/10.48550/arXiv.2203.14343 ]
Hao J , He L and Hung K F . 2024 . T-mamba: Frequency-enhanced gated long-range dependency for tooth 3d cbct segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.01065.pdf https://arxiv.org/pdf/2404.01065.pdf
Hasani R , Lechner M , Wang T-H , Chahine M , Amini A and Rus D . 2022 . Liquid structural state-space models [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2209.12951.pdf https://arxiv.org/pdf/2209.12951.pdf
Huang J H , Yang L T , Wang F W , Wu Y Z , Nan Y , Aviles-Rivero A I , Schönlieb C-B , Zhang D Q and Yang G . 2024a . Mambamir: An arbitrary-masked mamba for joint medical image reconstruction and uncertainty estimation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.18451.pdf https://arxiv.org/pdf/2402.18451.pdf
Huang T , Pei X , You S , Wang F , Qian C and Xu C . 2024b . Localmamba: Visual state space model with windowed selective scan [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.09338.pdf https://arxiv.org/pdf/2403.09338.pdf
Hu K Q and Xu C D . 2024 . LPAM:A lightweight medical segmentation network based on Mamba improved by prompt attention . IET Image Processing , 00 ( 0 ): 1 - 11 [ DOI: 10.1049/ipr2.13193 http://dx.doi.org/10.1049/ipr2.13193 ]
Hu V T , Baumann S A , Gui M , Grebenkova O , Ma P , Fischer J and Ommer B . 2024 . Zigma: Zigzag mamba diffusion model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.13802.pdf https://arxiv.org/pdf/2403.13802.pdf
Ji Z P . 2024 . MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2406.05992.pdf https://arxiv.org/pdf/2406.05992.pdf
Ji Z X , Zou B J , Kui X Y , Vera P and Ruan S . 2024a . Deform-Mamba Network for MRI Super-Resolution [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2407.05969.pdf https://arxiv.org/pdf/2407.05969.pdf
Ji Z X , Zou B J , Kui X Y , Vera P and Ruan S . 2024b . Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2407.05993.pdf https://arxiv.org/pdf/2407.05993.pdf
Khan A , Asad M , Benning M , Roney C and Slabaugh G . 2024 . Convolution and Attention-Free Mamba-based Cardiac Image Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2406.05786.pdf https://arxiv.org/pdf/2406.05786.pdf
Liao W B , Zhu Y H , Wang X Y , Pan C W , Wang Y S and Ma L T . 2024 . Lightm-unet: Mamba assists in lightweight unet for medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.05246.pdf https://arxiv.org/pdf/2403.05246.pdf
Lieber O , Lenz B , Bata H , Cohen G , Osin J , Dalmedigos I , Safahi E , Meirom S , Belinkov Y and Shalev-Shwartz S . 2024 . Jamba: A hybrid transformer-mamba language model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.19887.pdf https://arxiv.org/pdf/2403.19887.pdf
Li S , Singh H and Grover A . 2024a . Mamba-nd: Selective state space modeling for multi-dimensional data [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.05892.pdf https://arxiv.org/pdf/2402.05892.pdf
Liu J R , Yang H , Zhou H Y , Xi Y , Yu L Q , Yu Y Z , Liang Y , Shi G M , Zhang S T and Zheng H R . 2024a . Swin-umamba: Mamba-based unet with imagenet-based pretraining [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.03302.pdf https://arxiv.org/pdf/2402.03302.pdf
Liu Y , Tian Y J , Zhao Y Z , Yu H T , Xie L X , Wang Y W , Ye Q X and Liu Y F . 2024b . VMamba: Visual State Space Model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.10166.pdf https://arxiv.org/pdf/2401.10166.pdf
Li Y , Cai T , Zhang Y , Chen D and Dey D . 2022 . What makes convolutional models great on long sequence modeling? [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2210.09298.pdf https://arxiv.org/pdf/2210.09298.pdf
Li Y S , Ma C , Huang L H , Gao X , Yan X , Wang Y Y and Guo Y . 2024b . Review of high-quality ultrasound imaging and reconstruction . Journal of Image and Graphics , 29 ( 06 ): 1628 - 1645
李云舒 , 马宸 , 黄丽红 , 高雪 , 闫鑫 , 汪源源 , 郭翌 . 2024 . 高质量超声成像与重建研究综述 . 中国图象图形学报 , 29 ( 06 ): 1628 - 1645
Li Z , Pan H W , Zhang K J , Wang Y H and Yu F M . 2024c . Mambadfuse: A mamba-based dual-phase model for multi-modality image fusion [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.08406.pdf https://arxiv.org/pdf/2404.08406.pdf
Long S C , Zhou Q Y , Li X T , Lu X Q , Ying C H , Luo Y , Ma L Z and Yan S C . 2024 . Dgmamba: Domain generalization via generalized state space model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.07794.pdf https://arxiv.org/pdf/2404.07794.pdf
Maarten G. 2024 . A Visual Guide to Mamba and State Space Models . https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
Ma J , Li F F and Wang B . 2024 . U-mamba: Enhancing long-range dependency for biomedical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.04722.pdf https://arxiv.org/pdf/2401.04722.pdf
Ma X , Zhou C , Kong X , He J , Gui L , Neubig G , May J and Zettlemoyer L . 2022 . Mega: moving average equipped gated attention [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2209.10655.pdf https://arxiv.org/pdf/2209.10655.pdf
Mehta H , Gupta A , Cutkosky A and Neyshabur B . 2022 . Long range language modeling via gated state spaces [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2206.13947.pdf https://arxiv.org/pdf/2206.13947.pdf
Muslim A M , Mashohor S , Al Gawwam G , Mahmud R , binti Hanafi M , Alnuaimi O , Josephine R and Almutairi A D . 2022 . Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information . Data in Brief , 42 : 108139 [ DOI: 10.1016/j.dib.2022.108139 http://dx.doi.org/10.1016/j.dib.2022.108139 ]
Nasiri-Sarvi A , Trinh V Q-H , Rivaz H and Hosseini M S . 2024 . Vim4Path :Self-Supervised Vision Mamba for Histopathology Images// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)Workshops : IEEE: 6894 - 6903 [ DOI: 10.48550/arXiv.2404.13222 http://dx.doi.org/10.48550/arXiv.2404.13222 ]
Nguyen E , Goel K , Gu A , Downs G , Shah P , Dao T , Baccus S and Ré C . 2022 . S4nd : Modeling images and videos as multidimensional signals with state spaces// Advances in neural information processing systems : 2846 - 2861
Nguyen V-T , Pham V-T and Tran T-T . 2024 . AC-MAMBASEG: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.03011.pdf https://arxiv.org/pdf/2405.03011.pdf
Orvieto A , Smith S L , Gu A , Fernando A , Gulcehre C , Pascanu R and De S . 2023 . Resurrecting recurrent neural networks for long sequences// International Conference on Machine Learning : PMLR: 26670 - 26698
Patro B N and Agneeswaran V S . 2024 . Simba: Simplified mamba-based architecture for vision and multivariate time series [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.15360.pdf https://arxiv.org/pdf/2403.15360.pdf
Pei X , Huang T and Xu C . 2024 . Efficientvmamba: Atrous selective scan for light weight visual mamba [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.09977.pdf https://arxiv.org/pdf/2403.09977.pdf
Peng B , Alcaide E , Anthony Q , Albalak A , Arcadinho S , Biderman S , Cao H , Cheng X , Chung M and Grella M . 2023 . Rwkv: Reinventing rnns for the transformer era [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2305.13048.pdf https://arxiv.org/pdf/2305.13048.pdf
Peng B Y , Liu Y Y , Wang W W , Zhou Q , Fang L and Zhu X . 2024 . Bidirectional Copy–Paste Mamba for Enhanced Semi-Supervised Segmentation of Transvaginal Uterine Ultrasound Images [EB/OL]. Diagnostics , [ 2024-09-19 ]. https://www.mdpi.com/2075-4418/14/13/1423 https://www.mdpi.com/2075-4418/14/13/1423
Pióro M , Ciebiera K , Król K , Ludziejewski J and Jaszczur S . 2024 . Moe-mamba: Efficient selective state space models with mixture of experts [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.04081.pdf https://arxiv.org/pdf/2401.04081.pdf
Poli M , Massaroli S , Nguyen E , Fu D Y , Dao T , Baccus S , Bengio Y , Ermon S and Ré C . 2023 . Hyena hierarchy :Towards larger convolutional language models// International Conference on Machine Learning : PMLR: 28043 - 28078 [ DOI: 10.48550/arXiv.2212.14052 http://dx.doi.org/10.48550/arXiv.2212.14052 ]
Qin Z , Han X , Sun W , He B , Li D , Li D , Dai Y , Kong L and Zhong Y . 2023 . Toeplitz neural network for sequence modeling [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2305.04749.pdf https://arxiv.org/pdf/2305.04749.pdf
Qin Z , Yang S and Zhong Y . 2024 . Hierarchically gated recurrent neural network for sequence modeling . Advances in neural information processing systems , 36
Ruan J C and Xiang S C . 2024 . Vm-unet: Vision mamba unet for medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.02491.pdf https://arxiv.org/pdf/2402.02491.pdf
Sanjid K S , Hossain M T , Junayed M S S and Uddin D M M . 2024a . Integrating mamba sequence model and hierarchical upsampling network for accurate semantic segmentation of multiple sclerosis legion [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.17432.pdf https://arxiv.org/pdf/2403.17432.pdf
Sanjid K S , Hossain M T , Junayed M S S and Uddin M M . 2024b . Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.17235.pdf https://arxiv.org/pdf/2404.17235.pdf
Smith J , Warrington A and Linderman S W . 2022 . Simplified State Space Layers for Sequence Modeling [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2208.04933.pdf https://arxiv.org/pdf/2208.04933.pdf
Tang H , Cheng L L , Huang G H , Tan Z G , Lu J H and Wu K H . 2024 . Rotate to scan: Unet-like mamba with triplet ssm module for medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.17701v3.pdf https://arxiv.org/pdf/2403.17701v3.pdf
Tsai T Y , Lin L , Hu S , Zhu H T and Wang X . 2024 . UU-Mamba: Uncertainty-aware U-Mamba for Cardiac Image Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.17496.pdf https://arxiv.org/pdf/2405.17496.pdf
Wang J H , Chen J T , Chen D and Wu J . 2024a . Large window-based mamba unet for medical image segmentation: Beyond convolution and self-attention [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.07332.pdf https://arxiv.org/pdf/2403.07332.pdf
Wang Z B , Zhang L , Wang L T and Zhang Z W . 2024b . Soft Masked Mamba Diffusion Model for CT to MRI Conversion [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2406.15910.pdf https://arxiv.org/pdf/2406.15910.pdf
Wang Z Y and Ma C . 2024a . Semi-mamba-unet: Pixel-level contrastive cross-supervised visual mamba-based unet for semi-supervised medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.07245.pdf https://arxiv.org/pdf/2402.07245.pdf
Wang Z Y and Ma C . 2024b . Weak-mamba-unet: Visual mamba makes cnn and vit work better for scribble-based medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.10887.pdf https://arxiv.org/pdf/2402.10887.pdf
Wang Z Y , Zheng J Q , Ma C and Guo T . 2024c . Vmambamorph: a visual mamba-based framework with cross-scan module for deformable 3d image registration [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.05105.pdf https://arxiv.org/pdf/2404.05105.pdf
Wang Z Y , Zheng J Q , Zhang Y C , Cui G and Li L . 2024d . Mamba-unet: Unet-like pure visual mamba for medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.05079.pdf https://arxiv.org/pdf/2402.05079.pdf
Wu R K , Liu Y H , Liang P C and Chang Q . 2024a . H-vmunet: High-order vision mamba unet for medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.13642.pdf https://arxiv.org/pdf/2403.13642.pdf
Wu R K , Liu Y H , Liang P C and Chang Q . 2024b . Ultralight vm-unet: Parallel vision mamba significantly reduces parameters for skin lesion segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.20035.pdf https://arxiv.org/pdf/2403.20035.pdf
Xie J H , Liao R F , Zhang Z A , Yi S D , Zhu Y S and Luo G B . 2024a . Promamba: Prompt-mamba for polyp segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.13660.pdf https://arxiv.org/pdf/2403.13660.pdf
Xie X Y , Cui Y W , IEONG C-I , Tan T , Zhang X Z , Zheng X B and Yu Z T . 2024b . Fusionmamba: Dynamic feature enhancement for multimodal image fusion with mamba [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2404.09498.pdf https://arxiv.org/pdf/2404.09498.pdf
Xing Z H , Ye T , Yang Y J , Liu G and Zhu L . 2024 . Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.13560.pdf https://arxiv.org/pdf/2401.13560.pdf
Xu J S . 2024 . HC-Mamba: Vision MAMBA with Hybrid Convolutional Techniques for Medical Image Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.05007.pdf https://arxiv.org/pdf/2405.05007.pdf
Yang C , Chen Z , Espinosa M , Ericsson L , Wang Z , Liu J and Crowley E J . 2024a . Plainmamba: Improving non-hierarchical mamba in visual recognition [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.17695.pdf https://arxiv.org/pdf/2403.17695.pdf
Yang G Q , Du K R , Yang Z H , Du Y , Zheng Y P and Wang S J . 2024b . CMViM: Contrastive Masked Vim Autoencoder for 3D Multi-modal Representation Learning for AD classification [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.16520.pdf https://arxiv.org/pdf/2403.16520.pdf
Yang S , Wang Y H and Chen H . 2024c . Mambamil: Enhancing long sequence modeling with sequence reordering in computational pathology [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.06800.pdf https://arxiv.org/pdf/2403.06800.pdf
Yang X F , Luo Z Y , Wu Y L , Xie X S , Nan L and Li T . 2024d . TMU:Transmission-Enhanced Mamba-UNet for Medical Image Segmentation // Advanced Intelligent Computing Technology and Applications : Springer Nature Singapore: 428 - 438 [DOI:10.1007/978-981-97-5609-4_ 33 ]
Yang Y J , Xing Z H and Zhu L . 2024e . Vivim: a video vision mamba for medical video object segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.14168.pdf https://arxiv.org/pdf/2401.14168.pdf
Yang Z F , Zhang J J , Wang G , Kalra M K and Yan P . 2024f . Cardiovascular Disease Detection from Multi-View Chest X-rays with BI-Mamba [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.18533.pdf https://arxiv.org/pdf/2405.18533.pdf
Ye Z and Chen T X . 2024 . P-mamba: Marrying perona malik diffusion with mamba for efficient pediatric echocardiographic left ventricular segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2402.08506.pdf https://arxiv.org/pdf/2402.08506.pdf
Ye Z , Chen T , Wang D , Wang F and Zhang L . 2024 . HFE-Mamba:High-frequency Enhanced Mamba Network for Efficient Segmentation of Left Ventricle in Pediatric Echocardiograms . IEEE Access , 00 ( 0 ): 1 - 1 [ DOI: 10.1109/ACCESS.2024.3424546 http://dx.doi.org/10.1109/ACCESS.2024.3424546 ]
Yuan C Y , Zhao D F and Agaian S S . 2024 . MUCM-Net: A Mamba Powered UCM-Net for Skin Lesion Segmentation [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.15925.pdf https://arxiv.org/pdf/2405.15925.pdf
Yue Y B and Li Z Z . 2024 . Medmamba: Vision mamba for medical image classification [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2403.03849.pdf https://arxiv.org/pdf/2403.03849.pdf
Yu W H and Wang X C . 2024 . MambaOut:Do We Really Need Mamba for Vision? [J]. arXiv preprint arXiv : 2405 . 07992 .[2024-09-19].
Zhang C , Cui W R and Guo J J . 2024b . MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2405.20142.pdf https://arxiv.org/pdf/2405.20142.pdf
Zhang C C , He Y H , Li W , Zhang J J and Cui X H . 2024a . GM-UNet:Graph Mamba UNet for Medical Image Segmentation // 2024 5th International Seminar on Artificial Intelligence,Networking and Information Technology(AINIT) : IEEE: 1373 - 1379 [ DOI: 10.1109/AINIT61980.2024.10581519 http://dx.doi.org/10.1109/AINIT61980.2024.10581519 ]
Zhang H , Zhao Y H , Wang L J , Wang J S , Zhang W Y , Chen Y-C and Xiong N . 2024c . Pocket Convolution Mamba for Brain Tumor Segmentation . The Journal of Supercomputing ,,[ DOI: 10.21203/rs.3.rs-4399204/v1 http://dx.doi.org/10.21203/rs.3.rs-4399204/v1 ]
Zhang M Y , Yu Y , Jin S , Gu L M , Ling T S and Tao X P . 2024d . VM-UNET-V2:Rethinking Vision Mamba UNet for Medical Image Segmentation // Bioinformatics Research and Applications : Springer Nature Singapore: 335 - 346 [ DOI: 10.1007/978-981-97-5128-0_27 http://dx.doi.org/10.1007/978-981-97-5128-0_27 ]
Zhou H , Hu B B , Yi N M , Li Q T , Ergu D J and Liu F Y . 2024a . Balancing High-performance and Lightweight:HL-UNet for 3D Cardiac Medical Image Segmentation . Academic Radiology ,[ DOI: 10.1016/j.acra.2024.06.008 http://dx.doi.org/10.1016/j.acra.2024.06.008 ]
Zhou J Y , Jiang M Z , Wu J D , Zhu J Y , Wang Z Y and Jin Y M . 2024b . MGI: Multimodal Contrastive pre-training of Genomic and Medical Imaging [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2406.00631.pdf https://arxiv.org/pdf/2406.00631.pdf
Zhou R , Wang J , Xia G J , Xing J Y , Shen H M and Shen X Y . 2024c . Cascade residual multiscale convolution and mamba-structured unet for advanced brain tumor image segmentation . Entropy , 26 ( 5 ): 385 [ DOI: 10.3390/e26050385 http://dx.doi.org/10.3390/e26050385 ]
Zhu L H , Liao B C , Zhang Q , Wang X L , Liu W Y and Wang X G . 2024 . Vision mamba: Efficient visual representation learning with bidirectional state space model [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2401.09417.pdf https://arxiv.org/pdf/2401.09417.pdf
Zou B F , Huang X R , Jiang Y T , Jin K and Sun Y Q . 2024a . DeMambaNet: Deformable Convolution and Mamba Integration Network for High-Precision Segmentation of Ambiguously Defined Dental Radicular Boundaries [EB/OL]. Sensors , https://www.mdpi.com/1424-8220/24/14/4748 https://www.mdpi.com/1424-8220/24/14/4748
Zou J , Liu L Q , Chen Q , Wang S J , Xing X H and Qin J . 2024b . MMR-Mamba: Multi-Contrast MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion [EB/OL]. [ 2024-09-19 ]. https://arxiv.org/pdf/2406.18950.pdf https://arxiv.org/pdf/2406.18950.pdf
相关作者
相关机构