基于深度学习的监控视频异常检测方法综述
Survey of anomaly detection methods in surveillance videos based on deep learning
- 2025年30卷第3期 页码:615-640
收稿日期:2024-06-13,
修回日期:2024-09-12,
纸质出版日期:2025-03-16
DOI: 10.11834/jig.240329
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-06-13,
修回日期:2024-09-12,
纸质出版日期:2025-03-16
移动端阅览
利用监控视频监测异常在社会治理中具有至关重要的地位,因此视频异常检测一直是计算机视觉领域备受关注且具有挑战性的议题。鉴于此,以深度学习的视角,对当前关键的视频异常检测方法进行了分类和综述。首先,全面介绍了视频异常的定义,包括异常的划定和类型分类;随后,分析了目前全监督、弱监督、无监督等方面的深度学习方法在视频异常检测领域的进展,探讨了各自的优缺点,特别针对结合大模型的最新研究进展进行了探讨;接着,详细介绍了常见和最新的数据集,并对它们的特点进行了比较分析和截图展示;最后,介绍了多种异常判定和性能评估标准,对各算法的性能表现进行了对比分析。根据这些信息,本文展望了未来数据集、评估标准以及方法研究的可能发展方向,特别强调了大模型在视频异常检测中的新机遇。综上,本文对于深化读者对视频异常检测领域的理解,以及指导未来的研究方向具有积极意义。
Video anomaly detection plays a crucial role in social governance by utilizing surveillance footage, making it a crucial and challenging topic within the field of computer vision. This paper presents a detailed classification and review of current key video anomaly detection methods from a deep learning perspective, analyzing existing technical challenges and future development trends. First, the paper provides a comprehensive introduction to the definition of video anomalies, including the delineation of anomalies and video anomalies, the five types of video anomalies (intuitive anomalies, action change anomalies, trajectory change anomalies, group change anomalies, and spatiotemporal anomalies), and the three characteristics of anomaly detection (abstraction, uncertainty, and sparsity). The paper then reviews the development trends in video anomaly detection research from 2008 to the present based on the digital bibliography & library project (DBLP) database and provides a detailed analysis of the progress of fully supervised, weakly supervised, and unsupervised deep learning methods in the field of video anomaly detection. The core innovations, structures, and advantages and disadvantages of each method are discussed, particularly focusing on the latest research advancements involving large models. For instance, some studies address the challenge of applying virtual anomaly video datasets to real-world scenarios by designing anomaly prompts that guide mapping networks to generate unseen anomalies in real-world settings. Additionally, some works have designed dual-branch model structures based on multimodal large model frameworks. One branch uses the contrastive language-image pre-training (CLIP) visual encoding module for coarse-grained binary classification, while the other branch aligns textual features of anomaly category labels with visual encoding features for fine-grained anomaly classification, surpassing the current state-of-the-art performance in video anomaly detection. Furthermore, research has explored the potential of using GPT-4V, a powerful large visual language model, to tackle general anomaly detection tasks, examining its applications in multimodal and multidomain anomaly detection tasks, including image, video, point cloud, and time-series data across various fields such as industry, healthcare, logic, video, 3D anomaly detection, and localization. The introduction of large models presents new opportunities and challenges for video anomaly detection. Moreover, the paper introduces 10 commonly used and latest datasets, providing a comparative analysis of their characteristics and presenting detailed content through figures, along with corresponding download links. These datasets play a crucial role in video anomaly detection research, and this paper offers their comprehensive evaluation. The paper also introduces four anomaly determination standards (frame-based, pixel-based, and trajectory-based) and three performance evaluation standards (area under the receiver operating characteristic curve (AUC), equal error rate (EER), and average precision (AP)), and conducts a comparative analysis of the performance of various algorithms. The strengths and weaknesses of current video anomaly detection algorithms are summarized, and suggestions for improvement are proposed. Based on this information, datasets may have become a bottleneck in the development of current methods. In complex real-world scenarios, research methods based solely on simple scenes may not effectively address anomaly issues in the real world. Future datasets will aim to better reflect real-world anomalies, such as collecting data from the remote sensing field, improving the quality of existing image and video data through models, and collecting multi-camera, multidimensional annotated data, to detect more diverse and challenging anomaly events and effectively promote research development. Additionally, in terms of evaluation standards, common evaluation methods primarily rely on calculating the true false positive rates and computing the area under the receiver operating characteristic curve. However, in practical applications, some methods may achieve high AUC but exhibit a high false alarm rate due to the direct influence of different anomaly determination methods on the true and false positive rates. Adopting different anomaly determination methods may result in models achieving high AUC performance while generating high false alarm rates. Therefore, this paper proposes the need to design an evaluation system that simultaneously considers AUC performance and false alarm rates to comprehensively evaluate methods. Finally, the outlook of the paper emphasizes new opportunities presented by large models in video anomaly detection. The emergence of large models in recent years has substantially improved the performance of deep learning-based methods on commonly used video anomaly detection datasets. This field has accumulated a solid academic research foundation. Therefore, future research should not only focus on improving anomaly detection performance but also consider the application of this field to practical problems to address existing challenges. Future research should aim to design more fine-grained and general models, leveraging the rich prior knowledge of large models to gradually develop video anomaly detection models that can distinguish specific types of anomalies. With the powerful multimodal information understanding capabilities of large models, video anomaly detection models will evolve toward a more general direction, ultimately blurring the boundaries between supervised, weakly supervised, and unsupervised learning methods. Overall, this paper substantially enhances readers’ understanding of the field of video anomaly detection and provides valuable references and guidance for future research directions. Through a systematic review and analysis of existing research, this paper offers crucial insights for further development of the video anomaly detection field.
Acsintoae A , Florescu A , Georgescu M I , Mare T , Sumedrea P , Ionescu R T , Khan F S and Shah M . 2022 . UBnormal: new benchmark for supervised open-set video anomaly detection // Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans, USA : IEEE: 20111 - 20121 [ DOI: 10.1109/CVPR52688.2022.01951 http://dx.doi.org/10.1109/CVPR52688.2022.01951 ]
Adam A , Rivlin E , Shimshoni I and Reinitz D . 2008 . Robust real-time unusual event detection using multiple fixed-location monitors . IEEE Transactions on Pattern Analysis and Machine Intelligence , 30 ( 3 ): 555 - 560 [ DOI: 10.1109/TPAMI.2007.70825 http://dx.doi.org/10.1109/TPAMI.2007.70825 ]
AlMarri S , Zaheer M Z and Nandakumar K . 2024 . A multi-head approach with shuffled segments for weakly-supervised video anomaly detection // Proceedings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa, USA : IEEE: 132 - 142 [ DOI: 10.1109/WACVW60836.2024.00022 http://dx.doi.org/10.1109/WACVW60836.2024.00022 ]
Amsaprabhaa M , Nancy J Y and Khanna N H . 2023 . Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection . Expert Systems with Applications , 212 : # 118681 [ DOI: 10.1016/j.eswa.2022.118681 http://dx.doi.org/10.1016/j.eswa.2022.118681 ]
Antić B and Ommer B . 2011 . Video parsing for abnormality detection // Proceedings of 2011 International Conference on Computer Vision . Barcelona, Spain : IEEE: 2415 - 2422 [ DOI: 10.1109/ICCV.2011.6126525 http://dx.doi.org/10.1109/ICCV.2011.6126525 ]
Barbalau A , Ionescu R T , Georgescu M I , Dueholm J , Ramachandra B , Nasrollahi K , Khan F S , Moeslund T B and Shah M . 2023 . SSMTL++: revisiting self-supervised multi-task learning for video anomaly detection . Computer Vision and Image Understanding , 229 : # 103656 [ DOI: 10.1016/J.CVIU.2023.103656 http://dx.doi.org/10.1016/J.CVIU.2023.103656 ]
Cai R C , Zhang H , Liu W , Gao S H and Hao Z F . 2021 . Appearance-motion memory consistency network for video anomaly detection // Proceedings of the 35th AAAI Conference on Artificial Intelligence . Virtually : AAAI: 938 - 946 [ DOI: 10.1609/AAAI.V35I2.16177 http://dx.doi.org/10.1609/AAAI.V35I2.16177 ]
Cao C Q , Lu Y and Zhang Y N . 2024 . Context recovery and knowledge retrieval: a novel two-stream framework for video anomaly detection . IEEE Transactions on Image Processing , 33 : 1810 - 1825 [ DOI: 10.1109/TIP.2024.3372466 http://dx.doi.org/10.1109/TIP.2024.3372466 ]
Cao Y K , Xu X H , Sun C , Huang X N and Shen W M . 2023 . Towards generic anomaly detection and understanding: large-scale visual-linguistic model (GPT-4V) takes the lead [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/2311.02782.pdf https://arxiv.org/pdf/2311.02782.pdf
Chang Y P , Tu Z G , Xie W and Yuan J S . 2020 . Clustering driven deep autoencoder for video anomaly detection // Proceedings of the 16th European Conference on Computer Vision . Glasgow, UK : Springer: 329 - 345 [ DOI: 10.1007/978-3-030-58555-6_20 http://dx.doi.org/10.1007/978-3-030-58555-6_20 ]
Chen Y X , Liu Z Z , Zhang B H , Fok W , Qi X J and Wu Y C . 2023 . MGFN: magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detection // Proceedings of the 37th AAAI Conference on Artificial Intelligence . Washington, USA : AAAI: 387 - 395 [ DOI: 10.1609/AAAI.V37I1.25112 http://dx.doi.org/10.1609/AAAI.V37I1.25112 ]
Chong Y S and Tay Y H . 2017 . Abnormal event detection in videos using spatiotemporal autoencoder // 14th International Symposium on Advances in Neural Networks . Hokkaido, Japan : Springer: 189 - 196 [ DOI: 10.1007/978-3-319-59081-3_23 http://dx.doi.org/10.1007/978-3-319-59081-3_23 ]
Cong Y , Yuan J S and Liu J . 2013 . Abnormal event detection in crowded scenes using sparse representation . Pattern Recognition , 46 ( 7 ): 1851 - 1864 [ DOI: 10.1016/J.PATCOG.2012.11.021 http://dx.doi.org/10.1016/J.PATCOG.2012.11.021 ]
Dong C , Loy C C , He K M and Tang X O . 2016 . Image super-resolution using deep convolutional networks . IEEE Transactions on Pattern Analysis and Machine Intelligence , 38 ( 2 ): 295 - 307 [ DOI: 10.1109/TPAMI.2015.2439281 http://dx.doi.org/10.1109/TPAMI.2015.2439281 ]
Fan Y X , Wen G J , Li D R , Qiu S H , Levine M D and Xiao F . 2020 . Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder . Computer Vision and Image Understanding , 195 : # 102920 [ DOI: 10.1016/J.CVIU.2020.102920 http://dx.doi.org/10.1016/J.CVIU.2020.102920 ]
Feng J C , Hong F T and Zheng W S . 2021 . MIST: multiple instance self-training framework for video anomaly detection // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville, USA : IEEE: 14004 - 14013 [ DOI: 10.1109/CVPR46437.2021.01379 http://dx.doi.org/10.1109/CVPR46437.2021.01379 ]
Feng Y C , Yuan Y and Lu X Q . 2017 . Learning deep event models for crowd anomaly detection . Neurocomputing , 219 : 548 - 556 [ DOI: 10.1016/J.NEUCOM.2016.09.063 http://dx.doi.org/10.1016/J.NEUCOM.2016.09.063 ]
Finn C , Abbeel P and Levine S . 2017 . Model-agnostic meta-learning for fast adaptation of deep networks // Proceedings of the 34th International Conference on Machine Learning . Sydney, Australia : JMLR.org: 1126 - 1135
Georgescu M I , Barbalau A , Ionescu R T , Khan F S , Popescu M and Shah M . 2021 . Anomaly detection in video via self-supervised and multi-task learning // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville, USA : IEEE: 12737 - 12747 [ DOI: 10.1109/CVPR46437.2021.01255 http://dx.doi.org/10.1109/CVPR46437.2021.01255 ]
Gong D , Liu L Q , Le V , Saha B , Mansour R M , Venkatesh S and Van Den Hengel A . 2019 . Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection // Proceedings of 2019 IEEE/CVF International Conference on Computer Vision . Seoul, Korea (South) : IEEE: 1705 - 1714 [ DOI: 10.1109/ICCV.2019.00179 http://dx.doi.org/10.1109/ICCV.2019.00179 ]
Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde D , Ozair S , Courville A and Bengio Y . 2014 . Generative adversarial nets. Advances in Neural Information Processing Systems, Canada: Curran Associates Inc .: 2672 - 2680
Guo D L , Fu Y and Li S . 2024 . Ada-VAD: domain adaptable video anomaly detection // Proceedings of 2024 SIAM International Conference on Data Mining . Houston, USA : SIAM: 634 - 642 [ DOI: 10.1137/1.9781611978032.73 http://dx.doi.org/10.1137/1.9781611978032.73 ]
Hasan M , Choi J , Neumann J , Roy-Chowdhury A K and Davis L S . 2016 . Learning temporal regularity in video sequences // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, USA : IEEE: 733 - 742 [ DOI: 10.1109/CVPR.2016.86 http://dx.doi.org/10.1109/CVPR.2016.86 ]
He P , Zhang F , Li G and Li H . 2024 . Adversarial and focused training of abnormal videos for weakly-supervised anomaly detection . Pattern Recognition , 147 : 110119 - 110128 [ DOI: 10.1016/j.patcog.2023.110119 http://dx.doi.org/10.1016/j.patcog.2023.110119 ]
Hinami R , Mei T and Satoh S . 2017 . Joint detection and recounting of abnormal events by learning deep generic knowledge // Proceedings of 2017 IEEE International Conference on Computer Vision . Venice, Italy : IEEE: 3639 - 3647 [ DOI: 10.1109/ICCV.2017.391 http://dx.doi.org/10.1109/ICCV.2017.391 ]
Hong D F , Zhang B , Li H , Li Y X , Yao J , Li C Y , Werner M , Chanussot J , Zipf A and Zhu X X . 2023 . Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks . Remote Sensing of Environment , 299 : # 113856 [ DOI: 10.1016/j.rse.2023.113856 http://dx.doi.org/10.1016/j.rse.2023.113856 ]
Hu H Y , Zhang L and Li Z J . 2020 . Anomaly detection with autoencoder and one-class SVM . Journal of Image and Graphics , 25 ( 12 ): 2614 - 2629
胡海洋 , 张力 , 李忠金 . 2020 . 融合自编码器和one-class SVM的异常事件检测 . 中国图象图形学报 , 25 ( 12 ): 2614 - 2629 [ DOI: 10.11834/jig.200042 http://dx.doi.org/10.11834/jig.200042 ]
Huang C , Liu C L , Wen J , Wu L , Xu Y , Jiang Q P and Wang Y W . 2024 . Weakly supervised video anomaly detection via self-guided temporal discriminative transformer . IEEE Transactions on Cybernetics , 54 ( 5 ): 3197 - 3210 [ DOI: 10.1109/TCYB.2022.3227044 http://dx.doi.org/10.1109/TCYB.2022.3227044 ]
Ionescu R T , Khan F S , Georgescu M I and Shao L . 2019a . Object-centric auto-encoders and dummy anomalies for abnormal event detection in video // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach, USA : IEEE: 7834 - 7843 [ DOI: 10.1109/CVPR.2019.00803 http://dx.doi.org/10.1109/CVPR.2019.00803 ]
Ionescu R T , Smeureanu S , Alexe B and Popescu M . 2017 . Unmasking the abnormal events in video // Proceedings of 2017 IEEE International Conference on Computer Vision . Venice, Italy : IEEE: 2914 - 2922 [ DOI: 10.1109/ICCV.2017.315 http://dx.doi.org/10.1109/ICCV.2017.315 ]
Ionescu R T , Smeureanu S , Popescu M and Alexe B . 2019b . Detecting abnormal events in video using narrowed normality clusters // Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) . Waikoloa, USA : IEEE: 1951 - 1960 [ DOI: 10.1109/WACV.2019.00212 http://dx.doi.org/10.1109/WACV.2019.00212 ]
Ji G L , Qi X S and Wang J Q . 2024 . Review of deep learning-based video anomaly detection . Pattern Recognition and Artificial Intelligence , 37 ( 2 ): 128 - 143
吉根林 , 戚小莎 , 王嘉琦 . 2024 . 基于深度学习的视频异常检测研究综述 . 模式识别与人工智能 , 37 ( 2 ): 128 - 143 [ DOI: 10.16451/j.cnki.issn1003-6059.202402003 http://dx.doi.org/10.16451/j.cnki.issn1003-6059.202402003 ]
Joo H K , Vo K , Yamazaki K and Le N G . 2023 . CLIP-TSA: clip-assisted temporal self-attention for weakly-supervised video anomaly detection // Proceedings of 2023 IEEE International Conference on Image Processing (ICIP) . Kuala Lumpur, Malaysia : IEEE: 3230 - 3234 [ DOI: 10.1109/ICIP49359.2023.10222289 http://dx.doi.org/10.1109/ICIP49359.2023.10222289 ]
Karim H , Doshi K and Yilmaz Y . 2024 . Real-time weakly supervised video anomaly detection // Proceedings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa, USA : IEEE: 6834 - 6842 [ DOI: 10.1109/WACV57701.2024.00670 http://dx.doi.org/10.1109/WACV57701.2024.00670 ]
Kim J , Yoon S , Choi T and Sull S . 2023 . Unsupervised video anomaly detection based on similarity with predefined text descriptions . Sensors , 23 ( 14 ): # 6256 [ DOI: 10.3390/S23146256 http://dx.doi.org/10.3390/S23146256 ]
Kommanduri R and Ghorai M . 2024 . DAST-Net: dense visual attention augmented spatio-temporal network for unsupervised video anomaly detection . Neurocomputing , 579 : # 127444 [ DOI: 10.1016/j.neucom.2024.127444 http://dx.doi.org/10.1016/j.neucom.2024.127444 ]
Koppel M , Schler J and Bonchek-Dokow E . 2007 . Measuring differentiability: unmasking pseudonymous authors . The Journal of Machine Learning Research , 8 : 1261 - 1276
Landi F , Snoek C G M and Cucchiara R . 2019 . Anomaly locality in video surveillance [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/1901.10364.pdf https://arxiv.org/pdf/1901.10364.pdf
Lang J T . 2017 . Bottlenecks and future prospects of the “Skynet” project in the public security system . Science and Technology and Innovation , ( 9 ): 45 - 46
郎江涛 . 2017 . 公安系统天网工程瓶颈及未来展望 . 科技与创新 , ( 9 ): 45 - 46 [ DOI: 10.15913/j.cnki.kjycx.2017.09.045 http://dx.doi.org/10.15913/j.cnki.kjycx.2017.09.045 ]
LeCun Y , Bottou L , Bengio Y and Haffner P . 1998 . Gradient-based learning applied to document recognition . Proceedings of the IEEE , 86 ( 11 ): 2278 - 2324 [ DOI: 10.1109/5.726791 http://dx.doi.org/10.1109/5.726791 ]
Lee D G , Suk H I , Park S K and Lee S W . 2015 . Motion influence map for unusual human activity detection and localization in crowded scenes . IEEE Transactions on Circuits and Systems for Video Technology , 25 ( 10 ): 1612 - 1623 [ DOI: 10.1109/TCSVT.2015.2395752 http://dx.doi.org/10.1109/TCSVT.2015.2395752 ]
Lee S , Kim H G and Ro Y M . 2018 . STAN: spatio-temporal adversarial networks for abnormal event detection // Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Calgary, Canada : IEEE: 1323 - 1327 [ DOI: 10.1109/ICASSP.2018.8462388 http://dx.doi.org/10.1109/ICASSP.2018.8462388 ]
Li C Y , Hong D F and Zhang B . 2024 . Deep unfolding network for hyperspectral anomaly detection . National Remote Sensing Bulletin , 28 ( 1 ): 69 - 77
李晨玉 , 洪丹枫 , 张兵 . 2024 . 深度展开网络的高光谱异常探测 . 遥感学报 , 28 ( 1 ): 69 - 77 [ DOI: 10.11834/jrs.20233075 http://dx.doi.org/10.11834/jrs.20233075 ]
Li C Y , Zhang B , Hong D F , Zhou J , Vivone G , Li S T and Chanussot J . 2024a . CasFormer: cascaded Transformers for fusion-aware computational hyperspectral imaging . Information Fusion , 108 : # 102408 [ DOI: 10.1016/j.inffus.2024.102408 http://dx.doi.org/10.1016/j.inffus.2024.102408 ]
Li D H , Nie X S , Gong R , Lin X M and Yu H . 2024b . Multi-branch GAN-based abnormal events detection via context learning in surveillance videos . IEEE Transactions on Circuits and Systems for Video Technology , 34 ( 5 ): 3439 - 3450 [ DOI: 10.1109/TCSVT.2023.3325451 http://dx.doi.org/10.1109/TCSVT.2023.3325451 ]
Li J N , Li D X , Savarese S and Hoi S . 2023 . BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models // Proceedings of the 40th International Conference on Machine Learning . Honolulu, USA : JMLR.org: 19730 - 19742
Li J N , Li D X , Xiong C M and Hoi S . 2022 . BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation // Proceedings of the 39th International Conference on Machine Learning . Baltimore, USA : JMLR.org: 12888 - 12900
Li N N , Wu X Y , Xu D , Guo H W and Feng W . 2015a . Spatio-temporal context analysis within video volumes for anomalous-event detection and localization . Neurocomputing , 155 : 309 - 319 [ DOI: 10.1016/J.NEUCOM.2014.12.064 http://dx.doi.org/10.1016/J.NEUCOM.2014.12.064 ]
Liu H T , Li C Y , Li Y H and Lee Y J . 2024 . Improved baselines with visual instruction tuning // Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 26286 - 26296 [ DOI: 10.1109/CVPR52733.2024.02484 http://dx.doi.org/10.1109/CVPR52733.2024.02484 ]
Liu K and Ma H D . 2019a . Exploring background-bias for anomaly detection in surveillance videos // Proceedings of the 27th ACM International Conference on Multimedia . Nice, France : ACM: 1490 - 1499 [ DOI: 10.1145/3343031.3350998 http://dx.doi.org/10.1145/3343031.3350998 ]
Liu W , Luo W X , Li Z X , Zhao P L and Gao S H . 2019b . Margin learning embedded prediction for video anomaly detection with a few anomalies // Proceedings of the 28th International Joint Conference on Artificial Intelligence . Macao, China : International Joint Conferences on Artificial Intelligence: 3023 - 3030 [ DOI: 10.24963/IJCAI.2019/419 http://dx.doi.org/10.24963/IJCAI.2019/419 ]
Liu W , Luo W X , Lian D Z and Gao S H . 2018 . Future frame prediction for anomaly detection—a new baseline // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE: 6536 - 6545 [ DOI: 10.1109/CVPR.2018.00684 http://dx.doi.org/10.1109/CVPR.2018.00684 ]
Liu Y , Liu J , Zhao M Y , Li S and Song L . 2022 . Collaborative normality learning framework for weakly supervised video anomaly detection . IEEE Transactions on Circuits and Systems II : Express Briefs , 69 ( 5 ): 2508 - 2512 [ DOI: 10.1109/TCSII.2022.3161061 http://dx.doi.org/10.1109/TCSII.2022.3161061 ]
Liu Z H , Wu X M , Zheng D , Lin K Y and Zheng W S . 2023 . Generating anomalies for video anomaly detection with prompt-based feature mapping // Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver, Canada : IEEE: 24500 - 24510 [ DOI: 10.1109/CVPR52729.2023.02347 http://dx.doi.org/10.1109/CVPR52729.2023.02347 ]
Lu C W , Shi J P and Jia J Y . 2013a . Abnormal event detection at 150 FPS in MATLAB // Proceedings of 2013 IEEE International Conference on Computer Vision . Sydney, Australia : IEEE: 2720 - 2727 [ DOI: 10.1109/ICCV.2013.338 http://dx.doi.org/10.1109/ICCV.2013.338 ]
Lu X G , Tsao Y , Matsuda S and Hori C . 2013b . Speech enhancement based on deep denoising autoencoder // Proceedings of the 14th Annual Conference of the International Speech Communication Association . Lyon, France : ISCA: 436 - 440 [ DOI: 10.21437/INTERSPEECH.2013-130 http://dx.doi.org/10.21437/INTERSPEECH.2013-130 ]
Lu Y W , Yu F , Reddy M K K and Wang Y . 2020 . Few-shot scene-adaptive anomaly detection // Proceedings of the 16th European Conference on Computer Vision . Glasgow, UK : Springer: 125 - 141 [ DOI: 10.1007/978-3-030-58558-7_8 http://dx.doi.org/10.1007/978-3-030-58558-7_8 ]
Luo W X , Liu W and Gao S H . 2017a . A revisit of sparse coding based anomaly detection in stacked RNN framework // Proceedings of 2017 IEEE International Conference on Computer Vision . Venice, Italy : IEEE: 341 - 349 [ DOI: 10.1109/ICCV.2017.45 http://dx.doi.org/10.1109/ICCV.2017.45 ]
Luo W X , Liu W and Gao S H . 2017b . Remembering history with convolutional LSTM for anomaly detection // Proceedings of 2017 IEEE International Conference on Multimedia and Expo (ICME) . Hong Kong, China : IEEE: 439 - 444 [ DOI: 10.1109/ICME.2017.8019325 http://dx.doi.org/10.1109/ICME.2017.8019325 ]
Lyu H , Chen C , Cui Z , Xu C Y , Li Y and Yang J . 2021 . Learning normal dynamics in videos with meta prototype network // Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville, USA : IEEE: 15420 - 15429 [ DOI: 10.1109/CVPR46437.2021.01517 http://dx.doi.org/10.1109/CVPR46437.2021.01517 ]
Mahadevan V , Li W X , Bhalodia V and Vasconcelos N . 2010 . Anomaly detection in crowded scenes // Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . San Francisco, USA : IEEE: 1975 - 1981 [ DOI: 10.1109/CVPR.2010.5539872 http://dx.doi.org/10.1109/CVPR.2010.5539872 ]
Majhi S , Dai R , Kong Q , Garattoni L , Francesca G and Brémond F . 2024 . Human-scene network: a novel baseline with self-rectifying loss for weakly supervised video anomaly detection . Computer Vision and Image Understanding , 241 : # 103955 [ DOI: 10.1016/j.cviu.2024.103955 http://dx.doi.org/10.1016/j.cviu.2024.103955 ]
Makhzani A and Frey B . 2015 . Winner-take-all autoencoders // Proceedings of the 28th International Conference on Neural Information Processing Systems . Montreal, Canada : MIT Press: 2791 - 2799
Mantini P , Li Z G and Shah K S . 2021 . A day on campus—an anomaly detection dataset for events in a single camera // Proceedings of the 15th Asian Conference on Computer Vision . Kyoto, Japan : Springer: 619 - 635 [ DOI: 10.1007/978-3-030-69544-6_37 http://dx.doi.org/10.1007/978-3-030-69544-6_37 ]
Markovitz A , Sharir G , Friedman I , Zelnik-Manor L and Avidan S . 2020 . Graph embedded pose clustering for anomaly detection // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 10536 - 10544 [ DOI: 10.1109/CVPR42600.2020.01055 http://dx.doi.org/10.1109/CVPR42600.2020.01055 ]
Mirza M and Osindero S . 2014 . Conditional generative adversarial nets [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/1411.1784.pdf https://arxiv.org/pdf/1411.1784.pdf
Morais R , Le V , Tran T , Saha B , Mansour M and Venkatesh S . 2019 . Learning regularity in skeleton trajectories for anomaly detection in videos // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach, USA : IEEE: 11988 - 11996 [ DOI: 10.1109/CVPR.2019.01227 http://dx.doi.org/10.1109/CVPR.2019.01227 ]
Nayak R , Pati U C and Das S K . 2021 . A comprehensive review on deep learning-based methods for video anomaly detection . Image and Vision Computing , 106 : # 104078 [ DOI: 10.1016/J.IMAVIS.2020.104078 http://dx.doi.org/10.1016/J.IMAVIS.2020.104078 ]
Nguyen T N and Meunier J . 2019 . Anomaly detection in video sequence with appearance-motion correspondence // Proceedings of 2019 IEEE/CVF International Conference on Computer Vision . Seoul, Korea (South) : IEEE: 1273 - 1283 [ DOI: 10.1109/ICCV.2019.00136 http://dx.doi.org/10.1109/ICCV.2019.00136 ]
Pang G S , Shen C H , Cao L B and van den Hengel A . 2021 . Deep learning for anomaly detection: a review . ACM Computing Surveys (CSUR) , 54 ( 2 ): # 38 [ DOI: 10.1145/3439950 http://dx.doi.org/10.1145/3439950 ]
Park H , Noh J and Ham B . 2020 . Learning memory-guided normality for anomaly detection // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 14360 - 14369 [ DOI: 10.1109/CVPR42600.2020.01438 http://dx.doi.org/10.1109/CVPR42600.2020.01438 ]
Radford A , Kim J W , Hallacy C , Ramesh A , Goh G , Agarwal S , Sastry G , Askell A , Mishkin P , Clark J , Krueger G and Sutskever I . 2021 . Learning transferable visual models from natural language supervision // Proceedings of the 38th International Conference on Machine Learning . Virtual : PMLR: 8748 - 8763
Ramachandra B and Jones M J . 2020 . Street scene: a new dataset and evaluation protocol for video anomaly detection // Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision . Snowmass, USA : IEEE: 2558 - 2567 [ DOI: 10.1109/WACV45572.2020.9093457 http://dx.doi.org/10.1109/WACV45572.2020.9093457 ]
Ramesh A , Dhariwal P , Nichol A , Chu C and Chen M . 2022 . Hierarchical text-conditional image generation with CLIP latents [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/2204.06125.pdf https://arxiv.org/pdf/2204.06125.pdf
Ravanbakhsh M , Sangineto E , Nabi M and Sebe N . 2019 . Training adversarial discriminators for cross-channel abnormal event detection in crowds // Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) . Waikoloa, USA : IEEE: 1896 - 1904 [ DOI: 10.1109/WACV.2019.00206 http://dx.doi.org/10.1109/WACV.2019.00206 ]
Ren H M , Liu W F , Olsen S I , Escalera S and Moeslund T B . 2015 . Unsupervised behavior-specific dictionary learning for abnormal event detection // Proceedings of 2015 British Machine Vision Conference 2015 . Swansea, UK : BMVA: 28.1- 28 .13 [DOI: 10.5244/C.29.28]
Ren J , Xia F , Liu Y M and Lee L . 2021 . Deep video anomaly detection: opportunities and challenges // Proceedings of 2021 International Conference on Data Mining Workshops (ICDMW) . Auckland, New Zealand : IEEE: 959 - 966 [ DOI: 10.1109/ICDMW53433.2021.00125 http://dx.doi.org/10.1109/ICDMW53433.2021.00125 ]
Rodrigues R , Bhargava N , Velmurugan R and Chaudhuri S . 2020 . Multi-timescale trajectory prediction for abnormal human activity detection // Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision . Snowmass, USA : IEEE: 2615 - 2623 [ DOI: 10.1109/WACV45572.2020.9093633 http://dx.doi.org/10.1109/WACV45572.2020.9093633 ]
Ronneberger O , Fischer P and Brox T . 2015 . U-net: convolutional networks for biomedical image segmentation // Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention . Munich, Germany : Springer: 234 - 241 [ DOI: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28 ]
Sabokrou M , Fathy M , Moayed Z and Klette R . 2017 . Fast and accurate detection and localization of abnormal behavior in crowded scenes . Machine Vision and Applications , 28 ( 8 ): 965 - 985 [ DOI: 10.1007/S00138-017-0869-8 http://dx.doi.org/10.1007/S00138-017-0869-8 ]
Sabokrou M , Khalooei M , Fathy M and Adeli E . 2018a . Adversarially learned one-class classifier for novelty detection // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE: 3379 - 3388 [ DOI: 10.1109/CVPR.2018.00356 http://dx.doi.org/10.1109/CVPR.2018.00356 ]
Sabokrou M , Pourreza M , Fayyaz M , Entezari R , Fathy M , Gall J and Adeli E . 2018b . AVID: adversarial visual irregularity detection // Proceedings of the 14th Asian Conference on Computer Vision . Perth, Australia : Springer: 488 - 505 [ DOI: 10.1007/978-3-030-20876-9_31 http://dx.doi.org/10.1007/978-3-030-20876-9_31 ]
Saharia C , Chan W , Saxena S , Li L , Whang J , Denton E , Ghasemipour S K S , Ayan B K , Mahdavi S S , Gontijo-Lopes R , Salimans T , Ho J , Fleet D J and Norouzi M . 2022 . Photorealistic text-to-image diffusion models with deep language understanding // Proceedings of the 36th International Conference on Neural Information Processing Systems . New Orleans, USA : Curran Associates Inc.: 36479 - 36494
Saligrama V and Chen Z . 2012 . Video anomaly detection based on local statistical aggregates // Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition . Providence, USA : IEEE: 2112 - 2119 [ DOI: 10.1109/CVPR.2012.6247917 http://dx.doi.org/10.1109/CVPR.2012.6247917 ]
Shi X J , Chen Z R , Wang H , Yeung D Y , Wong W K and Woo W C . 2015 . Convolutional LSTM network: a machine learning approach for precipitation nowcasting // Proceedings of the 28th International Conference on Neural Information Processing Systems . Montreal, Canada : MIT Press: 802 - 810
Smeureanu S , Ionescu R T , Popescu M and Alexe B . 2017 . Deep appearance features for abnormal behavior detection in video // Proceedings of the 19th International Conference on Image Analysis and Processing . Catania, Italy : Springer: 779 - 789 [ DOI: 10.1007/978-3-319-68548-9_70 http://dx.doi.org/10.1007/978-3-319-68548-9_70 ]
Sultani W , Chen C and Shah M . 2018 . Real-world anomaly detection in surveillance videos // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE: 6479 - 6488 [ DOI: 10.1109/CVPR.2018.00678 http://dx.doi.org/10.1109/CVPR.2018.00678 ]
Sun Q R , Liu H and Harada T . 2017 . Online growing neural gas for anomaly detection in changing surveillance scenes . Pattern Recognition , 64 : 187 - 201 [ DOI: 10.1016/J.PATCOG.2016.09.016 http://dx.doi.org/10.1016/J.PATCOG.2016.09.016 ]
Sun Y , Wang S H , Li Y K , Feng S K , Tian H , Wu H and Wang H F . 2020 . ERNIE 2 . 0: a continual pre-training framework for language understanding //Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA : AAAI: 8968 - 8975 [ DOI: 10.1609/AAAI.V34I05.6428 http://dx.doi.org/10.1609/AAAI.V34I05.6428 ]
Szegedy C , Vanhoucke V , Ioffe S , Shlens J and Wojna Z . 2016 . Rethinking the inception architecture for computer vision // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, USA : IEEE: 2818 - 2826 [ DOI: 10.1109/CVPR.2016.308 http://dx.doi.org/10.1109/CVPR.2016.308 ]
Tao Y R , Hu Y S and Chen Z Z . 2024 . Memory-guided representation matching for unsupervised video anomaly detection . Journal of Visual Communication and Image Representation , 101 : # 104185 [ DOI: 10.1016/j.jvcir.2024.104185 http://dx.doi.org/10.1016/j.jvcir.2024.104185 ]
Tian Y , Pang G S , Chen Y H , Singh R , Verjans J W and Carneiro G . 2021 . Weakly-supervised video anomaly detection with robust temporal feature magnitude learning // Proceedings of 2021 IEEE/CVF International Conference on Computer Vision . Montreal, Canada : IEEE: 4955 - 4966 [ DOI: 10.1109/ICCV48922.2021.00493 http://dx.doi.org/10.1109/ICCV48922.2021.00493 ]
Tran H T M and Hogg D . 2017 . Anomaly detection using a convolutional winner-take-all autoencoder // Proceedings of the 28th British Machine Vision Conference . London, UK : BMVA: 1 - 12
Mehran R , Oyama A and Shah M . 2009 . Abnormal crowd behavior detection using social force model // Proceeding of 2009 IEEE Conference on Computer Vision and Rattern Recognition . Miami, Florida, USA : IEEE: 20 - 25 [ DOI: 10.1109/CVPR.2009.5206641 http://dx.doi.org/10.1109/CVPR.2009.5206641 ]
Vidya M Q M and Selvakumar S . 2024 . An effective framework of human abnormal behaviour recognition and tracking using multiscale dilated assisted residual attention network . Expert Systems with Applications , 247 : # 123264 [ DOI: 10.1016/j.eswa.2024.123264 http://dx.doi.org/10.1016/j.eswa.2024.123264 ]
Vu H , Nguyen T D , Le T , Luo W and Phung D . 2019 . Robust anomaly detection in videos using multilevel representations // Proceedings of the 33rd AAAI Conference on Artificial Intelligence . Honolulu, USA : AAAI: 5216 - 5223 [ DOI: 10.1609/AAAI.V33I01.33015216 http://dx.doi.org/10.1609/AAAI.V33I01.33015216 ]
Wan B Y , Fang Y M , Xia X and Mei J J . 2020 . Weakly supervised video anomaly detection via center-guided discriminative learning // Proceedings of 2020 IEEE International Conference on Multimedia and Expo (ICME) . London, UK : IEEE: 1 - 6 [ DOI: 10.1109/ICME46284.2020.9102722 http://dx.doi.org/10.1109/ICME46284.2020.9102722 ]
Wang L , Tian J W , Zhou S P , Shi H Y and Hua G . 2023a . Memory-augmented appearance-motion network for video anomaly detection . Pattern Recognition , 138 : # 109335 [ DOI: 10.1016/J.PATCOG.2023.109335 http://dx.doi.org/10.1016/J.PATCOG.2023.109335 ]
Wang S Q , Zeng Y J , Liu Q , Zhu C Z , Zhu E and Yin J P . 2018 . Detecting abnormality without knowing normality: a two-stage approach for unsupervised video abnormal event detection // Proceedings of the 26th ACM International Conference on Multimedia . Seoul, Korea (South) : ACM: 636 - 644 [ DOI: 10.1145/3240508.3240615 http://dx.doi.org/10.1145/3240508.3240615 ]
Wang Y , Liu T Y , Zhou J G and Guan J H . 2023b . Video anomaly detection based on spatio-temporal relationships among objects . Neurocomputing , 532 : 141 - 151 [ DOI: 10.1016/J.NEUCOM.2023.02.027 http://dx.doi.org/10.1016/J.NEUCOM.2023.02.027 ]
Wang Y , Xu J , Zhou J G and Guan J H . 2024a . Video anomaly prediction: problem, dataset and method // Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Seoul, Korea(South) : IEEE: 3870 - 3874 [ DOI: 10.1109/ICASSP48485.2024.10448187 http://dx.doi.org/10.1109/ICASSP48485.2024.10448187 ]
Wang Y , Zhou J G and Guan J H . 2024b . A lightweight video anomaly detection model with weak supervision and adaptive instance selection [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/2310.05330.pdf https://arxiv.org/pdf/2310.05330.pdf
Wang Z G and Zhang Y J . 2020 . Anomaly detection in surveillance videos: a survey . Journal of Tsinghua University (Science and Technology) , 60 ( 6 ): 518 - 529
王志国 , 章毓晋 . 2020 . 监控视频异常检测: 综述 . 清华大学学报(自然科学版) , 60 ( 6 ): 518 - 529 [ DOI: 10.16511/j.cnki.qhdxxb.2020.22.008 http://dx.doi.org/10.16511/j.cnki.qhdxxb.2020.22.008 ]
Wang Z M , Zou Y X and Zhang Z M . 2020 . Cluster attention contrast for video anomaly detection // Proceedings of the 28th ACM International Conference on Multimedia . Seattle, USA : ACM: 2463 - 2471 [ DOI: 10.1145/3394171.3413529 http://dx.doi.org/10.1145/3394171.3413529 ]
Wu P , Liu J , Shi Y J , Sun Y J , Shao F T , Wu Z Y and Yang Z W . 2020 . Not only look, but also listen: learning multimodal violence detection under weak supervision // Proceedings of the 16th European Conference on Computer Vision . Glasgow, UK : Springer: 322 - 339 [ DOI: 10.1007/978-3-030-58577-8_20 http://dx.doi.org/10.1007/978-3-030-58577-8_20 ]
Wu P , Zhou X R , Pang G S , Sun Y J , Liu J , Wang P and Zhang Y N . 2024a . Open-vocabulary video anomaly detection // Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 18297 - 18307 [ DOI: 10.1109/CVPR52733.2024.01732 http://dx.doi.org/10.1109/CVPR52733.2024.01732 ]
Wu P , Zhou X R , Pang G S , Zhou L R , Yan Q S , Wang P and Zhang Y N . 2024b . VadCLIP: adapting vision-language models for weakly supervised video anomaly detection // Proceedings of the 38th AAAI Conference on Artificial Intelligence . Vancouver, Canada : AAAI: 6074 - 6082 [ DOI: 10.1609/AAAI.V38I6.28423 http://dx.doi.org/10.1609/AAAI.V38I6.28423 ]
Wu P H , Wang W Q , Chang F L , Liu C S and Wang B . 2024c . DSS-net: dynamic self-supervised network for video anomaly detection . IEEE Transactions on Multimedia , 26 : 2124 - 2136 [ DOI: 10.1109/TMM.2023.3292596 http://dx.doi.org/10.1109/TMM.2023.3292596 ]
Xiang T and Gong S G . 2008 . Video behavior profiling for anomaly detection . IEEE Transactions on Pattern Analysis and Machine Intelligence , 30 ( 5 ): 893 - 908 [ DOI: 10.1109/TPAMI.2007.70731 http://dx.doi.org/10.1109/TPAMI.2007.70731 ]
Xu D , Yan Y , Ricci E and Sebe N . 2017 . Detecting anomalous events in videos by learning deep representations of appearance and motion . Computer Vision and Image Understanding , 156 : 117 - 127 [ DOI: 10.1016/j.cviu.2016.10.010 http://dx.doi.org/10.1016/j.cviu.2016.10.010 ]
Yan J W , Yang Y X and Naqvi S M . 2024 . Object detection oriented privacy-preserving frame-level video anomaly detection // Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing . Seoul, Korea (South) : IEEE: 7640 - 7644 [ DOI: 10.1109/ICASSP48485.2024.10447842 http://dx.doi.org/10.1109/ICASSP48485.2024.10447842 ]
Yang F , Xiao B and Yu Z W . 2021 . Anomaly detection and modeling of surveillance video . Journal of Computer Research and Development , 58 ( 12 ): 2708 - 2723
杨帆 , 肖斌 , 於志文 . 2021 . 监控视频的异常检测与建模综述 . 计算机研究与发展 , 58 ( 12 ): 2708 - 2723 [ DOI: 10.7544/issn1000-1239.2021.20200638 http://dx.doi.org/10.7544/issn1000-1239.2021.20200638 ]
Ye M C , Peng X J , Gan W H , Wu W and Qiao Y . 2019 . AnoPCN: video anomaly detection via deep predictive coding network // Proceedings of the 27th ACM International Conference on Multimedia . Nice, France : ACM: 1805 - 1813 [ DOI: 10.1145/3343031.3350899 http://dx.doi.org/10.1145/3343031.3350899 ]
Yu G , Wang S Q , Cai Z P , Zhu E , Xu C F , Yin J P and Kloft M . 2020 . Cloze test helps: effective video anomaly detection via learning to complete video events // Proceedings of the 28th ACM International Conference on Multimedia . Seattle, USA : ACM: 583 - 591 [ DOI: 10.1145/3394171.3413973 http://dx.doi.org/10.1145/3394171.3413973 ]
Yuan Y , Feng Y C and Lu X Q . 2018 . Structured dictionary learning for abnormal event detection in crowded scenes . Pattern Recognition , 73 : 99 - 110 [ DOI: 10.1016/J.PATCOG.2017.08.001 http://dx.doi.org/10.1016/J.PATCOG.2017.08.001 ]
Yuan Z A , Zhou X Y , Liu X P , Lu D W , Deng B and Ma Y X . 2021 . Human fall detection method using millimeter-wave radar based on RDSNet . Journal of Radars , 10 ( 4 ): 656 - 664
元志安 , 周笑宇 , 刘心溥 , 卢大威 , 邓彬 , 马燕新 . 2021 . 基于RDSNet的毫米波雷达人体跌倒检测方法 . 雷达学报 , 10 ( 4 ): 656 - 664 [ DOI: 10.12000/JR21015 http://dx.doi.org/10.12000/JR21015 ]
Zaheer M Z , Lee J H , Astrid M and Lee S I . 2020 . Old is gold: redefining the adversarially learned one-class classifier training paradigm // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 14171 - 14181 [ DOI: 10.1109/CVPR42600.2020.01419 http://dx.doi.org/10.1109/CVPR42600.2020.01419 ]
Zanella L , Liberatori B , Menapace W , Poiesi F , Wang Y M and Ricci E . 2023 . Delving into CLIP latent space for video anomaly recognition [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/2310.02835.pdf https://arxiv.org/pdf/2310.02835.pdf
Zanella L , Menapace W , Mancini M , Wang Y M and Ricci E . 2024 . Harnessing large language models for training-free video anomaly detection // Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 18527 - 18536 [ DOI: 10.1109/CVPR52733.2024.01753 http://dx.doi.org/10.1109/CVPR52733.2024.01753 ]
Zhang C , Li G R , Qi Y K , Wang S H , Qing L , Huang Q M and Yang M H . 2023 . Exploiting completeness and uncertainty of pseudo labels for weakly supervised video anomaly detection // Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver, Canada : IEEE: 16271 - 16280 [ DOI: 10.1109/CVPR52729.2023.01561 http://dx.doi.org/10.1109/CVPR52729.2023.01561 ]
Zhang J G , Qing L and Miao J . 2019 . Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection // Proceedings of 2019 IEEE International Conference on Image Processing (ICIP) . Taipei, China : IEEE: 4030 - 4034 [ DOI: 10.1109/ICIP.2019.8803657 http://dx.doi.org/10.1109/ICIP.2019.8803657 ]
Zhao Y R , Deng B , Shen C , Liu Y , Lu H T and Hua X S . 2017 . Spatio-temporal autoencoder for video anomaly detection // Proceedings of the 25th ACM International Conference on Multimedia . Mountain View, USA : ACM: 1933 - 1941 [ DOI: 10.1145/3123266.3123451 http://dx.doi.org/10.1145/3123266.3123451 ]
Zhong J X , Li N N , Kong W J , Liu S , Li T H and Li G . 2019 . Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach, USA : IEEE: 1237 - 1246 [ DOI: 10.1109/CVPR.2019.00133 http://dx.doi.org/10.1109/CVPR.2019.00133 ]
Zhou Q , Li W Z , Jiang L H , Wang G L , Zhou G Y , Zhang S H and Zhao H . 2024 . PAD: a dataset and benchmark for pose-agnostic anomaly detection // Proceedings of the 37th International Conference on Neural Information Processing Systems . New Orleans, USA : Curran Associates Inc.: 44558 - 44571
Zhu X B , Liu J , Wang J Q , Li C S and Lu H Q . 2014 . Sparse representation for robust abnormality detection in crowded scenes . Pattern Recognition , 47 ( 5 ): 1791 - 1799 [ DOI: 10.1016/J.PATCOG.2013.11.018 http://dx.doi.org/10.1016/J.PATCOG.2013.11.018 ]
Zhu X R , Qian X Y , Shi Y Z , Tao X D and Li Z Y . 2024 . Video anomaly detection with long-and-short-term time series correlations . Journal of Image and Graphics , 29 ( 7 ): 1998 - 2010
朱新瑞 , 钱小燕 , 施俞洲 , 陶旭东 , 李智昱 . 2024 . 长短期时间序列关联的视频异常事件检测 . 中国图象图形学报 , 29 ( 7 ): 1998 - 2010 [ DOI: 10.11834/jig230406 http://dx.doi.org/10.11834/jig230406 ]
Zhu Y and Newsam S . 2019 . Motion-aware feature for improved video anomaly detection [EB/OL]. [ 2024-05-31 ]. https://arxiv.org/pdf/1907.10211.pdf https://arxiv.org/pdf/1907.10211.pdf
相关作者
相关机构