人脸视频中心率变异性参数估计方法综述
A Review of Heart Rate Variability Parameter Estimation Methods in Facial Video
- 2024年 页码:1-25
网络出版日期: 2024-09-29
DOI: 10.11834/jig.240314
移动端阅览
浏览全部资源
扫码关注微信
网络出版日期: 2024-09-29 ,
移动端阅览
周才英,占新龙,魏远旺等.人脸视频中心率变异性参数估计方法综述[J].中国图象图形学报,
Zhou Caiying,Zhan Xinlong,Wei Yuanwang,et al.A Review of Heart Rate Variability Parameter Estimation Methods in Facial Video[J].Journal of Image and Graphics,
本综述探讨了基于人脸视频的心率变异性(heart rate variability,HRV)估计技术,突出了其在健康监测和疾病诊断中的无创性和实时监控的优势。首先,解析了HRV的生理学基础和核心参数的定义,阐明了其在医疗保健领域的应用潜力。接着,详细介绍了人脸视频采集的技术细节、数据预处理流程,重点讨论了HRV参数估计的多种方法,包括传统信号处理技术和深度学习算法。分析表明,深度学习技术在HRV估计方面因其强大的模式识别能力,能够有效提取复杂视觉特征和处理非线性生理信号,在提高估计精度方面展现出显著优势。本综述还对比了传统方法和深度学习方法在不同应用场景中的表现,指出了各自的优势与局限性,并总结了基于人脸视频HRV估计技术的实际应用案例,如健康评估、情绪识别、精神压力评估、疲劳检测和心血管疾病早期预警等。因此,本综述提出了未来研究的方向,包括降低头部运动和环境光变化的干扰、优化模型选择及减少对训练数据的依赖等,以促进HRV估计技术的发展。本综述旨在提供基于人脸视频的HRV估计技术的全面视角,为学术界和工业界的技术创新和应用拓展提供重要参考。
Heart rate variability (HRV) analysis has emerged as a powerful tool in health monitoring and disease diagnosis, offering valuable insights into the autonomic nervous system's regulation of the cardiovascular system. Estimating HRV from facial video is an innovative approach that combines convenience and non-invasiveness, which holds great promise for advancing personalized healthcare. This method utilizes facial video to capture subtle changes in skin color caused by blood flow variations, allowing for remote and continuous monitoring of heart rate dynamics. HRV reflects the variations in the time intervals, known as RR intervals, between successive heartbeats. It serves as a non-invasive marker of cardiac autonomic function and provides a dynamic assessment of the balance between the sympathetic and parasympathetic branches of the autonomic nervous system. The significance of HRV lies in its ability to reveal underlying physiological conditions that may not be immediately apparent through standard vital sign measurements. For instance, a reduced HRV can indicate stress, fatigue, or the early onset of cardiovascular disease, making it a valuable metric for both preventive and therapeutic health strategies. The key parameters in HRV analysis include both time-domain and frequency-domain metrics. Time-domain measures, such as the standard deviation of NN intervals and the root mean square of successive differences, provide insights into overall heart rate dynamics and short-term variability. Frequency-domain measures, such as low-frequency and high-frequency components and their ratio, help evaluate the balance between sympathetic and parasympathetic activity. These parameters are vital for assessing individual health, particularly in relation to cardiovascular conditions, stress levels, and autonomic nervous system disorders. In healthcare, HRV has a wide range of applications across various domains. In disease prevention, HRV analysis can detect early signs of cardiovascular issues by identifying deviations from normal HRV patterns, potentially indicating autonomic dysfunction or underlying heart conditions. For example, individuals with lower HRV may be at a higher risk of sudden cardiac death or myocardial infarction. Continuous monitoring of HRV can therefore serve as a predictive marker for these events, enabling earlier interventions that could save lives. During rehabilitation, HRV monitoring assists in tracking recovery progress and adjusting treatment plans. Changes in HRV can guide modifications in exercise regimens, physiotherapy, or medication dosages, offering a more personalized approach to patient care and optimizing recovery outcomes. HRV also plays a crucial role in mental health, emotional management, and stress monitoring. Analyzing HRV allows healthcare providers to better understand a patient's stress levels, emotional state, and overall cardiovascular health, enabling more tailored and effective treatment strategies. Facial video acquisition and data preprocessing are critical steps in HRV estimation. Obtaining high-quality RGB image data requires video capture devices with appropriate resolution and frame rate. Stable and consistent video capture conditions are essential to ensure accurate HRV estimation. Technical requirements for video frame extraction include precise synchronization and alignment of frames to maintain consistency across analyses. Data cleaning and normalization processes involve removing artifacts, correcting for illumination variations, and standardizing the data for analysis. Effective preprocessing ensures that the facial video accurately reflects the physiological signals needed for HRV estimation. Various methods are used for HRV parameter estimation. Traditional signal processing techniques, such as blind source separation and skin model-based methods, have been employed for years. Blind source separation aims to isolate the desired physiological signal from noise and interference, while skin model-based methods leverage physiological models to estimate heart rate from subtle changes in facial color due to blood flow variations. Frequency-domain analysis decomposes the HRV signal into its frequency components to assess autonomic function, while time-frequency analysis provides a comprehensive view of HRV dynamics by combining time and frequency information. Emerging deep learning algorithms have shown great promise in HRV estimation from facial videos. Supervised convolutional neural networks can learn complex features from labeled data, enhancing the ability to extract relevant information from facial videos. Recurrent neural networks are effective for modeling temporal dependencies in sequential data, which is particularly useful for HRV estimation where time-series analysis is critical. Transformer models, known for their capacity to handle long-range dependencies and capture intricate patterns, offer further advantages in this domain. Although less commonly used for HRV estimation, unsupervised generative adversarial networks provide potential for generating synthetic data to augment training datasets, improving model robustness and reducing the reliance on large-scale labeled datasets. The performance of traditional and deep learning methods varies across different application scenarios. Traditional methods often perform well in controlled environments but may struggle with complex scenes or dynamic changes, such as varying lighting conditions or head movements. On the other hand, deep learning methods, while more adept at handling complex and noisy data, require large amounts of labeled training data and significant computational resources. This trade-off highlights the strengths and limitations of each approach and underscores the importance of selecting appropriate methods based on specific application needs. Facial video-based HRV estimation has several practical applications. In health assessment, continuous HRV monitoring can provide real-time insights into a patient's health status, enabling timely interventions and personalized treatment adjustments. Emotional recognition involves analyzing facial expressions and HRV to understand emotional states, which can be particularly useful in mental health diagnostics and therapy. Mental stress evaluation uses HRV data to identify individuals at risk of stress-related conditions, which is crucial for preventing burnout and promoting workplace well-being. Fatigue detection is vital for ensuring safety in various professional settings, such as aviation, transportation, and healthcare, where fatigue-related errors could have serious consequences. Early warning of cardiovascular diseases can be achieved through HRV monitoring, providing early alerts for potential health issues and enabling preventative measures. Despite the progress made in facial video-based HRV estimation, there are still challenges to overcome. Subject head movements and different lighting conditions can affect estimation accuracy, making it essential to develop robust algorithms that can handle these variations. Model selection and training strategies need to be optimized to improve performance in diverse real-world scenarios. Enhancing the real-time performance and robustness of these algorithms is crucial for their practical application, particularly in wearable and mobile health monitoring devices. Reducing dependency on large-scale labeled datasets through semi-supervised or unsupervised learning approaches could make these technologies more accessible and scalable, expanding their use in both clinical and consumer health settings. In conclusion, facial video-based HRV estimation technology holds great promise for health monitoring and disease diagnosis. By addressing current challenges and exploring future research directions, this technology can be further refined and integrated into everyday health practices. The ability to estimate HRV non-invasively from facial video has the potential to revolutionize the field of telemedicine and personalized health, offering a convenient, cost-effective, and accessible tool for continuous health monitoring. As research progresses, this innovative approach may become a standard component of modern healthcare, providing valuable insights into individual health status and enhancing overall quality of life.
心率变异性(HRV)人脸视频生理监测信号处理深度学习
Heart rate variability (HRV)face videophysiological monitoringsignal processingdeep learning
Akamatsu Y, Umematsu T, and Imaoka H. 2024. CalibrationPhys: self-supervised video-based heart and respiratory rate measurements by calibrating between multiple cameras. IEEE Journal of Biomedical and Health Informatics, 28(3): 1460-1471 [DOI:10.1109/JBHI.2023.3345486http://dx.doi.org/10.1109/JBHI.2023.3345486].
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, and Cohen RJ. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504): 220-222 [DOI:10.1126/science.6166045http://dx.doi.org/10.1126/science.6166045].
Albahri AS, Duhaim AM, Fadhel MA, Alnoor A, Baqer NS, Alzubaidi L, Albahri OS, Alamoodi AH, and Bai J. 2023. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96: 156-191 [DOI:10.1016/j.inffus.2023.03.008http://dx.doi.org/10.1016/j.inffus.2023.03.008].
Alić B, Zauber T, Wiede C, and Seidl K. 2023. Current methods for contactless optical patient diagnosis: a systematic review. BioMedical Engineering OnLine, 22(1): 61 [DOI:10.1186/s12938-023-01125-8].
Amed K, Lbrahim A-W S, and Sadiq A. 2024. The applications based on video motion magnification techniques. Journal La Multiapp, 5(1): 1-9 [DOI:10.37899/journallamultiapp.v5i1.814http://dx.doi.org/10.37899/journallamultiapp.v5i1.814].
Araújo CR da S, Fernandes J, and Caetano DS. 2023. Endothelial function, arterial stiffness and heart rate variability of patients with cardiovascular diseases hospitalized due to COVID-19. Heart & Lung, 58: 210-216 [DOI:10.1016/j.hrtlng.2022.12.016http://dx.doi.org/10.1016/j.hrtlng.2022.12.016].
Bobbia S, Macwan R, Benezeth Y, Mansouri A, and Dubois J. 2019. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters, 124: 82-90 [DOI:10.1016/j.patrec.2017.10.017http://dx.doi.org/10.1016/j.patrec.2017.10.017].
Bobbia S, Macwan R, Benezeth Y, Mansouri A, and Dubois J. 2019. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters, 124: 82-90 [DOI:https://doi.org/10.1016/j.patrec.2017.10.017http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.10.017].
Casado C Á, Cañellas ML, and López MB. 2023. Depression recognition using remote photoplethysmography from facial videos. IEEE Transactions on Affective Computing, 14(4): 3305-3316 [DOI:10.1109/TAFFC.2023.3238641http://dx.doi.org/10.1109/TAFFC.2023.3238641].
Chan M, Zhu L, Vatanparvar K, Jung H, Kuang J, and Gao A. 2023. Improving heart rate and heart rate variability estimation from video through a HR-RR-tuned filter. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE, p. 1-5 [DOI:10.1109/ICASSP49357.2023.10096576].
Chang H-C. 2023. Noncontact lie detection system involving photoplethysmography and heart rate variability. International Journal of Pattern Recognition and Artificial Intelligence, 37(07): 2350006 [DOI:10.1142/S0218001423500064].
Chang R C-H, Wang C-Y, Chen W-T, and Chiu C-D. 2022. Drowsiness detection system based on perclos and facial physiological signal. Sensors, 22(14): 5380 [DOI:10.3390/s22145380].
Cheng J, Yin C C, Song R C, Fu J and Liu Y. 2024. Facial video-based heart rate measurement against irregular motion artifacts. Journal of Image and Graphics,29(07):2024-2034
成娟,殷辰楚,宋仁成,付静,刘羽 . 2024. 非规律运动伪迹干扰鲁棒的人脸视频心率检测. 中国图象图形学报,29(07):2024-2034[DOI:10. 11834/jig. 230428http://dx.doi.org/10.11834/jig.230428]
Cho A, Park S, Lee H, and Whang M. 2023. The physiological measurement and evaluation of empathy of video content. Scientific Reports, 13(1): 20190 [DOI:10.1038/s41598-023-47288-1].
Das M, Bhuyan MK, and Sharma LN. 2023. Time–Frequency learning framework for rPPG signal estimation using scalogram-based feature map of facial video data. IEEE Transactions on Instrumentation and Measurement, 72: 1-10 [DOI:10.1109/TIM.2023.3287243http://dx.doi.org/10.1109/TIM.2023.3287243].
Ehrmann D, Chatwin H, Schmitt A, Soeholm U, Kulzer B, Axelsen JL, Broadley M, Haak T, Pouwer F, and Hermanns N. 2023. Reduced heart rate variability in people with type 1 diabetes and elevated diabetes distress: results from the longitudinal observational DIA-LINK1 study. Diabetic Medicine, 40(4): e15040 [DOI:10.1111/dme.15040].
Task Force of the European Society of Cardiology the North American Society of Pacing and Electrophysiology. 1996. Heart rate variability. Circulation, 93(5): 1043-1065 [DOI:10.1161/01.CIR.93.5.1043http://dx.doi.org/10.1161/01.CIR.93.5.1043].
van Es V A A, Lopata R G P, Scilingo E P, and Nardelli M. 2023. Contactless cardiovascular assessment by imaging photoplethysmography: a comparison with wearable monitoring. Sensors, 23(3) [DOI:10.3390/s23031505http://dx.doi.org/10.3390/s23031505].
Farah E, Desir A, Marques C, Hegde SR, Abreu A, Polanco PM, Holcomb C, Scott DJ, and Sankaranarayanan G. 2024. Heart rate variability: an objective measure of mental stress in surgical simulation. Global Surgical Education - Journal of the Association for Surgical Education, 3(1): 25 [DOI:10.1007/s44186-023-00220-7].
Feng L, Po L-M, Xu X, Li Y, Cheung C-H, Cheung K-W, and Yuan F. 2015. Dynamic ROI based on K-means for remote photoplethysmography. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 1310-1314 [DOI:10.1109/ICASSP.2015.7178182].
Fontes L, Machado P, Vinkemeier D, Yahaya S, Bird JJ, and Ihianle IK. 2024. Enhancing stress detection: a comprehensive approach through rPPG analysis and deep learning techniques. Sensors, 24(4): 1096 [DOI:10.3390/s24041096].
Goldberger JJ, Challapalli S, Tung R, Parker MA, and Kadish AH. 2001. Relationship of heart rate variability to parasympathetic effect. Circulation, 103(15): 1977-1983 [DOI:10.1161/01.CIR.103.15.1977http://dx.doi.org/10.1161/01.CIR.103.15.1977].
Guler S, Ozturk O, Golparvar A, Dogan H, and Yapici MK. 2022. Effects of illuminance intensity on the green channel of remote photoplethysmography (rPPG) signals. Physical and Engineering Sciences in Medicine, 45(4): 1317-1323 [DOI:10.1007/s13246-022-01175-7http://dx.doi.org/10.1007/s13246-022-01175-7].
Gupta D, and Etemad A. 2024. Remote heart rate monitoring in smart environments from videos with self-supervised pretraining. IEEE Internet of Things Journal, 11(6): 10279-10294 [DOI:10.1109/JIOT.2023.3327623http://dx.doi.org/10.1109/JIOT.2023.3327623].
Gupta A, Ravelo-García AG, and Dias FM. 2022. Availability and performance of face-based non-contact methods for heart rate and oxygen saturation estimations: A systematic review. Computer Methods and Programs in Biomedicine, 219: 106771 [DOI:10.1016/j.cmpb.2022.106771http://dx.doi.org/10.1016/j.cmpb.2022.106771]
de Haan G, and Jeanne V. 2013. Robust pulse rate from chrominance-based rPPG. IEEE Transactions on Biomedical Engineering, 60(10): 2878-2886 [DOI:10.1109/TBME.2013.2266196http://dx.doi.org/10.1109/TBME.2013.2266196].
Hajdu M, Garmpis K, Vértes V, Vorobcsuk-Varga N, Molnár GA, Hejjel L, Wittmann I, and Faludi R. 2023. Determinants of the heart rate variability in type 1 diabetes mellitus. Frontiers in Endocrinology, 14 [DOI:10.3389/fendo.2023.1247054].
Heusch G, Anjos A, and Marcel S. 2017. A reproducible study on remote heart rate measurement [EB/OL]. arXiv preprint arXiv:1709.00962 [DOI:10.48550/arXiv.1709.00962].
Huang B, Lin C-L, Chen W, Juang C-F, and Wu X. 2021. A novel one-stage framework for visual pulse rate estimation using deep neural networks. Biomedical Signal Processing and Control, 66: 102387 [DOI:10.1016/j.bspc.2020.102387].
Huang Y, Xie P, Zhang S, Liu M, Xiong Z, Huang R, Huang Z, Zhong X, and Chen Z. 2024. Interplay of heart rate variability and resting heart rate on mortality in type 2 diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 18(1): 102930 [DOI:10.1016/j.dsx.2023.102930].
Huikuri HV and Stein PK. 2013. Heart rate variability in risk stratification of cardiac patients. Progress in Cardiovascular Diseases, 56(2): 153-159 [DOI:10.1016/j.pcad.2013.07.003http://dx.doi.org/10.1016/j.pcad.2013.07.003]
Jain A, Sphurthy S, Bharadwaj P, and Krishna L. 2023. EVM-iPPG: design and evaluation of a vital monitoring system in NICU. In 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), p. 484-489 [DOI:10.1109/SPIN57001.2023.10117094].
Jaiswal KB, and Meenpal T. 2020. Continuous pulse rate monitoring from facial video using rPPG. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), p. 1-5 [DOI:10.1109/ICCCNT49239.2020.9225371].
Joshi J, and Cho Y. 2024. iBVP dataset: RGB-thermal rPPG dataset with high resolution signal quality labels. Electronics, 13(7): 1334 [DOI:10.3390/electronics13071334].
Karthick R, Dawood MS, and Meenalochini P. 2023. Analysis of vital signs using remote photoplethysmography (RPPG). Journal of Ambient Intelligence and Humanized Computing [DOI:10.1007/s12652-023-04683-w].
Kleiger RE, Miller JP, JrBigger JT, and Moss AJ. 1987. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American Journal of Cardiology, 59(4): 256-262 [DOI:10.1016/0002-9149(87)90795-8http://dx.doi.org/10.1016/0002-9149(87)90795-8]
Kong L, Xie K, Niu K, He J, and Zhang W. 2024. Remote photoplethysmography and motion tracking convolutional neural network with bidirectional long short-term memory: non-invasive fatigue detection method based on multi-modal fusion. Sensors, 24(2): 455 [DOI:10.3390/s24020455].
Kuang H, Ao C, Ma X, and Liu X. 2023. Shuffle-rPPGNet: efficient network with global context for remote heart rate variability measurement. IEEE Sensors Journal, 23(13): 15199-15209 [DOI:10.1109/JSEN.2023.3280168http://dx.doi.org/10.1109/JSEN.2023.3280168].
Kuang H, Lv F, Ma X, and Liu X. 2022. Efficient spatiotemporal attention network for remote heart rate variability analysis. Sensors, 22(3): 1010 [DOI:10.3390/s22031010].
Kullayappa GR, Kumar CM, and Alam KT. 2023. Design of a physiological monitoring device for holistic telemedicine applications. MAPAN, 38(1): 1-19 [DOI:10.1007/s12647-022-00577-yhttp://dx.doi.org/10.1007/s12647-022-00577-y].
Kwon S, Kim J, Lee D, and Park K. 2015. ROI analysis for remote photoplethysmography on facial video. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), p. 4938-4941 [DOI:10.1109/EMBC.2015.7319499].
Lewandowska M and Nowak J. 2012. Measuring pulse rate with a webcam. Journal of Medical Imaging and Health Informatics, 2(1): 87-92 [DOI:10.1166/jmihi.2012.1064http://dx.doi.org/10.1166/jmihi.2012.1064]
Li X, Alikhani I, Shi J, Seppanen T, Junttila J, Majamaa-Voltti K, Tulppo M, and Zhao G. 2018. The OBF database: a large face video database for remote physiological signal measurement and atrial fibrillation detection. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), p. 242-249 [DOI:10.1109/FG.2018.00043].
Li K, Cardoso C, Moctezuma-Ramirez A, Elgalad A, and Perin E. 2023. Heart rate variability measurement through a smart wearable device: another breakthrough for personal health monitoring? International Journal of Environmental Research and Public Health, 20(24) [DOI:10.3390/ijerph20247146http://dx.doi.org/10.3390/ijerph20247146].
Li B, Zhang P, Peng J, and Fu H. 2023. Non-contact PPG signal and heart rate estimation with multi-hierarchical convolutional network. Pattern Recognition, 139: 109421 [DOI:10.1016/j.patcog.2023.109421].
Lin B, Tao J, Xu J, He L, Liu N, and Zhang X. 2023. Estimation of vital signs from facial videos via video magnification and deep learning. iScience, 26(10): 107845 [DOI:10.1016/j.isci.2023.107845].
Liu K, Jiao Y, Du C, Zhang X, Chen X, Xu F, and Jiang C. 2023. Driver stress detection using ultra-short-term HRV analysis under real-world driving conditions. Entropy, 25(2): 194 [DOI:10.3390/e25020194].
Liu P, Song Y, Yang X, Li D, and Khosravi M. 2024. Medical intelligence using PPG signals and hybrid learning at the edge to detect fatigue in physical activities. Scientific Reports, 14(1): 16149 [DOI:10.1038/s41598-024-66839-8].
Liu L, Yu D, Lu H, Shan C, and Wang W. 2024. Camera-based seismocardiogram for heart rate variability monitoring. IEEE Journal of Biomedical and Health Informatics, p. 1-12 [DOI:10.1109/JBHI.2024.3370394http://dx.doi.org/10.1109/JBHI.2024.3370394].
Maity AK, Wang J, Sabharwal A, and Nayar SK. 2022. RobustPPG: camera-based robust heart rate estimation using motion cancellation. Biomedical Optics Express, 13(10): 5447-5467 [DOI:10.1364/BOE.465143http://dx.doi.org/10.1364/BOE.465143]
Maki KA, Goodyke MP, Rasmussen K, and Bronas UG. 2024. An integrative literature review of heart rate variability measures to determine autonomic nervous system responsiveness using pharmacological manipulation. Journal of Cardiovascular Nursing, 39(1): 58-78 [DOI:10.1097/JCN.0000000000001001http://dx.doi.org/10.1097/JCN.0000000000001001].
Malasinghe L, Katsigiannis S, Dahal K, and Ramzan N. 2022. A comparative study of common steps in video-based remote heart rate detection methods. Expert Systems with Applications, 207: 117867 [DOI:10.1016/j.eswa.2022.117867http://dx.doi.org/10.1016/j.eswa.2022.117867]
Malik M, JrBigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, and Schwartz PJ. 1996. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3): 354-381 [DOI:10.1093/oxfordjournals.eurheartj.a014868http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868].
Martinez-Delgado GH, Correa-Balan AJ, May-Chan JA, Parra-Elizondo CE, Guzman-Rangel LA, and Martinez-Torteya A. 2022. Measuring heart rate variability using facial video. Sensors, 22(13): 4690 [DOI:10.3390/s22134690].
McCoy LG, Brenna CTA, Chen SS, Vold K, and Das S. 2022. Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based. Journal of Clinical Epidemiology, 142: 252-257 [DOI:10.1016/j.jclinepi.2021.11.001http://dx.doi.org/10.1016/j.jclinepi.2021.11.001]
McDuff D., 2023, Camera measurement of physiological vital signs: ACM Comput. Surv., v. 55, no. 9, doi:10.1145/3558518http://dx.doi.org/10.1145/3558518.
Molinaro N, Schena E, Silvestri S, Bonotti F, Aguzzi D, Viola E, Buccolini F, and Massaroni C. 2022. Contactless vital signs monitoring from videos recorded with digital cameras: an overview. Frontiers in Physiology, 13: 801709 [DOI:10.3389/fphys.2022.801709].
Morales-Fajardo HM, Rodríguez-Arce J, Gutiérrez-Cedeño A, Viñas JC, Reyes-Lagos JJ, Abarca-Castro EA, Ledesma-Ramírez CI, and Vilchis-González AH. 2022. Towards a non-contact method for identifying stress using remote photoplethysmography in academic environments. Sensors, 22(10): 3780 [DOI:10.3390/s22103780].
Moshawrab M, Adda M, Bouzouane A, Ibrahim H, and Raad A. 2023. Predicting cardiovascular events with machine learning models and heart rate variability. Journal of US-Pakistan Medical Knowledge (JUSPN), 18: 49-59 [DOI:10.5383/JUSPN.18.02.001http://dx.doi.org/10.5383/JUSPN.18.02.001].
Mou H, Li C, Zhou H, Zhang D, Wang W, Yu J, and Tian J. 2024. Using data augmentation to improve the accuracy of blood pressure measurement based on photoplethysmography. Electronics, 13(8) [DOI:10.3390/electronics13081599http://dx.doi.org/10.3390/electronics13081599].
Mu S, Liao S, Tao K, and Shen Y. 2024. Intelligent fatigue detection based on hierarchical multi-scale ECG representations and HRV measures. Biomedical Signal Processing and Control, 92: 106127 [DOI:https://doi.org/10.1016/j.bspc.2024.106127].
Niu X S, Han H and Shan S G. 2020. Remote photoplethysmography_based physiological measurement: a survey[J]. Journal of Image and Graphics, 25(11): 2321-2336.
牛雪松, 韩琥, 山世光. 2020. 基于 rPPG 的生理指标测量方法综述[J].中国图象图形学报, 2020, 25(11): 2321-2336. [DOI: 10.11834/jig.200341http://dx.doi.org/10.11834/jig.200341]
Niu X, Han H, Shan S, and Chen X. 2019. VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video//Jawahar CV, Li H, Mori G, and Schindler K, eds. Computer Vision – ACCV 2018. Cham: Springer International Publishing: 562-576 [DOI:10.1007/978-3-030-20873-8_36http://dx.doi.org/10.1007/978-3-030-20873-8_36]
Odinaev I, Prae-Arporn K, Wong KL, Chin JW, Chan TT, Goyal R, and So RHY. 2022. Camera-based heart rate variability and stress measurement from facial videos. In 2022 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), p. 168-169.
Odinaev I, Wong KL, Chin JW, Goyal R, Chan TT, and So RHY. 2023. Robust heart rate variability measurement from facial videos. Bioengineering, 10(7): 851 [DOI:10.3390/bioengineering10070851].
Panigrahi A, Sharma H, and Mukherjee A. 2024. Video-based HR measurement using adaptive facial regions with multiple color spaces. Biocybernetics and Biomedical Engineering, 44(1): 68-82 [DOI:10.1016/j.bbe.2023.12.001http://dx.doi.org/10.1016/j.bbe.2023.12.001].
Pirzada P, Morrison D, Doherty G, Dhasmana D, and Harris-Birtill D. 2022. Automated remote pulse oximetry system (ARPOS). Sensors, 22(13) [DOI:10.3390/s22134974http://dx.doi.org/10.3390/s22134974].
Pirzada P, Wilde A, Doherty G, and Harris-Birtill D. 2023. Remote photoplethysmography (rPPG): a state-of-the-art review. [DOI:10.1101/2023.10.12.23296882].
Po L-M, Feng L, Li Y, Xu X, Cheung T C-H, and Cheung K-W. 2018. Block-based adaptive ROI for remote photoplethysmography. Multimedia Tools and Applications, 77(6): 6503-6529 [DOI:10.1007/s11042-017-4563-7http://dx.doi.org/10.1007/s11042-017-4563-7].
Poh M-Z, McDuff D J, and Picard R W. 2011. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 58(1): 7-11 [DOI:10.1109/TBME.2010.2086456http://dx.doi.org/10.1109/TBME.2010.2086456].
Premkumar S, and Hemanth D J. 2022. Intelligent remote photoplethysmography-based methods for heart rate estimation from face videos: a survey. Informatics, 9(3) [DOI:10.3390/informatics9030057http://dx.doi.org/10.3390/informatics9030057].
Qayyum A, Mazher M, Nuhu A, Benzinou A, Malik A S, and Razzak I. 2023. Assessment of physiological states from contactless face video: a sparse representation approach. Computing, 105(4): 761-781 [DOI:10.1007/s00607-021-01028-3http://dx.doi.org/10.1007/s00607-021-01028-3].
Qiao D, Ayesha AH, Zulkernine F, Jaffar N, and Masroor R. 2022. ReViSe: remote vital signs measurement using smartphone camera. IEEE Access, 10: 131656-131670 [DOI:10.1109/ACCESS.2022.3229977http://dx.doi.org/10.1109/ACCESS.2022.3229977].
Ramalho D, Constantino P, Silva HPD, Constante M, and Sanches J. 2022. An augmented teleconsultation platform for depressive disorders. IEEE Access, 10: 130563-130571 [DOI:10.1109/ACCESS.2022.3228324http://dx.doi.org/10.1109/ACCESS.2022.3228324].
Rasheed K, Qayyum A, Ghaly M, Al-Fuqaha A, Razi A, and Qadir J. 2022. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Computers in Biology and Medicine, 149: 106043 [DOI:10.1016/j.compbiomed.2022.106043http://dx.doi.org/10.1016/j.compbiomed.2022.106043]
van Ravenswaaij-Arts C M, Kollee L A, Hopman J C, Stoelinga G B, and van Geijn H P. 1993. Heart rate variability. Annals of Internal Medicine, 118(6): 436-447 [DOI:10.7326/0003-4819-118-6-199303150-00008http://dx.doi.org/10.7326/0003-4819-118-6-199303150-00008].
Raysad T, Swarubini P, and Ganapathy N. 2024. Effect of Different Lighting Conditions on Camera-based Non-Contact Vital Sign Monitoring. In 2024 IEEE Applied Sensing Conference (APSCON), p. 1-4 [DOI:10.1109/APSCON60364.2024.10465694].
Sabour R M, Benezeth Y, De Oliveira P, Chappé J, and Yang F. 2023. UBFC-Phys: a multimodal database for psychophysiological studies of social stress. IEEE Transactions on Affective Computing, 14(1): 622-636 [DOI:10.1109/TAFFC.2021.3056960http://dx.doi.org/10.1109/TAFFC.2021.3056960].
Schneider M, and Schwerdtfeger A. 2020. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis. Psychological Medicine, 50(12): 1937-1948 [DOI:10.1017/S003329172000207Xhttp://dx.doi.org/10.1017/S003329172000207X].
Selvaraju V, Spicher N, Wang J, Ganapathy N, Warnecke J M, Leonhardt S, Swaminathan R, and Deserno T M. 2022. Continuous monitoring of vital signs using cameras: a systematic review. Sensors, 22(11) [DOI:10.3390/s22114097http://dx.doi.org/10.3390/s22114097].
Shoushan M M, Reyes B A, Rodriguez A M, and Chong J W. 2021. Contactless heart rate variability (HRV) estimation using a smartphone during respiratory maneuvers and body movement. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico: IEEE, p. 84-87 [DOI:10.1109/EMBC46164.2021.9630167].
Soleymani M, Lichtenauer J, Pun T, and Pantic M. 2012. A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affective Computing, 3(1): 42-55 [DOI:10.1109/T-AFFC.2011.25http://dx.doi.org/10.1109/T-AFFC.2011.25].
Somasundaram S K, Sridevi S, Murugappan M, and VinothKumar B. 2024. Continuous physiological signal monitoring using wearables for the early detection of infectious diseases: a review. In Chowdhury M E H, and Kiranyaz S, eds., Surveillance, Prevention, and Control of Infectious Diseases: PerspectiveAnAI. Cham: Springer Nature Switzerland, p. 193-218 [DOI:10.1007/978-3-031-59967-5_9].
Song R, Chen H, Cheng J, Li C, Liu Y, and Chen X. 2021. PulseGAN: learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE Journal of Biomedical and Health Informatics, 25(5): 1373-1384 [DOI:10.1109/JBHI.2021.3051176http://dx.doi.org/10.1109/JBHI.2021.3051176].
Song R, Li J, Wang M, Cheng J, Li C, and Chen X. 2021. Remote photoplethysmography with an EEMD-MCCA method robust against spatially uneven illuminations. IEEE Sensors Journal, 21(12): 13484-13494 [DOI:10.1109/JSEN.2021.3067770http://dx.doi.org/10.1109/JSEN.2021.3067770].
Speth J, Vatanparvar K, Zhu L, Kuang J, and Gao A. 2024. Freq2Time: weakly supervised learning of camera-based rPPG from heart rate. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 6880-6884 [DOI:10.1109/ICASSP48485.2024.10446054].
Spetlik R, Franc V, Cech J, and Matas J. 2018. Visual heart rate estimation with convolutional neural network//Proceedings of the British Machine Vision Conference (BMVC). [DOI:10.5244/C.32.129http://dx.doi.org/10.5244/C.32.129]
Stein P and Kleiger R. 1999. Insights from the study of heart rate variability. Annual Review of Medicine, 50(1): 249-261 [DOI:10.1146/annurev.med.50.1.249http://dx.doi.org/10.1146/annurev.med.50.1.249]
Stricker R, Müller S, and Gross H-M. 2014. Non-contact video-based pulse rate measurement on a mobile service robot. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication, p. 1056-1062 [DOI:10.1109/ROMAN.2014.6926392].
Su T-J, Hung Y-C, Pan T-S, Lin W-H, Wang S-M, and Lee Y-C. 2023. Estimation of heart rate and heart rate variability with real-time images based on independent component analysis and particle swarm optimization. Applied Sciences, 13(13): 7605 [DOI:10.3390/app13137605].
Sun Z, and Li X. 2024. Contrast-Phys+: unsupervised and weakly-supervised video-based remote physiological measurement via spatiotemporal contrast. IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1-18 [DOI:10.1109/TPAMI.2024.3367910http://dx.doi.org/10.1109/TPAMI.2024.3367910].
Sun Z, and Li X. 2022. Contrast-Phys: unsupervised video-based remote physiological measurement via spatiotemporal contrast. In Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T, eds., Computer Vision – ECCV 2022. Cham: Springer Nature Switzerland, p. 492-510 [DOI:10.1007/978-3-031-19775-8_29].
Sun Z, Vedernikov A, Kykyri V-L, Pohjola M, Nokia M, and Li X. 2022. Estimating stress in online meetings by remote physiological signal and behavioral features. In Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Cambridge United Kingdom: ACM, p. 216-220 [DOI:10.1145/3544793.3563406].
Talukdar D, De Deus LF, and Sehgal N. 2022. Evaluating visual photoplethysmography method. Cureus [DOI:10.7759/cureus.26871].
Tao K, Xie K, Wen C, and He J-B. 2023. Multi-feature fusion prediction of fatigue driving based on improved optical flow algorithm. Signal, Image and Video Processing, 17(2): 371-379 [DOI:10.1007/s11760-022-02242-yhttp://dx.doi.org/10.1007/s11760-022-02242-y].
Tsuji H, Venditti F J, Manders E S, Evans J C, Larson M G, Feldman C L, and Levy D. 1996. Determinants of heart rate variability. Journal of the American College of Cardiology, 28(6): 1539-1546 [DOI:10.1016/S0735-1097(96)00342-7http://dx.doi.org/10.1016/S0735-1097(96)00342-7].
Tulyakov S, Alameda-Pineda X, Ricci E, Yin L, Cohn J F, and Sebe N. 2016. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 2396-2404 [DOI:10.1109/CVPR.2016.263].
Verkruysse W, Svaasand LO, and Nelson JS. 2008. Remote plethysmographic imaging using ambient light. Opt. Express, 16(26): 21434-21445 [DOI:10.1364/OE.16.021434http://dx.doi.org/10.1364/OE.16.021434].
Wang K, Ahmadizar F, Geurts S, Arshi B, Kors J A, Rizopoulos D, Sijbrands E J G, Ikram M A, and Kavousi M. 2023. Heart rate variability and incident type 2 diabetes in general population. The Journal of Clinical Endocrinology & Metabolism, 108(10): 2510-2516 [DOI:10.1210/clinem/dgad200http://dx.doi.org/10.1210/clinem/dgad200].
Wang J, Shan C, Liu L, and Hou Z. 2024. Camera-based physiological measurement: Recent advances and future prospects. Neurocomputing, 575: 127282 [DOI:10.1016/j.neucom.2024.127282http://dx.doi.org/10.1016/j.neucom.2024.127282]
Welsh M R, Mosley E, Laborde S, Day M C, Sharpe B T, Burkill R A, and Birch P D J. 2023. The use of heart rate variability in esports: a systematic review. Psychology of Sport and Exercise, 69: 102495 [DOI:10.1016/j.psychsport.2023.102495].
Williams J, Francombe J, and Murphy D. 2023. Evaluating the influence of room illumination on camera-based physiological measurements for the assessment of screen-based media. Applied Sciences, 13(14): 8482 [DOI:10.3390/app13148482].
Wu C-Y, Chen J-X, Chen Y, Chen A-P, Zhou L, and Wang X. 2024. Pulse rate estimation based on facial videos: an evaluation and optimization of the classical methods using both self-constructed and public datasets. Traditional Medicine Research, 9(1): 2 [DOI:10.53388/TMR20230704001].
Yang Z, Wang H, Liu B, and Lu F. 2024. cbPPGGAN: a generic enhancement framework for unpaired pulse waveforms in camera-based photoplethysmography. IEEE Journal of Biomedical and Health Informatics, 28(2): 598-608 [DOI:10.1109/JBHI.2023.3314282http://dx.doi.org/10.1109/JBHI.2023.3314282].
Yang Z, Wang H, and Lu F. 2022. Assessment of deep learning-based heart rate estimation using remote photoplethysmography under different illuminations. IEEE Transactions on Human-Machine Systems, 52(6): 1236-1246 [DOI:10.1109/THMS.2022.3207755http://dx.doi.org/10.1109/THMS.2022.3207755].
Yu Z, Shen Y, Shi J, Zhao H, Cui Y, Zhang J, Torr P, and Zhao G. 2023. PhysFormer++: facial video-based physiological measurement with slow-fast temporal difference transformer. International Journal of Computer Vision, 131(6): 1307-1330 [DOI:10.1007/s11263-023-01758-1http://dx.doi.org/10.1007/s11263-023-01758-1].
Yu Z, Shen Y, Shi J, Zhao H, Torr P H, and Zhao G. 2022. Physformer: facial video-based physiological measurement with temporal difference transformer//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4186-4196 [DOI:10.48550/arXiv.2111.12082].
Yu S-N, Wang C-S, and Chang Y P. 2023. Heart rate estimation from remote photoplethysmography based on light-weight U-Net and attention modules. IEEE Access, 11: 54058-54069 [DOI:10.1109/ACCESS.2023.3281898http://dx.doi.org/10.1109/ACCESS.2023.3281898].
Yue Z, Shi M, and Ding S. 2023. Facial video-based remote physiological measurement via self-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1-16 [DOI:10.1109/TPAMI.2023.3298650http://dx.doi.org/10.1109/TPAMI.2023.3298650].
Zanelli S, Yacoubi M A E, Hallab M, and Ammi M. 2023. Type 2 diabetes detection with light CNN from single raw PPG wave. IEEE Access, 11: 57652-57665 [DOI:10.1109/ACCESS.2023.3274484http://dx.doi.org/10.1109/ACCESS.2023.3274484].
Zeng Y., Yu D., Song X., Wang Q., Pan L., Lu H., and Wang W. 2024. Camera-based cardiorespiratory monitoring of preterm infants in NICU. IEEE Transactions on Instrumentation and Measurement, 73: 1 - 13 [DOI:10.1109/TIM.2024.3395314http://dx.doi.org/10.1109/TIM.2024.3395314].
Zhang X., Hu M., Zhang Y., Zhai G., and Zhang X. P. 2023. Recent progress of optical imaging approaches for noncontact physiological signal measurement: a review. Advanced Intelligent Systems, 5(9): 2200345 [DOI:10.1002/aisy.202200345].
Zhou L J and Mao J N. 2023. Vision Transformer-based recognition tasks: a critical review. Journal of Image and Graphics,28(10): 2969-3003
周丽娟,毛嘉宁. 2023. 视觉Transformer识别任务研究综述. 中国图象图形学报,28(10):2969-3003[DOI:10. 11834/jig. 220895http://dx.doi.org/10.11834/jig.220895]
Zhou K., Schinle M., Weimar S., Gerdes M., Stock S., and Stork W. 2022. End-to-end deep learning for stress recognition using remote photoplethysmography // 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE: 1435 - 1442 [DOI:10.1109/BIBM55620.2022.9995577].
Zhu K, Pan C, Pang J, Wang J, Li K, Xu F, and Chen Y. 2022. Non-contact heart rate measurement with optimization of variational modal decomposition algorithm//2022 7th International Conference on Signal and Image Processing. [DOI:10.1109/ICSIP55141.2022.9887261].
Zhuang J, Chen Y, Zhang Y, and Zheng X. 2022. FastBVP-Net: a lightweight pulse extraction network for measuring heart rhythm via facial videos [EB/OL]. [2024-09-06]. https://arxiv.org/pdf/2206.12558https://arxiv.org/pdf/2206.12558.
Zizzo A. R., I. Kirkegaard, N. Uldbjerg, J. Hansen, and H. Mølgaard, 2022, Towards better reliability in fetal heart rate variability using time domain and spectral domain analyses. A new method for assessing fetal neurological state? PLOS ONE, v. 17, no. 3, p. 1–17, [DOI:10.1371/journal.pone.0263272http://dx.doi.org/10.1371/journal.pone.0263272.]
相关作者
相关机构