基于机器视觉的半导体晶圆缺陷检测方法综述
Survey of semiconductor wafer defect detection method based on machine vision
- 2025年30卷第1期 页码:25-50
纸质出版日期: 2025-01-16
DOI: 10.11834/jig.240053
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2025-01-16 ,
移动端阅览
胡志强, 吴一全. 2025. 基于机器视觉的半导体晶圆缺陷检测方法综述. 中国图象图形学报, 30(01):0025-0050
Hu Zhiqiang, Wu Yiquan. 2025. Survey of semiconductor wafer defect detection method based on machine vision. Journal of Image and Graphics, 30(01):0025-0050
当今许多新兴科技领域的发展需要集成电路(integrated circuit, IC)技术的支撑。半导体晶圆作为集成电路芯片中的关键角色,因制作工艺复杂,容易产生各种缺陷,其故障会极大地影响芯片的最终工作性能并增加成本。因此半导体晶圆的缺陷检测是保证其良品率和生产率的重要手段。结合机器视觉算法的晶圆缺陷检测方法普适性强、速度快,能更好地满足工业检测的相关需求。鉴于此,综述了近十几年来半导体晶圆缺陷检测方法的研究进展,介绍了晶圆制造的复杂工艺、表面缺陷检测的流程,根据不同的标准将晶圆缺陷进行分类。重点阐述了基于学习的方法,包括有监督机器学习、无监督机器学习、混合学习、半监督学习以及迁移学习5大类。对晶圆缺陷检测的深度神经网络分类为检测网络、分类网络、分割网络与组合网络。随后梳理了在晶圆缺陷检测领域常用的数据集以及性能评价指标。最后总结了晶圆缺陷检测当前存在的问题,对未来的研究方向进行了展望。
The integrated circuit chip is developed on a semiconductor wafer substrate and serves as a fundamental electronic component in many electronic devices. The semiconductor wafer, which is the foundation for manufacturing integrated circuits, contains billions of tiny electronic components. Production is gradually moving toward high-performance and small-sized directions because of the semiconductor industry’s demand for high-quality wafers. In the manufacturing process of wafers, unexpected structures may remain due to environmental, operational, and process-related reasons, leading to a decrease in the operational performance of the wafer chip. These unforeseen structures are referred to as wafer defects. The causes of wafer defects are diverse, with common types including scratches, pits, chemical stains, and dust contamination. The occurrence of unpredictable, mixed, and complex defects can result in increased production costs, decreased product yield, and a decline in manufacturing process stability. Therefore, defect detection on semiconductor wafers is crucial to ensure their performance and improve the yield of high-quality products. Currently, methods for detecting surface defects on semiconductor wafers include manual visual inspection, optical inspection, ultrasonic testing, and machine vision detection. Manual visual inspection involves operators using microscopes or the naked eye to check for obvious defects on the wafer surface, but this method has low efficiency and accuracy for detecting small defects. Optical inspection uses light sources to illuminate the wafer surface and determines the presence of defects by detecting the intensity and shape of reflected and transmitted light. This non-contact method is suitable for large-area defect detection but is less effective for detecting small and shallow defects and cannot identify internal defects within the wafer. Ultrasonic testing utilizes the propagation speed of ultrasonic waves in the wafer, along with the reflection and scattering characteristics of defects such as cracks and voids, but it is sensitive to material density and sound speed, leading to reduced detection effectiveness in specific material. In addition to these three methods, machine vision detection uses image processing and computer vision technology to detect defects on the wafer surface. It is a non-contact, high-speed, automated, cost-effective, and scalable approach, making machine vision-based detection the primary method in the wafer defect detection field today. With the development of computer vision, machine learning, and especially deep learning, the performance of defect identification and classification algorithms for semiconductor wafers has been further enhanced. This not only improves detection efficiency but also reduces production costs and enhances product quality. Machine vision-based detection methods generally fall into three categories: traditional image processing methods, machine learning methods, and deep learning methods. The development of many emerging technology fields today requires the support of integrated circuit technology. As a key role in integrated circuit chips, semiconductor wafers are prone to various defects due to complex manufacturing processes, and their failures will greatly affect the final performance of the chip and increase costs. Therefore, defect detection of semiconductor wafers is an important means to ensure its yield and productivity. Wafer defect detection combined with machine vision algorithms has strong universality and high speed and can better meet the relevant needs of industrial inspection. To have a deeper understanding of the research status of wafer defect detection, this paper conducts a comprehensive and thorough research on the defect detection method based on machine vision. Wafer manufacturing, its surface defect detection process, and the classification of wafer defects are introduced. The detection methods based on traditional image processing, machine learning, and deep learning algorithms are fully explored. Detection methods based on traditional image processing are divided according to the spatial domain and the transform domain. Detection methods based on the spatial domain include template matching, edge gradient, optical flow method, and spatial filtering method and are divided according to the correlation between the defect pattern and the template or the dissimilarity of the background. Detection methods based on the transform domain include wavelet transform, frequency filtering, and Fourier transform. Further research is being conducted on methods based on Fourier transform in the wavelet transform domain. It focuses on the application of machine learning and deep neural network in wafer defect detection. According to the learning method, the learning techniques utilized for wafer defect identification are divided into supervised machine learning, unsupervised machine learning, hybrid learning, semi-supervised learning, and transfer learning; according to the network category, deep neural networks for wafer defect detection is divided into detection network, classification network, segmentation network, and combination network. The detection performance and advantages and disadvantages of each method are compared in depth in each section. From the collected literature, it indicates that research on wafer defect detection based on transformer is increasing year by year. The large datasets shared in this field mainly include WM-811K and MixedWM38. Most of the datasets are not open to the public and are maintained and updated by teams or companies. Representative evaluation indicators mainly include single-label indicators of supervised learning/semi-supervised learning (accuracy, precision, recall, F1 score) and multi-label indicators (micro-precision, micro-recall, exact match ratio, Hamming loss). Unsupervised learning indicators include Rand index, adjusted Rand index, normalized mutual information, adjusted mutual information, and purity. Finally, the existing problems of the current vision-based wafer defect detection are identified, namely, low data availability, serious class imbalance problem, high computational complexity, and limited research on mixed-type defects. Future development trends include multimodal and non-destructive detection techniques and more efficient feature representation learning.
半导体晶圆缺陷检测机器视觉深度神经网络(DNN)机器学习晶圆缺陷数据集
semiconductor waferdefect inspectionmachine visiondeep neural network(DNN)machine learningwafer defect dataset
Abdullah M, Rahman M H and Akhter S. 2021. Pattern recognition in analog wafermaps with multiple ensemble approaches//Proceedings of the 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). DHAKA, Bangladesh: IEEE: 587-591 [DOI: 10.1109/icrest51555.2021.9331084http://dx.doi.org/10.1109/icrest51555.2021.9331084]
Alawieh M B, Boning D and Pan D Z. 2020. Wafer map defect patterns classification using deep selective learning//Proceedings of the 57th ACM/IEEE Design Automation Conference (DAC). San Francisco, USA: IEEE: 1-6 [DOI: 10.1109/dac18072.2020.9218580http://dx.doi.org/10.1109/dac18072.2020.9218580]
Batool U, Shapiai M I, Fauzi H and Fong J X. 2020. Convolutional neural network for imbalanced data classification of silicon wafer defects//Proceedings of the 16th IEEE International Colloquium on Signal Processing and Its Applications (CSPA). Langkawi, Malaysia: IEEE: 230-235 [DOI: 10.1109/cspa48992.2020.9068669http://dx.doi.org/10.1109/cspa48992.2020.9068669]
Batool U, Shapiai M I, Tahir M, Ismail Z H, Zakaria N J and Elfakharany A. 2021. A systematic review of deep learning for silicon wafer defect recognition. IEEE Access, 9: 116572-116593 [DOI: 10.1109/ACCESS.2021.3106171http://dx.doi.org/10.1109/ACCESS.2021.3106171]
Bollmann W. 2012. Crystal Defects and Crystalline Interfaces. Berlin, Heidelberg, Germany: Springer [DOI: 10.1007/978-3-642-49173-3http://dx.doi.org/10.1007/978-3-642-49173-3]
Byun Y and Baek J G. 2020. Mixed pattern recognition methodology on wafer maps with pre-trained convolutional neural networks//Proceedings of the 12th International Conference on Agents and Artificial Intelligence. Valletta, Malta: SciTePress: 974-979 [DOI: 10.5220/0009177909740979http://dx.doi.org/10.5220/0009177909740979]
Cha J and Jeong J. 2022. Improved U-Net with residual attention block for mixed-defect wafer maps. Applied Sciences, 12(4): #2209 [DOI: 10.3390/app12042209http://dx.doi.org/10.3390/app12042209]
Cha J, Oh S, Kim D and Jeong J. 2020. A defect detection model for imbalanced wafer image data using CAE and Xception//Proceedings of 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). Valencia, Spain: IEEE: 28-33 [DOI: 10.1109/idsta50958.2020.9264135http://dx.doi.org/10.1109/idsta50958.2020.9264135]
Chen H Y, Liu J L, Wang S and Liu K. 2019. Robust dislocation defects region segmentation for polysilicon wafer image with random texture background. IEEE Access, 7: 134318-134329 [DOI: 10.1109/access.2019.2942218http://dx.doi.org/10.1109/access.2019.2942218]
Chen J X, Ji Y D, Lin Y Z and Zhu D H. 2020. Wafer etch defect prediction based on hybrid feature selection and hyper-parameter optimization method. Computer Integrated Manufacturing Systems, 26(9): 2396-2403
陈晋贤, 季颖娣, 林义征, 朱定海. 2020. 基于混合特征选择和超参优化的晶圆蚀刻缺陷预测方法. 计算机集成制造系统, 26(9): 2396-2403 [DOI: 10.13196/j.cims.2020.09.009http://dx.doi.org/10.13196/j.cims.2020.09.009]
Chen L L Y, Li K S M, Jiang X H, Wang S J, Huang A Y A, Chen J E, Liang H C and Hsu C L. 2021a. Semi-supervised framework for wafer defect pattern recognition with enhanced labeling//Proceedings of 2021 IEEE International Test Conference (ITC). Anaheim, USA: IEEE: 208-212 [DOI: 10.1109/itc50571.2021.00029http://dx.doi.org/10.1109/itc50571.2021.00029]
Chen S H, Zhang Y X, Yi M L, Ma J and Hou X N. 2021b. Wafer maps defect recognition based on transfer learning of handwritten pre-training network//International Symposium on Computer Technology and Information Science (ISCTIS). Guilin, China: IEEE: 280-283 [DOI: 10.1109/isctis51085.2021.00064http://dx.doi.org/10.1109/isctis51085.2021.00064]
Chen X Y, Chen J Y, Han X G, Zhao C D, Zhang D Y, Zhu K F and Su Y J. 2020. A light-weighted CNN model for wafer structural defect detection. IEEE Access, 8: 24006-24018 [DOI: 10.1109/access.2020.2970461http://dx.doi.org/10.1109/access.2020.2970461]
Cheon S, Lee H, Kim C O and Lee S H. 2019. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Transactions on Semiconductor Manufacturing, 32(2): 163-170 [DOI: 10.1109/tsm.2019.2902657http://dx.doi.org/10.1109/tsm.2019.2902657]
Chien J C, Wu M T and Lee J D. 2020. Inspection and classification of semiconductor wafer surface defects using CNN deep learning networks. Applied Sciences, 10(15): #5340 [DOI: 10.3390/app10155340http://dx.doi.org/10.3390/app10155340]
Chiu M C and Chen T M. 2021. Applying data augmentation and Mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification. IEEE Transactions on Semiconductor Manufacturing, 34(4): 455-463 [DOI: 10.1109/tsm.2021.3118922http://dx.doi.org/10.1109/tsm.2021.3118922]
Devika B and George N. 2019. Convolutional neural network for semiconductor wafer defect detection//Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Kanpur, India: IEEE: 1-6 [DOI: 10.1109/icccnt45670.2019.8944584http://dx.doi.org/10.1109/icccnt45670.2019.8944584]
Di Bella R, Carrera D, Rossi B, Fragneto P and Boracchi G. 2019. Wafer defect map classification using sparse convolutional networks//Proceedings of the 20th International Conference on Image Analysis and Processing. Trento, Italy: Springer: 125-136 [DOI: 10.1007/978-3-030-30645-8_12http://dx.doi.org/10.1007/978-3-030-30645-8_12]
Du D Y and Shi Z. 2020. A wafer map defect pattern classification model based on deep convolutional neural network//Proceedings of the 15th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Kunming, China: IEEE: 1-3 [DOI: 10.1109/icsict49897.2020.9278021http://dx.doi.org/10.1109/icsict49897.2020.9278021]
Ezzat A A, Liu S, Hochbaum D S and Ding Y. 2021. A graph-theoretic approach for spatial filtering and its impact on mixed-type spatial pattern recognition in wafer bin maps. IEEE Transactions on Semiconductor Manufacturing, 34(2): 194-206 [DOI: 10.1109/tsm.2021.3062943http://dx.doi.org/10.1109/tsm.2021.3062943]
Fang X and Shi Z. 2018. Wafer defect detection and classification algorithms based on convolutional neural network. Computer Engineering, 44(8): 218-223
邡鑫, 史峥. 2018. 基于卷积神经网络的晶圆缺陷检测与分类算法. 计算机工程, 44(8): 218-223 [DOI: 10.19678/j.issn.1000-3428.0047107http://dx.doi.org/10.19678/j.issn.1000-3428.0047107]
Geng H, Yang F, Zeng X and Yu B. 2021. When wafer failure pattern classification meets few-shot learning and self-supervised learning//Proceedings of 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD). Munich, Germany: IEEE: 1-8 [DOI: 10.1109/iccad51958.2021.9643518http://dx.doi.org/10.1109/iccad51958.2021.9643518]
Guo Y Q. 2018. Research on Visual Inspection of Wafer Surface Defects. Harbin: Harbin Institute of Technology
郭毅强. 2018. 晶圆表面缺陷视觉检测研究. 哈尔滨: 哈尔滨工业大学
Han H, Gao C Q, Zhao Y, Liao S S, Tang L and Li X D. 2020. Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks. Pattern Recognition Letters, 130: 234-241 [DOI: 10.1016/j.patrec.2018.12.013http://dx.doi.org/10.1016/j.patrec.2018.12.013]
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M and Adam H. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2024-02-01]. http://arxiv.org/pdf/1704.04861.pdfhttp://arxiv.org/pdf/1704.04861.pdf
Hsu C Y and Chien J C. 2022. Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification. Journal of Intelligent Manufacturing, 33(3): 831-844 [DOI: 10.1007/s10845-020-01687-7http://dx.doi.org/10.1007/s10845-020-01687-7]
Hu H B, He C and Li P. 2021. Semi-supervised wafer map pattern recognition using domain-specific data augmentation and contrastive learning//Proceedings of 2021 IEEE International Test Conference (ITC). Anaheim, USA: IEEE: 113-122 [DOI: 10.1109/itc50571.2021.00019http://dx.doi.org/10.1109/itc50571.2021.00019]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2018. Densely connected convolutional networks [EB/OL]. [2024-02-01]. http://arxiv.org/pdf/1608.06993.pdfhttp://arxiv.org/pdf/1608.06993.pdf
Hwang J and Kim H. 2020. Variational deep clustering of wafer map patterns. IEEE Transactions on Semiconductor Manufacturing, 33(3): 466-475 [DOI: 10.1109/tsm.2020.3004483http://dx.doi.org/10.1109/tsm.2020.3004483]
Hyun Y and Kim H. 2020. Memory-augmented convolutional neural networks with triplet loss for imbalanced wafer defect pattern classification. IEEE Transactions on Semiconductor Manufacturing, 33(4): 622-634 [DOI: 10.1109/tsm.2020.3010984http://dx.doi.org/10.1109/tsm.2020.3010984]
Ishida T, Nitta I, Fukuda D and Kanazawa Y. 2019. Deep learning-based wafer-map failure pattern recognition framework//Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED). Santa Clara, USA: IEEE: 291-297 [DOI: 10.1109/isqed.2019.8697407http://dx.doi.org/10.1109/isqed.2019.8697407]
Jang J, Seo M and Kim C O. 2020. Support weighted ensemble model for open set recognition of wafer map defects. IEEE Transactions on Semiconductor Manufacturing, 33(4): 635-643 [DOI: 10.1109/tsm.2020.3012183http://dx.doi.org/10.1109/tsm.2020.3012183]
Ji Y S and Lee J H. 2020. Using GAN to improve CNN performance of wafer map defect type classification: yield enhancement//Proceedings of the 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). Saratoga Springs, USA: IEEE: 1-6 [DOI: 10.1109/asmc49169.2020.9185193http://dx.doi.org/10.1109/asmc49169.2020.9185193]
Jin C H, Kim H J, Piao Y, Li M J and Piao M. 2020. Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes. Journal of Intelligent Manufacturing, 31(8): 1861-1875 [DOI: 10.1007/s10845-020-01540-xhttp://dx.doi.org/10.1007/s10845-020-01540-x]
Jin C H, Na H J, Piao M, Pok G and Ryu K H. 2019. A novel DBSCAN-based defect pattern detection and classification framework for wafer bin map. IEEE Transactions on Semiconductor Manufacturing, 32(3): 286-292 [DOI: 10.1109/tsm.2019.2916835http://dx.doi.org/10.1109/tsm.2019.2916835]
Kaempf U. 1995. The binomial test: a simple tool to identify process problems. IEEE Transactions on Semiconductor Manufacturing, 8(2): 160-166 [DOI: 10.1109/66.382280http://dx.doi.org/10.1109/66.382280]
Kang H and Kang S. 2021. A stacking ensemble classifier with handcrafted and convolutional features for wafer map pattern classification. Computers in Industry, 129: #103450 [DOI: 10.1016/j.compind.2021.103450http://dx.doi.org/10.1016/j.compind.2021.103450]
Kim B, Jeong Y S, Tong S H and Jeong M K. 2020a. A generalised uncertain decision tree for defect classification of multiple wafer maps. International Journal of Production Research, 58(9): 2805-2821 [DOI: 10.1080/00207543.2019.1637035http://dx.doi.org/10.1080/00207543.2019.1637035]
Kim T and Behdinan K. 2023. Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review. Journal of Intelligent Manufacturing, 34(8): 3215-3247 [DOI: 10.1007/s10845-022-01994-1http://dx.doi.org/10.1007/s10845-022-01994-1]
Kim T S, Lee J W, Lee W K and Sohn S Y. 2022. Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm. Journal of Intelligent Manufacturing, 33(6): 1715-1724 [DOI: 10.1007/s10845-021-01755-6http://dx.doi.org/10.1007/s10845-021-01755-6]
Kim Y, Cho D and Lee J H. 2020b. Wafer map classifier using deep learning for detecting out-of-distribution failure patterns//Proceedings of 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). Singapore, Singapore: IEEE: 1-5 [DOI: 10.1109/ipfa49335.2020.9260877http://dx.doi.org/10.1109/ipfa49335.2020.9260877]
Kong Y T and Ni D. 2018. Semi-supervised classification of wafer map based on ladder network//Proceedings of the 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Qingdao, China: IEEE: 1-4 [DOI: 10.1109/icsict.2018.8564982http://dx.doi.org/10.1109/icsict.2018.8564982]
Kong Y T and Ni D. 2020a. Qualitative and quantitative analysis of multi-pattern wafer bin maps. IEEE Transactions on Semiconductor Manufacturing, 33(4): 578-586 [DOI: 10.1109/tsm.2020.3022431http://dx.doi.org/10.1109/tsm.2020.3022431]
Kong Y T and Ni D. 2020b. A semi-supervised and incremental modeling framework for wafer map classification. IEEE Transactions on Semiconductor Manufacturing, 33(1): 62-71 [DOI: 10.1109/tsm.2020.2964581http://dx.doi.org/10.1109/tsm.2020.2964581]
Krizhevsky A, Sutskever I and Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90 [DOI: 10.1145/3065386http://dx.doi.org/10.1145/3065386]
Kyeong K and Kim H. 2018. Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks. IEEE Transactions on Semiconductor Manufacturing, 31(3): 395-402 [DOI: 10.1109/tsm.2018.2841416http://dx.doi.org/10.1109/tsm.2018.2841416]
Lee H and Kim H. 2020. Semi-supervised multi-label learning for classification of wafer bin maps with mixed-type defect patterns. IEEE Transactions on Semiconductor Manufacturing, 33(4): 653-662 [DOI: 10.1109/tsm.2020.3027431http://dx.doi.org/10.1109/tsm.2020.3027431]
Lee H, Kim Y and Kim C O. 2017. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE Transactions on Semiconductor Manufacturing, 30(1): 23-31 [DOI: 10.1109/tsm.2016.2628865http://dx.doi.org/10.1109/tsm.2016.2628865]
Lee H, Lee J and Kim H. 2023. Semi-supervised learning for simultaneous location detection and classification of mixed-type defect patterns in wafer bin maps. IEEE Transactions on Semiconductor Manufacturing, 36(2): 220-230 [DOI: 10.1109/tsm.2023.3264279http://dx.doi.org/10.1109/tsm.2023.3264279]
Lei L J, Sun S L, Xiang Y K, Zhang Y and Liu H K. 2020. Bottleneck issues of computer vision in intelligent manufacturing. Journal of Image and Graphics, 25(7): 1330-1343
雷林建, 孙胜利, 向玉开, 张悦, 刘会凯. 2020. 智能制造中的计算机视觉应用瓶颈问题. 中国图象图形学报, 25(7): 1330-1343 [DOI: 10.11834/jig.190446http://dx.doi.org/10.11834/jig.190446]
Li K S M, Jiang X H, Chen L L Y, Wang S J, Huang A Y A, Chen J E, Liang H C and Hsu C L. 2022. Wafer defect pattern labeling and recognition using semi-supervised learning. IEEE Transactions on Semiconductor Manufacturing, 35(2): 291-299 [DOI: 10.1109/tsm.2022.3159246http://dx.doi.org/10.1109/tsm.2022.3159246]
Li Y and Jiang S X. 2023. Unsupervised wafer defect detection based on improved generative adversarial network. Electronic Measurement Technology, 46(6): 91-99
李阳, 蒋三新. 2023. 基于改进生成对抗网络的无监督晶圆缺陷检测. 电子测量技术, 46(6): 91-99 [DOI: 10.19651/j.cnki.emt.2210828http://dx.doi.org/10.19651/j.cnki.emt.2210828]
Li Y and Wang J G. 2021. A defect detection method based on improved mask R-CNN for wafer maps//Proceedings of 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). Xi’an, China: IEEE: 133-137 [DOI: 10.1109/iccnea53019.2021.00038http://dx.doi.org/10.1109/iccnea53019.2021.00038]
Liao P Y Y, Li K S M, Chen L L Y, Wang S J, Huang A A Y, Cheng K C C, Tsai N C Y and Chou L. 2021. WGrid: wafermap grid pattern recognition with machine learning techniques//Proceedings of 2021 IEEE International Test Conference (ITC). Anaheim, USA: IEEE: 309-313 [DOI: 10.1109/itc50571.2021.00043http://dx.doi.org/10.1109/itc50571.2021.00043]
Liu G L and Yu J B. 2022. Application of neural-symbol model based on stacked denoising auto-encoders in wafer map defect recognition. Acta Automatica Sinica, 48(11): 2688-2702
刘国梁, 余建波. 2022. 基于堆叠降噪自编码器的神经—符号模型及在晶圆表面缺陷识别. 自动化学报, 48(11): 2688-2702 [DOI: 10.16383/j.aas.c190857http://dx.doi.org/10.16383/j.aas.c190857]
Lu X L and Yu J B. 2018. Recognition of wafer defects based on hybrid models and manifold regulation. Computer Integrated Manufacturing Systems, 24(2): 302-308
卢笑蕾, 余建波. 2018. 基于混合模型与流形调节的晶圆表面缺陷识别. 计算机集成制造系统, 24(2): 302-308 [DOI: 10.13196/j.cims.2018.02.003http://dx.doi.org/10.13196/j.cims.2018.02.003]
Maksim K, Kirill B, Eduard Z, Nikita G, Aleksandr B, Arina L, Vladislav S, Daniil M and Nikolay K. 2019. Classification of wafer maps defect based on deep learning methods with small amount of data//Proceedings of 2019 International Conference on Engineering and Telecommunication (EnT). Dolgoprudny, Russia: IEEE: 1-5 [DOI: 10.1109/ent47717.2019.9030550http://dx.doi.org/10.1109/ent47717.2019.9030550]
Nag S, Makwana D, R S C T, Mittal S and Mohan C K. 2022. WaferSegClassNet: a light-weight network for classification and segmentation of semiconductor wafer defects. Computers in Industry, 142: #103720 [DOI: 10.1016/j.compind.2022.103720http://dx.doi.org/10.1016/j.compind.2022.103720]
Nakata K, Orihara R, Mizuoka Y and Takagi K. 2017. A comprehensive big-data-based monitoring system for yield enhancement in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 30(4): 339-344 [DOI: 10.1109/TSM.2017.2753251http://dx.doi.org/10.1109/TSM.2017.2753251]
Nakazawa T and Kulkarni D V. 2018. Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2): 309-314 [DOI: 10.1109/tsm.2018.2795466http://dx.doi.org/10.1109/tsm.2018.2795466]
Nakazawa T and Kulkarni D V. 2019. Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder-decoder neural network architectures in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2): 250-256 [DOI: 10.1109/tsm.2019.2897690http://dx.doi.org/10.1109/tsm.2019.2897690]
Northcutt C, Jiang L and Chuang I. 2021. Confident learning: estimating uncertainty in dataset labels. Journal of Artificial Intelligence Research, 70: 1373-1411 [DOI: 10.1613/jair.1.12125http://dx.doi.org/10.1613/jair.1.12125]
Park S, Jang J and Kim C O. 2021. Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels. Journal of Intelligent Manufacturing, 32(1): 251-263 [DOI: 10.1007/s10845-020-01571-4http://dx.doi.org/10.1007/s10845-020-01571-4]
Piao M, Jin C H, Lee J Y and Byun J Y. 2018. Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features. IEEE Transactions on Semiconductor Manufacturing, 31(2): 250-257 [DOI: 10.1109/tsm.2018.2806931http://dx.doi.org/10.1109/tsm.2018.2806931]
Saqlain M, Abbas Q and Lee J Y. 2020. A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 33(3): 436-444 [DOI: 10.1109/tsm.2020.2994357http://dx.doi.org/10.1109/tsm.2020.2994357]
Saqlain M, Jargalsaikhan B and Lee J Y. 2019. A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2): 171-182 [DOI: 10.1109/tsm.2019.2904306http://dx.doi.org/10.1109/tsm.2019.2904306]
Shawon A, Faruk M O, Habib M B and Khan A M. 2019. Silicon wafer map defect classification using deep convolutional neural network with data augmentation//Proceedings of the 5th IEEE International Conference on Computer and Communications (ICCC). Chengdu, China: IEEE: 1995-1999 [DOI: 10.1109/iccc47050.2019.9064029http://dx.doi.org/10.1109/iccc47050.2019.9064029]
Shen Z L and Yu J B. 2020. Wafer map defect recognition based on transfer learning and deep forest. Journal of Zhejiang University (Engineering Science), 54(6): 1228-1239
沈宗礼, 余建波. 2020. 基于迁移学习与深度森林的晶圆图缺陷识别. 浙江大学学报(工学版), 54(6): 1228-1239 [DOI: 10.3785/j.issn.1008-973X.2020.06.021http://dx.doi.org/10.3785/j.issn.1008-973X.2020.06.021]
Shi H C, Jin Z Y, Tang W J, Wang J, Jiang K and Xia W. 2022. Research on high precision wafer defect detection based on deep learning. Journal of Electronic Measurement and Instrumentation, 36(11): 79-90
史浩琛, 金致远, 唐文婧, 王静, 蒋楷, 夏伟. 2022. 基于深度学习的高精度晶圆缺陷检测方法研究. 电子测量与仪器学报, 36(11): 79-90 [DOI: 10.13382/j.jemi.B2205613http://dx.doi.org/10.13382/j.jemi.B2205613]
Shih P C, Hsu C C and Tien F C. 2020. Automatic reclaimed wafer classification using deep learning neural networks. Symmetry, 12(5): #705 [DOI: 10.3390/sym12050705http://dx.doi.org/10.3390/sym12050705]
Shim J, Kang S and Cho S. 2020. Active learning of convolutional neural network for cost-effective wafer map pattern classification. IEEE Transactions on Semiconductor Manufacturing, 33(2): 258-266 [DOI: 10.1109/tsm.2020.2974867http://dx.doi.org/10.1109/tsm.2020.2974867]
Shinde P P, Pai P P and Adiga S P. 2022. Wafer defect localization and classification using deep learning techniques. IEEE Access, 10: 39969-39974 [DOI: 10.1109/access.2022.3166512http://dx.doi.org/10.1109/access.2022.3166512]
Shon H S, Batbaatar E, Cho W S and Choi S G. 2021. Unsupervised pre-training of imbalanced data for identification of wafer map defect patterns. IEEE Access, 9: 52352-52363 [DOI: 10.1109/ACCESS.2021.3068378http://dx.doi.org/10.1109/ACCESS.2021.3068378]
Shukla N. 2023. Efficient mixed-type wafer defect pattern recognition using compact deformable convolutional transformers. [EB/OL]. [2023-10-17]. http://arxiv.org/pdf/2303.13827.pdfhttp://arxiv.org/pdf/2303.13827.pdf
Song D N, Liu B L and Li Y. 2022. Based on end-to-end object detection algorithm with transformers for detecting wafer maps//Proceedings of 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA). Xi’an, China: IEEE: 297-302 [DOI: 10.1109/iccnea57056.2022.00072http://dx.doi.org/10.1109/iccnea57056.2022.00072]
Taha K, Salah K and Yoo P D. 2018. Clustering the dominant defective patterns in semiconductor wafer maps. IEEE Transactions on Semiconductor Manufacturing, 31(1): 156-165 [DOI: 10.1109/tsm.2017.2768323http://dx.doi.org/10.1109/tsm.2017.2768323]
Tang B, Kong J Y and Wu S Q. 2017. Review of surface defect detection based on machine vision. Journal of Image and Graphics, 22(12): 1640-1663
汤勃, 孔建益, 伍世虔. 2017. 机器视觉表面缺陷检测综述. 中国图象图形学报, 22(12): 1640-1663 [DOI: 10.11834/jig.160623http://dx.doi.org/10.11834/jig.160623]
Tello G, Al-Jarrah O Y, Yoo P D, Al-Hammadi Y, Muhaidat S and Lee U. 2018. Deep-structured machine learning model for the recognition of mixed-defect patterns in semiconductor fabrication processes. IEEE Transactions on Semiconductor Manufacturing, 31(2): 315-322 [DOI: 10.1109/tsm.2018.2825482http://dx.doi.org/10.1109/tsm.2018.2825482]
Theodosiou T, Rapti A, Papageorgiou K, Tziolas T, Papageorgiou E, Dimitriou N, Margetis G and Tzovaras D. 2023. A review study on ML-based methods for defect-pattern recognition in wafer maps. Procedia Computer Science, 217: 570-583 [DOI: 10.1016/j.procs.2022.12.253http://dx.doi.org/10.1016/j.procs.2022.12.253]
Tilli M, Paulasto-Kröckel M, Petzold M, Theuss H, Motooka T and Lindroos V. 2020. Handbook of Silicon based MEMS Materials and Technologies. 3rd ed. Oxford, UK: Elsevier [DOI: 10.1016/c2018-0-01845-9http://dx.doi.org/10.1016/c2018-0-01845-9]
Tsai T H and Lee Y C. 2020a. Wafer map defect classification with depthwise separable convolutions//Proceedings of 2020 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, USA: IEEE: 1-3 [DOI: 10.1109/icce46568.2020.9043041http://dx.doi.org/10.1109/icce46568.2020.9043041]
Tsai T H and Lee Y C. 2020b. A light-weight neural network for wafer map classification based on data augmentation. IEEE Transactions on Semiconductor Manufacturing, 33(4): 663-672 [DOI: 10.1109/tsm.2020.3013004http://dx.doi.org/10.1109/tsm.2020.3013004]
Tulala P, Mahyar H, Ghalebi E and Grosu R. 2018. Unsupervised wafermap patterns clustering via variational autoencoders//Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE: 1-8 [DOI: 10.1109/ijcnn.2018.8489422http://dx.doi.org/10.1109/ijcnn.2018.8489422]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I. 2023. Attention is all you need [EB/OL]. [2023-08-02]. http://arxiv.org/pdf/1706.03762.pdfhttp://arxiv.org/pdf/1706.03762.pdf
Wang J L, Yang Z L, Zhang J, Zhang Q H and Chien W T K. 2019. AdaBalGAN: an improved generative adversarial network with imbalanced learning for wafer defective pattern recognition. IEEE Transactions on Semiconductor Manufacturing, 32(3): 310-319 [DOI: 10.1109/tsm.2019.2925361http://dx.doi.org/10.1109/tsm.2019.2925361]
Wang J L, Xu C Q, Yang Z L, Zhang J and Li X O. 2020. Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition. IEEE Transactions on Semiconductor Manufacturing, 33(4): 587-596 [DOI: 10.1109/tsm.2020.3020985http://dx.doi.org/10.1109/tsm.2020.3020985]
Wang S Y, Zhong Z T, Zhao Y L and Zuo L. 2021. A variational autoencoder enhanced deep learning model for wafer defect imbalanced classification. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(12): 2055-2060 [DOI: 10.1109/tcpmt.2021.3126083http://dx.doi.org/10.1109/tcpmt.2021.3126083]
Wang X Y, Jia X L, Jiang C Y and Jiang S X. 2022. A wafer surface defect detection method built on generic object detection network. Digital Signal Processing, 130: #103718 [DOI: 10.1016/j.dsp.2022.103718http://dx.doi.org/10.1016/j.dsp.2022.103718]
Wang Y and Ni D. 2019. Multi-bin wafer maps defect patterns classification//Proceedings of 2019 IEEE International Conference on Smart Manufacturing, Industrial and Logistics Engineering (SMILE). Hangzhou, China: IEEE: 48-52 [DOI: 10.1109/smile45626.2019.8965299http://dx.doi.org/10.1109/smile45626.2019.8965299]
Wang Y and Ni D. 2023. A deep learning analysis framework for complex wafer bin map classification. IEEE Transactions on Semiconductor Manufacturing, 36(3): 367-377 [DOI: 10.1109/tsm.2023.3269230http://dx.doi.org/10.1109/tsm.2023.3269230]
Wei Y X and Wang H. 2022. Mixed-type wafer defect recognition with multi-scale information fusion transformer. IEEE Transactions on Semiconductor Manufacturing, 35(2): 341-352 [DOI: 10.1109/tsm.2022.3156583http://dx.doi.org/10.1109/tsm.2022.3156583]
Wen G J, Gao Z J, Cai Q, Wang Y D and Mei S. 2020. A novel method based on deep convolutional neural networks for wafer semiconductor surface defect inspection. IEEE Transactions on Instrumentation and Measurement, 69(12): 9668-9680 [DOI: 10.1109/tim.2020.3007292http://dx.doi.org/10.1109/tim.2020.3007292]
Wu M J, Jang J S R and Chen J L. 2015. Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1): 1-12 [DOI: 10.1109/tsm.2014.2364237http://dx.doi.org/10.1109/tsm.2014.2364237]
Yang Y F. 2019. A deep learning model for identification of defect patterns in semiconductor wafer map//Proceedings of the 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). Saratoga Springs, USA: IEEE: 1-6 [DOI: 10.1109/asmc.2019.8791815http://dx.doi.org/10.1109/asmc.2019.8791815]
Yang Y F and Sun M. 2020. Double feature extraction method for wafer map classification based on convolution neural network//Proceedings of the 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). Saratoga Springs, USA: IEEE: 1-6 [DOI: 10.1109/asmc49169.2020.9185393http://dx.doi.org/10.1109/asmc49169.2020.9185393]
Yang Y F and Sun M. 2022. Semiconductor defect detection by hybrid classical-quantum deep learning//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 2313-2322 [DOI: 10.1109/cvpr52688.2022.00236http://dx.doi.org/10.1109/cvpr52688.2022.00236]
Yu J B. 2019. Enhanced stacked denoising autoencoder-based feature learning for recognition of wafer map defects. IEEE Transactions on Semiconductor Manufacturing, 32(4): 613-624 [DOI: 10.1109/tsm.2019.2940334http://dx.doi.org/10.1109/tsm.2019.2940334]
Yu J B and Liu J T. 2021. Two-dimensional principal component analysis-based convolutional autoencoder for wafer map defect detection. IEEE Transactions on Industrial Electronics, 68(9): 8789-8797 [DOI: 10.1109/tie.2020.3013492http://dx.doi.org/10.1109/tie.2020.3013492]
Yu J B, Lu X L and Zong W Z. 2016. Wafer defect detection and recognition based on local and nonlocal linear discriminant analysis and dynamic ensemble of Gaussian mixture models. Acta Automatica Sinica, 42(1): 47-59
余建波, 卢笑蕾, 宗卫周. 2016. 基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别. 自动化学报, 42(1): 47-59 [DOI: 10.16383/j.aas.2016.c150311http://dx.doi.org/10.16383/j.aas.2016.c150311]
Yu J B, Zheng X Y and Liu J T. 2019a. Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map. Computers in Industry, 109: 121-133 [DOI: 10.1016/j.compind.2019.04.015http://dx.doi.org/10.1016/j.compind.2019.04.015]
Yu N G, Chen H S, Xu Q and Hasan M M. 2021a. Wafer map defect recognition with few shot learning based on hybrid self-attention mechanism and prototype network//Proceedings of 2021 China Automation Congress (CAC). Beijing, China: 4128-4134 [DOI: 10.1109/cac53003.2021.9727346http://dx.doi.org/10.1109/cac53003.2021.9727346]
Yu N G, Chen H S, Xu Q, Hasan M M and Sie O. 2023. Wafer map defect patterns classification based on a lightweight network and data augmentation. CAAI Transactions on Intelligence Technology, 8(3): 1029-1042 [DOI: 10.1049/cit2.12126http://dx.doi.org/10.1049/cit2.12126]
Yu N G, Xu Q, Hasan M M and Jiang K. 2021b. Wafer map defect pattern recognition based on self-organizing incremental neural network//Proceedings of 2021 China Automation Congress (CAC). Beijing, China: IEEE: 5617-5622 [DOI: 10.1109/cac53003.2021.9728184http://dx.doi.org/10.1109/cac53003.2021.9728184]
Yu N G, Xu Q and Wang H L. 2019b. Wafer defect pattern recognition and analysis based on convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 32(4): 566-573 [DOI: 10.1109/tsm.2019.2937793http://dx.doi.org/10.1109/tsm.2019.2937793]
Yu N G, Xu Q, Wang H L and Lin J. 2021c. Wafer bin map inspection based on DenseNet. Journal of Central South University, 28(8): 2436-2450 [DOI: 10.1007/s11771-021-4778-7http://dx.doi.org/10.1007/s11771-021-4778-7]
Zhang Q, Zhang Y H, Li J Z and Li Y F. 2022. WDP-BNN: efficient wafer defect pattern classification via binarized neural network. Integration, 85: 76-86 [DOI: 10.1016/j.vlsi.2022.04.003http://dx.doi.org/10.1016/j.vlsi.2022.04.003]
Zhuang J J, Mao G Y, Wang Y, Chen X and Wei Z Y. 2020. A neural-network approach to better diagnosis of defect pattern in wafer bin map//Proceedings of 2020 China Semiconductor Technology International Conference (CSTIC). Shanghai, China: IEEE: 1-3 [DOI: 10.1109/cstic49141.2020.9282438http://dx.doi.org/10.1109/cstic49141.2020.9282438]
相关作者
相关机构