水下图像复原和增强方法研究进展
Research progress of underwater image restoration and enhancement methods
- 2025年30卷第1期 页码:51-65
纸质出版日期: 2025-01-16
DOI: 10.11834/jig.240050
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2025-01-16 ,
移动端阅览
周玲, 刘庆敏, 金凯杰, 赵文义, 张卫东. 水下图像复原和增强方法研究进展[J]. 中国图象图形学报, 2025,30(1):51-65.
ZHOU LING, LIU QINGMIN, JIN KAIJIE, ZHAO WENYI, ZHANG WEIDONG. Research progress of underwater image restoration and enhancement methods. [J]. Journal of image and graphics, 2025, 30(1): 51-65.
自2012年中国提出海洋强国战略以来,水下图像清晰化已成为机器视觉领域的研究热点和挑战。与陆地良好环境中拍摄的图像不同,光在水下传播时受水下介质吸收和散射影响,导致水下图像存在颜色失真、细节模糊、低对比度、亮度不均等问题。低质量水下图像使得水下机器视觉感知面临看不清的挑战,因此研究有效的水下图像增强方法是当前水下视觉领域亟待解决的重要问题。本文在广泛调研的基础上梳理了水下图像质量提升的方法,主要包括图像复原和图像增强两大类。随后,深入讨论了代表性方法,并通过定性和定量评估分析,详细探讨了这些方法的优势和局限性。此外,全面概述了水下图像质量退化问题、提升方法、数据集及评估指标,分析了其在不同场景下的性能,提供了全面的水下图像清晰化方法研究现状。最后,根据水下图像增强和复原方法的难点与目前面临的主要问题对研究方向和发展趋势进行了归纳和展望。这一综合性研究为未来相关领域的研究和实践提供了建议。
Since the inception of the marine power strategy, there has been an increasing focus on an investigation into the quality of underwater images in the marine environment. However, unlike images captured in favorable terrestrial conditions, light propagation underwater is influenced by the absorption and scattering of the underwater medium. Light absorption can result in color distortion, reduced contrast, and diminished brightness in underwater images, while light scattering may cause haziness, loss of details, and noise amplification. The challenge posed by low-quality underwater images hinders effective machine vision in underwater environments. Therefore, researching effective methods for enhancing underwater machine vision has become a critical issue in the current field of underwater vision. This topic holds significant theoretical and practical significance for strengthening marine technological capabilities and promoting the sustained and healthy development of the marine economy. This paper provides a comprehensive overview of existing underwater image clarification methods, highlighting the strengths and disadvantages of each approach. For instance, image restoration based on methods relies on prior assumptions, but an excess of prior knowledge can result in difficulties with multi-parameter optimization and sensitivity to robustness. Meanwhile, image enhancement based on methods only considers the pixel information of the image and does not consider the imaging model, thereby risking noise amplification and local over-enhancement. Consequently, designing simple yet effective methods for underwater image clarification is crucial for improving the quality of underwater images. This paper provides a comprehensive overview of methods to enhance the quality of underwater images through an extensive exploration of image restoration and image enhancement techniques. It concludes with a summary of the methods and their merits and demerits. With regard to image restoration, the methods are categorized into four types: underwater optical imaging, polarization characteristics, prior knowledge, and deep learning. Optical imaging methods primarily consider the optical properties of the water itself, accounting for phenomena such as light attenuation, scattering, and absorption in the underwater environment. These methods rely on physical optical models to characterize underwater light propagation. Polarization characteristic methods involve collecting polarized images from the same scene, separating background light and scattered light, estimating light intensity and transmittance, and inversely obtaining clarified images. Prior methods guide image processing through prior information, and deep learning methods utilize deep neural network models to restore underwater images. For image enhancement-based methods, the overview includes frequency-domain, spatial-domain, color constancy, fusion-based, and deep learning methods. Frequency-domain methods process underwater images through convolution or spatial transformations to achieve enhancement. Spatial-domain methods directly act on image pixels, altering their intrinsic characteristics through techniques such as grayscale mapping, effectively improving image contrast and detail. Color constancy methods enhance images by leveraging color consistency present in the image. Fusion methods apply multiple algorithms to a single input image, generating enhanced versions. Subsequently, fusion weights are calculated for these enhanced images, and the final enhanced image is generated through image fusion. Regarding deep learning-based methods, the summary covers convolutional neural network (CNN)-based and generative adversarial network (GAN)-based approaches. The former employs CNNs to enhance underwater images by learning image features, structure, and deep network processing, whereas the latter utilizes generator and discriminator components in a GAN to enhance and restore underwater images. The paper then delves into a detailed discussion of each method’s innovations, advantages, and limitations, summarizing the above methods comprehensively. Additionally, several commonly used underwater datasets are introduced, and a qualitative and quantitative analysis is conducted on representative clarity methods. This paper provides a comprehensive overview and summary of the degradation issues in underwater images, methods for underwater image clarification, underwater image datasets, and underwater image quality assessment. We selected 11 classical underwater image clarity methods and tested them on standard underwater datasets. We compared and analyzed these methods using five quantitative evaluation metrics. Through qualitative and quantitative comparative analyses, we summarized the strengths and weaknesses of these representative clarity methods and underwater image quality assessment methods, better understanding the current research status in underwater image clarification and outlining future development prospects. This study offers a comprehensive review of methods aimed at enhancing and restoring underwater images. It underscores the significance of enhancing image quality and underscores the scientific and economic potential of underwater image clarification methods in applications such as marine resource development. The study serves as a valuable guide for future research and practices in related fields.
水下图像质量退化光的散射与吸收水下图像清晰化水下图像质量评估
underwater image quality degradationscattering and absorption of lightunderwater image clarityunderwater image quality evaluation
Azmi K Z M, Ghani A S A, Yusof Z M and Ibrahim Z. 2019. Natural-based underwater image color enhancement through fusion of swarm-intelligence algorithm. Applied Soft Computing, 85: #105810 [DOI: 10.1016/j.asoc.2019.105810http://dx.doi.org/10.1016/j.asoc.2019.105810]
Berman D, Levy D, Avidan S and Treibitz T. 2021. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8): 2822-2837 [DOI: 10.1109/TPAMI.2020.2977624http://dx.doi.org/10.1109/TPAMI.2020.2977624]
Chang L B, Song H J, Li M J and Xiang M. 2023. UIDEF: a real-world underwater image dataset and a color-contrast complementary image enhancement framework. ISPRS Journal of Photogrammetry and Remote Sensing, 196: 415-428 [DOI: 10.1016/j.isprsjprs.2023.01.007http://dx.doi.org/10.1016/j.isprsjprs.2023.01.007]
Dong L L, Zhang W D and Xu W H. 2022. Underwater image enhancement via integrated RGB and LAB color models. Signal Processing: Image Communication, 104: #116684 [DOI: 10.1016/j.image.2022.116684http://dx.doi.org/10.1016/j.image.2022.116684]
Fu Z Q, Wang W, Huang Y, Ding X H and Ma K K. 2022. Uncertainty inspired underwater image enhancement//Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer: 465-482 [DOI: 10.1007/978-3-031-19797-0_27http://dx.doi.org/10.1007/978-3-031-19797-0_27]
Gangisetty S and Rai R R. 2022. FloodNet: underwater image restoration based on residual dense learning. Signal Processing: Image Communication, 104: #116647 [DOI: 10.1016/j.image.2022.116647http://dx.doi.org/10.1016/j.image.2022.116647]
Gao C D, Zhao M L, Cao F Y, Wang Z Y, Lu D H, Hu Y Y, Dou J T and Dai J. 2023. Underwater polarization de-scattering imaging based on orthogonal polarization decomposition with low-pass filtering. Optics and Lasers in Engineering, 170: #107796 [DOI: 10.1016/j.optlaseng.2023.107796http://dx.doi.org/10.1016/j.optlaseng.2023.107796]
Ge W Y, Lin Y, Wang Z Y and Yang T Y. 2022. Multi-prior underwater image restoration method via adaptive transmission. Optics Express, 30(14): 24295-24309 [DOI: 10.1364/OE.463865http://dx.doi.org/10.1364/OE.463865]
Gu Y S, Jiang Q P, Shao F and Gao W. 2022. A real-world quality evaluation dataset for enhanced underwater images. Journal of Image and Graphics, 27(5): 1467-1480
顾约瑟, 姜求平, 邵枫, 高伟. 2022. 面向真实水下图像增强的质量评价数据集. 中国图象图形学报, 27(5): 1467-1480 [DOI: 10.11834/jig.210303http://dx.doi.org/10.11834/jig.210303]
Guo J C, Li C Y, Guo C L and Chen S J. 2017. Research progress of underwater image enhancement and restoration methods. Journal of Image and Graphics, 22(3): 273-287
郭继昌, 李重仪, 郭春乐, 陈善继. 2017. 水下图像增强和复原方法研究进展. 中国图象图形学报, 22(3): 273-287 [DOI: 10.11834/jig.20170301http://dx.doi.org/10.11834/jig.20170301]
Guo P F, Zeng D L, Tian Y B, Liu S Y, Liu H T and Li D L. 2020. Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling. Computers and Electronics in Agriculture, 175: #105608 [DOI: 10.1016/j.compag.2020.105608http://dx.doi.org/10.1016/j.compag.2020.105608]
Han J L, Shoeiby M, Malthus T, Botha E, Anstee J, Anwar S, Wei R, Armin M A, Li H D and Petersson L. 2022. Underwater image restoration via contrastive learning and a real-world dataset. Remote Sensing, 14(17): #4297 [DOI: 10.3390/rs14174297http://dx.doi.org/10.3390/rs14174297]
He K M, Sun J and Tang X O. 2013. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6): 1397-1409 [DOI: 10.1109/TPAMI.2012.213http://dx.doi.org/10.1109/TPAMI.2012.213]
Hong L, Wang X, Zhang G and Zhao M. 2023. USOD10K: a new benchmark dataset for underwater salient object detection. IEEE Transactions on Image Processing: #3266163 [DOI: 10.1109/TIP.2023.3266163http://dx.doi.org/10.1109/TIP.2023.3266163]
Hou G J, Li Y X, Yang H, Li K Q and Pan Z K. 2023. UID2021: an underwater image dataset for evaluation of no-reference quality assessment metrics. ACM Transactions on Multimedia Computing, Communications and Applications, 19(4): #151 [DOI: 10.1145/3578584http://dx.doi.org/10.1145/3578584]
Hu K, Weng C H, Shen C W, Wang T Y, Weng L G and Xia M. 2023. A multi-stage underwater image aesthetic enhancement algorithm based on a generative adversarial network. Engineering Applications of Artificial Intelligence, 123: #106196 [DOI: 10.1016/j.engappai.2023.106196http://dx.doi.org/10.1016/j.engappai.2023.106196]
Jiang Q P, Gu Y S, Li C Y, Cong R M and Shao F. 2022a. Underwater image enhancement quality evaluation: benchmark dataset and objective metric. IEEE Transactions on Circuits and Systems for Video Technology, 32(9): 5959-5974 [DOI: 10.1109/TCSVT.2022.3164918http://dx.doi.org/10.1109/TCSVT.2022.3164918]
Jiang Z Y, Li Z X, Yang S Z, Fan X and Liu R S. 2022b. Target oriented perceptual adversarial fusion network for underwater image enhancement. IEEE Transactions on Circuits and Systems for Video Technology, 32(10): 6584-6598 [DOI: 10.1109/TCSVT.2022.3174817http://dx.doi.org/10.1109/TCSVT.2022.3174817]
Li C Y, Anwar S and Porikli F. 2020a. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognition, 98: #107038 [DOI: 10.1016/j.patcog.2019.107038http://dx.doi.org/10.1016/j.patcog.2019.107038]
Li C Y, Guo C L, Ren W Q, Cong R M, Hou J H, Kwong S and Tao D C. 2020b. An underwater image enhancement benchmark dataset and beyond. IEEE Transactions on Image Processing, 29: 4376-4389 [DOI: 10.1109/TIP.2019.2955241http://dx.doi.org/10.1109/TIP.2019.2955241]
Li D Y, Zhou J C, Wang S Y, Zhang D H, Zhang W S, Alwadai R, Alenezi F, Tiwari P and Shi T A. 2023a. Adaptive weighted multiscale retinex for underwater image enhancement. Engineering Applications of Artificial Intelligence, 123: #106457 [DOI: 10.1016/j.engappai.2023.106457http://dx.doi.org/10.1016/j.engappai.2023.106457]
Li J Y, Hou G J and Wang G D. 2023b. Underwater image restoration using oblique gradient operator and light attenuation prior. Multimedia Tools and Applications, 82(5): 6625-6645 [DOI: 10.1007/s11042-022-13605-5http://dx.doi.org/10.1007/s11042-022-13605-5]
Li K Q, Wu L, Qi Q, Liu W J, Gao X, Zhou L Q and Song D L. 2023c. Beyond single reference for training: underwater image enhancement via comparative learning. IEEE Transactions on Circuits and Systems for Video Technology, 33(6): 2561-2576 [DOI: 10.1109/TCSVT.2022.3225376http://dx.doi.org/10.1109/TCSVT.2022.3225376]
Li X J, Hou G J, Li K Q and Pan Z K. 2022. Enhancing underwater image via adaptive color and contrast enhancement, and denoising. Engineering Applications of Artificial Intelligence, 111: #104759 [DOI: 10.1016/j.engappai.2022.104759http://dx.doi.org/10.1016/j.engappai.2022.104759]
Li Y F, Ruan R, Mi Z T, Shen X, Gao T Z and Fu X P. 2023d. An underwater image restoration based on global polarization effects of underwater scene. Optics and Lasers in Engineering, 165: #107550 [DOI: 10.1016/j.optlaseng.2023.107550http://dx.doi.org/10.1016/j.optlaseng.2023.107550]
Liang Z, Ding X Y, Wang Y F, Yan X H and Fu X P. 2022a. GUDCP: generalization of underwater dark channel prior for underwater image restoration. IEEE Transactions on Circuits and Systems for Video Technology, 32(7): 4879-4884 [DOI: 10.1109/TCSVT.2021.3114230http://dx.doi.org/10.1109/TCSVT.2021.3114230]
Liang Z, Zhang W D, Ruan R, Zhuang P X and Li C Y. 2022b. GIFM: an image restoration method with generalized image formation model for poor visible conditions. IEEE Transactions on Geoscience and Remote Sensing, 60: #4110616 [DOI: 10.1109/TGRS.2022.3227548http://dx.doi.org/10.1109/TGRS.2022.3227548]
Lin Y F, Shen L Q, Wang Z Y, Wang K and Zhang X. 2021. Attenuation coefficient guided two-stage network for underwater image restoration. IEEE Signal Processing Letters, 28: 199-203 [DOI: 10.1109/LSP.2020.3048619http://dx.doi.org/10.1109/LSP.2020.3048619]
Liu C F, Shu X, Pan L, Shi J L and Han B. 2023a. Multiscale underwater image enhancement in RGB and HSV color spaces. IEEE Transactions on Instrumentation and Measurement, 72: #5021814 [DOI: 10.1109/TIM.2023.3298395http://dx.doi.org/10.1109/TIM.2023.3298395]
Liu Q, Zhang Q, Liu W, Chen W B, Liu X W and Wang X K. 2023b. WSDS-GAN: a weak-strong dual supervised learning method for underwater image enhancement. Pattern Recognition, 143: #109774 [DOI: 10.1016/j.patcog.2023.109774http://dx.doi.org/10.1016/j.patcog.2023.109774]
Liu S B, Fan H J, Lin S, Wang Q, Ding N D and Tang Y D. 2022. Adaptive learning attention network for underwater image enhancement. IEEE Robotics and Automation Letters, 7(2): 5326-5333 [DOI: 10.1109/LRA.2022.3156176http://dx.doi.org/10.1109/LRA.2022.3156176]
Lu J Y, Li N, Zhang S Y, Yu Z B, Zheng H Y and Zheng B. 2019. Multi-scale adversarial network for underwater image restoration. Optics and Laser Technology, 110: 105-113 [DOI: 10.1016/j.optlastec.2018.05.048http://dx.doi.org/10.1016/j.optlastec.2018.05.048]
Mei X K, Ye X F, Zhang X F, Liu Y S, Wang J T, Hou J and Wang X L. 2022. UIR-Net: a simple and effective baseline for underwater image restoration and enhancement. Remote Sensing, 15(1): #39 [DOI: 10.3390/rs15010039http://dx.doi.org/10.3390/rs15010039]
Muniraj M and Dhandapani V. 2023. Underwater image enhancement by modified color correction and adaptive Look-Up-Table with edge-preserving filter. Signal Processing: Image Communication, 113: #116939 [DOI: 10.1016/j.image.2023.116939http://dx.doi.org/10.1016/j.image.2023.116939]
Panetta K, Gao C and Agaian S. 2016. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 41(3): 541-551 [DOI: 10.1109/JOE.2015.2469915http://dx.doi.org/10.1109/JOE.2015.2469915]
Peng Y T, Cao K M and Cosman P C. 2018. Generalization of the dark channel prior for single image restoration. IEEE Transactions on Image Processing, 27(6): 2856-2868 [DOI: 10.1109/TIP.2018.2813092http://dx.doi.org/10.1109/TIP.2018.2813092]
Qi Q, Li K Q, Zheng H Y, Gao X, Hou G J and Sun K. 2022. SGUIE-Net: semantic attention guided underwater image enhancement with multi-scale perception. IEEE Transactions on Image Processing, 31: 6816-6830 [DOI: 10.48550/arXiv.2201.02832http://dx.doi.org/10.48550/arXiv.2201.02832]
Qian X Q, Liu W F, Zhang J and Cao Y. 2022. Underwater-relevant image object detection based feature-degraded enhancement method. Journal of Image and Graphics, 27(11): 3185-3198
钱晓琪, 刘伟峰, 张敬, 曹洋. 2022. 面向水下图像目标检测的退化特征增强算法. 中国图象图形学报, 27(11): 3185-3198 [DOI: 10.11834/jig.210415http://dx.doi.org/10.11834/jig.210415]
Qiu Q M, Zhang Y R, Gao Z Q and Shao J L. 2023. Underwater Image Restoration Based on Quadtree Hierarchical Search and Transmittance Optimization. Acta Optica Sinica, 43(12): #1201002
邱啟蒙, 张亚加, 高智强, 邵建龙. 2023. 基于四叉树分级搜索和透射率优化的水下图像复原. 光学学报, 43(12): #1201002 [DOI: 10.3788/AOS221598http://dx.doi.org/10.3788/AOS221598]
Ruan R, Zeng W H, Lei Y, Guo Y Y and Liang Z. 2023. Image restoration method based on adaptive multiple priors fusion in scattering scenes//Proceedings Volume 12705, 14th International Conference on Graphics and Image Processing. Nanjing, China: SPIE: 628-636 [DOI: 10.1117/12.2680020http://dx.doi.org/10.1117/12.2680020]
Ruscio F, Costanzi R, Gracias N, Quintana J and Garcia R. 2023. Autonomous boundary inspection of Posidonia oceanica meadows using an underwater robot. Ocean Engineering, 283: #114988 [DOI: 10.1016/j.oceaneng.2023.114988http://dx.doi.org/10.1016/j.oceaneng.2023.114988]
Singh N and Bhandari A K. 2022. Noise aware L2-LP decomposition-based enhancement in extremely low light conditions with web application. IEEE Transactions on Consumer Electronics, 68(2): 161-169 [DOI: 10.1109/TCE.2022.3175907http://dx.doi.org/10.1109/TCE.2022.3175907]
Tian Y, Liu B, Su X Y, Wang L P and Li K. 2019. Underwater imaging based on LF and polarization. IEEE Photonics Journal, 11(1): #6500309 [DOI: 10.1109/JPHOT.2018.2890286http://dx.doi.org/10.1109/JPHOT.2018.2890286]
Wang H, Sun S X and Ren P. 2023. Meta underwater camera: a smart protocol for underwater image enhancement. ISPRS Journal of Photogrammetry and Remote Sensing, 195: 462-481 [DOI: 10.1016/j.isprsjprs.2022.12.007http://dx.doi.org/10.1016/j.isprsjprs.2022.12.007]
Wang H, Sun S X and Ren P. 2024. Underwater color disparities: cues for enhancing underwater images toward natural color consistencies. IEEE Transactions on Circuits and Systems for Video Technology, 32(2): 738-753 [DOI: 10.1109/TCSVT.2023.3289566http://dx.doi.org/10.1109/TCSVT.2023.3289566]
Wang J J, Wan M J, Gu G H, Qian W X, Ren K, Huang Q Y and Chen Q. 2022. Periodic integration-based polarization differential imaging for underwater image restoration. Optics and Lasers in Engineering, 149: #106785 [DOI: 10.1016/j.optlaseng.2021.106785http://dx.doi.org/10.1016/j.optlaseng.2021.106785]
Wang S, Liu G Y, Cao Y, Feng W, Zhao E M and Xing C X. 2022. Research on image denoising technology based on adaptive median filter. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 50(6): 43-48
王帅, 刘光宇, 曹禹, 冯伟, 赵恩铭, 邢传玺. 2022. 改进自适应中值滤波算法的图像去噪研究. 河南科技学院学报(自然科学版), 50(6): 43-48 [DOI: 10.3969/j.issn.2096-9473.2022.06.007http://dx.doi.org/10.3969/j.issn.2096-9473.2022.06.007]
Wang Y D, Guo J C, Gao H and Yue H H. 2021. UIEC2-Net: CNN-based underwater image enhancement using two color space. Signal Processing: Image Communication, 96: #116250 [DOI: 10.1016/j.image.2021.116250http://dx.doi.org/10.1016/j.image.2021.116250]
Xie M D, Sun P, Lang Y B and Fang M E. 2023. Camera-independent color constancy by scene semantics. Pattern Recognition Letters, 171: 106-115 [DOI: 10.1016/j.patrec.2023.03.027http://dx.doi.org/10.1016/j.patrec.2023.03.027]
Yan H R, Zhang Z W, Xu J, Wang T T, An P, Wang A B and Duan Y P. 2023. UW-CycleGAN: model-driven CycleGAN for underwater image restoration. IEEE Transactions on Geoscience and Remote Sensing, 61: #4207517 [DOI:0.1109/TGRS.2023.3315772http://dx.doi.org/0.1109/TGRS.2023.3315772]
Yang M and Sowmya A. 2015. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, 24(12): 6062-6071 [DOI: 10.1109/TIP.2015.2491020http://dx.doi.org/10.1109/TIP.2015.2491020]
Yin M, Du X X, Liu W, Yu L P and Xing Y. 2023. Multiscale fusion algorithm for underwater image enhancement based on color preservation. IEEE Sensors Journal, 23(7): 7728-7740 [DOI: 10.1109/JSEN.2023.3251326http://dx.doi.org/10.1109/JSEN.2023.3251326]
Yuan J Y, Cai Z C and Cao W. 2022. TEBCF: real-world underwater image texture enhancement model based on blurriness and color fusion. IEEE Transactions on Geoscience and Remote Sensing, 60: #4204315 [DOI: 10.1109/TGRS.2021.3110575http://dx.doi.org/10.1109/TGRS.2021.3110575]
Zhang B B, Ji D X, Liu S, Zhu X K and Xu W. 2023a. Autonomous underwater vehicle navigation: a review. Ocean Engineering, 273: #113861 [DOI: 10.1016/j.oceaneng.2023.113861http://dx.doi.org/10.1016/j.oceaneng.2023.113861]
Zhang T C, Li Q, Li Y S and Liu X. 2023b. Underwater optical image restoration method for natural/artificial light. Journal of Marine Science and Engineering, 11(3): #470 [DOI: 10.3390/jmse11030470http://dx.doi.org/10.3390/jmse11030470]
Zhang W D, Dong L L and Xu W H. 2022a. Retinex-inspired color correction and detail preserved fusion for underwater image enhancement. Computers and Electronics in Agriculture, 192: #106585 [DOI: 10.1016/j.compag.2021.106585http://dx.doi.org/10.1016/j.compag.2021.106585]
Zhang W D, Dong L L, Zhang T and Xu W H. 2021. Enhancing underwater image via color correction and Bi-interval contrast enhancement. Signal Processing: Image Communication, 90: #116030 [DOI: 10.1016/j.image.2020.116030http://dx.doi.org/10.1016/j.image.2020.116030]
Zhang W D, Jin S L, Zhuang P X, Liang Z and Li C Y. 2023c. Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement. IEEE Signal Processing Letters, 30: 229-233 [DOI: 10.1109/LSP.2023.3255005http://dx.doi.org/10.1109/LSP.2023.3255005]
Zhang W D, Sun X W, Zhou L, Xie X W, Zhao W Y, Liang Z and Zhuang P X. 2023d. Dual-branch collaborative learning network for crop disease identification. Frontiers in Plant Science, 14: #1117478 [DOI: 10.3389/fpls.2023.1117478http://dx.doi.org/10.3389/fpls.2023.1117478]
Zhang W D, Wang Y D and Li C Y. 2022b. Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE Journal of Oceanic Engineering, 47(3): 718-735 [DOI: 10.1109/JOE.2022.3140563http://dx.doi.org/10.1109/JOE.2022.3140563]
Zhang W D, Zhou L, Zhuang P X, Li G H, Pan X P, Zhao W Y and Li C Y. 2024. Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Transactions on Circuits and Systems for Video Technology, 34(4): 2469-2483 [DOI: 10.1109/TCSVT.2023.3299314http://dx.doi.org/10.1109/TCSVT.2023.3299314]
Zhang W D, Zhuang P X, Sun H H, Li G H, Kwong S and Li C Y. 2022c. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Transactions on Image Processing, 31: 3997-4010 [DOI: 10.1109/TIP.2022.3177129http://dx.doi.org/10.1109/TIP.2022.3177129]
Zhao H Y, Yan J, Luo X Y and Guan X P. 2021. Ubiquitous tracking for autonomous underwater vehicle with IoUT: a rigid-graph-based solution. IEEE Internet of Things Journal, 8(18): 14094-14109 [DOI: 10.1109/JIOT.2021.3068090http://dx.doi.org/10.1109/JIOT.2021.3068090]
Zhao W F, Rong S H, Li T Y, Feng J J and He B. 2023a. Enhancing underwater imagery via latent low-rank decomposition and image fusion. IEEE Journal of Oceanic Engineering, 48(1): 147-159 [DOI: 10.1109/JOE.2022.3192089http://dx.doi.org/10.1109/JOE.2022.3192089]
Zhao Z F, Zhou Z, Lai Y T, Wang T H, Zou S J, Cai H H and Xie H J. 2023b. Single underwater image enhancement based on adaptive correction of channel differential and fusion. Frontiers in Marine Science, 9: #1058019 [DOI: 10.3389/fmars.2022.1058019http://dx.doi.org/10.3389/fmars.2022.1058019]
Zhou J C, Pang L, Zhang D H and Zhang W S. 2023a. Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE Journal of Oceanic Engineering, 48(2): 474-488 [DOI: 10.1109/JOE.2022.3223733http://dx.doi.org/10.1109/JOE.2022.3223733]
Zhou J C, Wang Y Y, Li C Y and Zhang W S. 2023b. Multicolor light attenuation modeling for underwater image restoration. IEEE Journal of Oceanic Engineering, 48(4): 1322-1337 [DOI: 10.1109/JOE.2023.3275615http://dx.doi.org/10.1109/JOE.2023.3275615]
Zhou J C, Yang T Y and Zhang W S. 2023c. Underwater vision enhancement technologies: a comprehensive review, challenges, and recent trends. Applied Intelligence, 53(3): 3594-3621 [DOI: 10.1007/s10489-022-03767-yhttp://dx.doi.org/10.1007/s10489-022-03767-y]
Zhou L, Liu Q M, Fan Y Q, Song X Y, Pan X P and Zhang W D. 2023d. Underwater image enhancement via complementary advantage fusion of global and local contrast. Computers and Electrical Engineering, 112: #108990 [DOI: 10.1016/j.compeleceng.2023.108990http://dx.doi.org/10.1016/j.compeleceng.2023.108990]
Zhou Y, Gu X T and Li Q W. 2022. Underwater image restoration based on background light corrected image formation model. Journal of Electronics and Information Technology, 44(10): 3363-3371
周妍, 顾鑫涛, 李庆武. 2022. 基于背景光修正成像模型的水下图像复原. 电子与信息学报, 44(10): 3363-3371 [DOI: 10.11999/JEIT211012http://dx.doi.org/10.11999/JEIT211012]
Zhuang P X, Li C Y and Wu J M. 2021. Bayesian retinex underwater image enhancement. Engineering Applications of Artificial Intelligence, 101: #104171 [DOI: 10.1016/j.engappai.2021.104171http://dx.doi.org/10.1016/j.engappai.2021.104171]
Zhuang P X, Wu J M, Porikli F and Li C Y. 2022. Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Transactions on Image Processing, 31: 5442-5455 [DOI: 10.1109/TIP.2022.3196546http://dx.doi.org/10.1109/TIP.2022.3196546]
相关文章
相关作者
相关机构