真实场景图像去模糊:挑战与展望
Real-world image deblurring: challenges and prospects
- 2024年29卷第12期 页码:3501-3528
纸质出版日期: 2024-12-16
DOI: 10.11834/jig.230802
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-12-16 ,
移动端阅览
王珮, 朱宇, 闫庆森, 孙瑾秋, 张艳宁. 2024. 真实场景图像去模糊:挑战与展望. 中国图象图形学报, 29(12):3501-3528
Wang Pei, Zhu Yu, Yan Qingsen, Sun Jinqiu, Zhang Yanning. 2024. Real-world image deblurring: challenges and prospects. Journal of Image and Graphics, 29(12):3501-3528
图像去模糊是计算机视觉的基础任务,对医学影像、监控摄像及卫星图像等领域具有重要意义。对于真实场景去模糊任务,由于场景内可能存在多个目标以及复杂的运动,成像过程容易受到许多外界因素的干扰,例如噪声、光照等,使图像去模糊问题更复杂。早期的研究主要针对仿真降质,但由于仿真模型受到多种假设限制,例如高斯噪声和全局一致运动等,难以在真实场景下展现出良好的复原效果。因此,越来越多的学者着手研究真实场景去模糊问题,以提升去模糊方法在现实生活中的使用价值。当前对真实场景下去模糊问题的综述性研究尚处于空白阶段,为此本文对真实场景去模糊任务进行了系统调研,分析其中存在的挑战,从降质模型的角度出发,由浅入深,由易到难,将真实场景下的去模糊问题拆解开,归纳为单一模糊去除方法、复合模糊去除方法以及真实场景下未知模糊去除方法,全方位描述了当前学术界在该问题上的研究内容和方法,总结和对比了各类方法的优缺点,阐述了阻碍复原性能进一步提升的难点问题,并对常用的一些数据集和评价指标进行了整理总结。最后,对真实场景去模糊任务的未来发展前景和研究热点进行了展望,并给出了可能的解决方法。
Image deblurring is a fundamental task in computer vision that holds significant importance in various applications, such as medical imaging, surveillance cameras, and satellite imagery. Over the years, image deblurring has garnered much research attention, leading to the development of numerous dedicated methods. However, in real-world scenarios, the imaging process may be subject to various disturbances that can lead to complex blurring. Certain factors, such as inconsistent object motion, camera lens defocusing, pixel compression during transmission, and insufficient lighting, can lead to a range of intricate blurring phenomena that further amplify the deblurring challenges. In this case, image deblurring in real-world scenarios becomes a complex ill-posed problem, and conventional image deblurring based on simulated blurry degradations methods often falls short when confronted with these real-world deblurring challenges. These limitations are ascribed to the extent of assumptions on which these conventional methods depend. These assumptions include but are not limited to 1) traditional methods often assume that the noise in the image follows a Gaussian distribution; 2) spatially invariant uniform blur assumption; and 3) independence of the blurring phenomena assumption. Although convenient for theoretical analysis and algorithm development, these assumptions prove to be restrictive when applied to the complex deblurring problems encountered in real-world scenarios. Consequently, there is a pressing need to conduct specialized research tailored to the challenges of real-world image deblurring and to enhance the effectiveness of image restoration methods. Real-world image deblurring is an intricate task that requires the development of innovative algorithms and techniques that are capable of accommodating the diversity of blurring factors and the complexities present in practical environments. This paper attempts to create unique deblurring solutions that can efficiently handle real-world scenarios and enhance the practical applicability of deblurring methods. One approach to addressing the above challenges is to design algorithms that are robust to various types of noise and are capable of handling non-uniform and coupled blurring effects. Additionally, machine learning and deep learning have emerged as powerful tools for addressing complex real-world deblurring problems. Deep learning models, such as convolution neural networks and generative adversarial networks, have shown remarkable adaptability in learning from diverse data and producing high-quality deblurred images. Furthermore, researchers are exploring the integration of multiple sensor inputs, including depth information, to improve deblurring accuracy and effectiveness. These multi-modal approaches leverage additional data sources to disentangle complex blurring effects and enhance deblurring performance. As real-world image deblurring continues to gain attention, the research community is expected to contribute valuable insights and develop innovative solutions to further improve image restoration in complex scenarios. The ongoing collaboration among researchers from different fields, including computer vision, machine learning, optics, and imaging, will likely yield breakthroughs in addressing real-world deblurring challenges. In conclusion, real-world image deblurring is a multifaceted problem that requires tailored solutions to overcome the limitations of conventional deblurring methods. By acknowledging the complexities of real-world blurring phenomena and harnessing the power of advanced algorithms, machine learning, and multi-modal approaches, researchers are working toward enhancing image restoration in practical, challenging environments. Despite the growing interest in real-world deblurring, there remains a dearth of comprehensive surveys on the subject. To bridge this gap, this paper conducts a systematic review of real-world deblurring problems. From the perspective of image degradation models, this paper delves into various aspects and breaks down the associated challenges into isolated blur removal methods, coupled blur removal methods, and methods for unknown blur in real-world scenarios. This paper also provides a holistic overview of the state-of-the-art research in this domain, summarizes and contrasts the strengths and weaknesses of various methods, and elucidates the challenges that hinder further improvements in image restoration performance. This paper also offers insights into the prospects and research trends in real-world deblurring tasks and offers potential solutions to the challenges ahead, including the following: 1) Shortage of paired real-world training data: Acquiring high-quality training data with blur and sharp images that accurately represent the diversity of real-world scenarios is a significant challenge. The scarcity of comprehensive, real-world datasets hinders the development of supervised deblurring tasks. To address the lack of real-world data, researchers are exploring data synthesis and unsupervised learning techniques. By generating synthetic data that simulate real-world scenarios, algorithms can be trained on highly diverse data, and unsupervised learning is particularly suitable for improving adaptability to real-world conditions. 2) Efficiency of complex models: Recent deblurring algorithms rely on complex deep learning models to achieve high-quality results. However, the models often result in computational inefficiency, making these algorithms impractical for real-time or resource-constrained applications. The computational overhead and memory requirements of these models also limit their deployment in practical scenarios. Researchers are developing highly efficient model architectures, such as lightweight neural networks and model compression techniques, to strike a balance between computational efficiency and deblurring performance, making them suitable for real-time applications and resource-constrained environments. 3) Overemphasis on degradation metrics: Many deblurring methods prioritize optimizing quantitative metrics related to the reconstruction of image details. While these metrics provide a quantitative measure of image quality, they may not align with the perceptual quality as perceived by the human visual system. Therefore, a narrow focus on these metrics may neglect the importance of achieving results that are visually realistic and aesthetically pleasing to human observers. There has also been a growing emphasis on perceptual quality metrics, which evaluate the visual quality of deblurred images based on human perception. Integrating these metrics into the evaluation process can help ensure that deblurred images are not only quantitatively accurate but also visually pleasing to humans. As research on real-world image deblurring continues, the above challenges are expected to be gradually addressed, thus leading to effective and practical deblurring solutions. This survey aims to provide a comprehensive understanding of the current landscape of research in real-world deblurring and offers a roadmap for further advancements in this critical area of computer vision.
图像去模糊真实场景非均匀模糊复合模糊未知降质表征
image deblurringreal-world scenesnon-uniform blurcoupled blurunknown degradation representation
Abuolaim A and Brown M S. 2020. Defocus deblurring using dual-pixel data//Proceedings of the 16th European Conference on Computer Vision — ECCV 2020. Glasgow, UK: Springer: 111-126 [DOI: 10.1007/978-3-030-58607-2_7http://dx.doi.org/10.1007/978-3-030-58607-2_7]
Albluwi F, Krylov V A and Dahyot R. 2018. Image deblurring and super-resolution using deep convolutional neural networks//Proceedings of the 28th IEEE International Workshop on Machine Learning for Signal Processing. Aalborg, Denmark: IEEE [DOI: 10.1109/MLSP.2018.8516983http://dx.doi.org/10.1109/MLSP.2018.8516983]
Bai H R, Cheng S S, Tang J H and Pan J S. 2021. Learning a cascaded non-local residual network for super-resolving blurry images//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA: IEEE: 223-232 [DOI: 10.1109/CVPRW53098.2021.00031http://dx.doi.org/10.1109/CVPRW53098.2021.00031]
Bascle B, Blake A and Zisserman A. 1996. Motion deblurring and super-resolution from an image sequence//Proceedings of the 4th European Conference on Computer Vision on Computer Vision — ECCV’96. Cambridge, UK: Springer: 571-582 [DOI: 10.1007/3-540-61123-1_171http://dx.doi.org/10.1007/3-540-61123-1_171]
Blau Y and Michaeli T. 2018. The perception-distortion tradeoff//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6228-6237 [DOI: 10.1109/CVPR.2018.00652http://dx.doi.org/10.1109/CVPR.2018.00652]
Cai J F., Chan R H and Nikolova M. 2010. Fast two-phase image deblurring under impulse noise. Journal of Mathematical Imaging and Vision, 36(1): 46-53 [DOI: 10.1007/s10851-009-0169-7http://dx.doi.org/10.1007/s10851-009-0169-7]
Carlavan M and Blanc-Feraud L. 2012. Sparse Poisson noisy image deblurring. IEEE Transactions on Image Processing, 21(4): 1834-1846 [DOI: 10.1109/Tip.2011.2175934http://dx.doi.org/10.1109/Tip.2011.2175934]
Chen C F, Li X M, Yang L B, Lin X H, Zhang L and Wong K Y K. 2021a. Progressive semantic-aware style transformation for blind face restoration//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 11896-11905 [DOI: 10.1109/CVPR46437.2021.01172http://dx.doi.org/10.1109/CVPR46437.2021.01172]
Chen H T, Wang Y H, Guo T Y, Xu C, Deng Y P, Liu Z H, Ma S W, Xu C J, Xu C and Gao W. 2021b. Pre-trained image processing Transformer//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 12294-12305 [DOI: 10.1109/Cvpr46437.2021.01212http://dx.doi.org/10.1109/Cvpr46437.2021.01212]
Chen J, Yuan L, Tang C K and Quan L. 2008. Robust dual motion deblurring//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8 [DOI: 10.1109/CVPR.2008.4587830http://dx.doi.org/10.1109/CVPR.2008.4587830]
Chen J B, Xiong B S, Kuang F and Zhang Z Z. 2023. Motion deblurring based on deep feature fusion attention and double-scale. Journal of Image and Graphics, 28(12): 3731-3743
陈加保, 熊邦书, 况发, 章照中. 2023. 深度特征融合注意力与双尺度的运动去模糊. 中国图象图形学报, 28(12): 3731-3743 [DOI: 10.11834/jig.220931http://dx.doi.org/10.11834/jig.220931]
Chen L Y, Lu X, Zhang J, Chu X J and Chen C P. 2021c. HINet: half instance normalization network for image restoration//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA: IEEE: 182-192 [DOI: 10.1109/CVPRW53098.2021.00027http://dx.doi.org/10.1109/CVPRW53098.2021.00027]
Chen W T, Huang Z K, Tsai C C, Yang H H, Ding J J and Kuo S Y. 2022. Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: toward a unified model//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 17632-17641 [DOI: 10.1109/Cvpr52688.2022.01713http://dx.doi.org/10.1109/Cvpr52688.2022.01713]
Cho S J, Ji S W, Hong J P, Jung S W and Ko S J. 2021. Rethinking coarse-to-fine approach in single image deblurring//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE: 4641-4650 [DOI: 10.1109/ICCV48922.2021.00460http://dx.doi.org/10.1109/ICCV48922.2021.00460]
Chu X, Chen L, Chen C and Lu X. 2022. Improving image restoration by revisiting global information aggregation//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer: 53-71. [DOI:10.1007/978-3-031-20071-7_4http://dx.doi.org/10.1007/978-3-031-20071-7_4]
Chung H, Kim J, Kim S and Ye J C. 2023. Parallel diffusion models of operator and image for blind inverse problems//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 6059-6069 [DOI: 10.1109/CVPR52729.2023.00587http://dx.doi.org/10.1109/CVPR52729.2023.00587]
Deepa P L and Jiji C V. 2019. Non-uniform deblurring from blurry/noisy image pairs//Proceedings of the 4th International Conference on Computer Vision and Image Processing. Jaipur, India: Springer: 216-226 [DOI: 10.1007/978-981-15-4015-8_19http://dx.doi.org/10.1007/978-981-15-4015-8_19]
Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, Olivo-Marin J C and Zerubia J. 2006. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research and Technique, 69(4): 260-266 [DOI: 10.1002/jemt.20294http://dx.doi.org/10.1002/jemt.20294]
Du W C, Chen H and Yang H Y. 2020. Learning invariant representation for unsupervised image restoration//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 14483-14492 [DOI: 10.1109/CVPR42600.2020.01449http://dx.doi.org/10.1109/CVPR42600.2020.01449]
Dupe F X, Fadili J M and Starck J L. 2009. A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Transactions on Image Processing, 18(2): 310-321 [DOI: 10.1109/TIP.2008.2008223http://dx.doi.org/10.1109/TIP.2008.2008223]
Fang Z X, Wu F F, Dong W S, Li X, Wu J J and Shi G M. 2023. Self-supervised non-uniform kernel estimation with flow-based motion prior for blind image deblurring//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 18105-18114 [DOI: 10.1109/CVPR52729.2023.01736http://dx.doi.org/10.1109/CVPR52729.2023.01736]
Fei B, Lyu Z Y, Pan L, Zhang J Z, Yang W D, Luo T Y, Zhang B and Dai B. 2023. Generative diffusion prior for unified image restoration and enhancement//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 9935-9946 [DOI: 10.1109/CVPR52729.2023.00958http://dx.doi.org/10.1109/CVPR52729.2023.00958]
Fergus R, Singh B, Hertzmann A, Roweis S T and Freeman W T. 2006. Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3): 787-794 [DOI: 10.1145/1141911.1141956http://dx.doi.org/10.1145/1141911.1141956]
Gao H Y, Tao X, Shen X Y and Jia J Y. 2019. Dynamic scene deblurring with parameter selective sharing and nested skip connections//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Beach, USA: IEEE: 3848-3856 [DOI: 10.1109/CVPR.2019.00397http://dx.doi.org/10.1109/CVPR.2019.00397]
Gong D, Yang J, Liu L Q, Zhang Y N, Reid I, Shen C H, Van Den Hengel A and Shi Q F. 2017. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 2319-2328 [DOI: 10.1109/CVPR.2017.405http://dx.doi.org/10.1109/CVPR.2017.405]
Gupta A, Joshi N, Lawrence Zitnick C, Cohen M and Curless B. 2010. Single image deblurring using motion density functions//Proceedings of the 11th European Conference on Computer Vision on Computer Vision — ECCV 2010. Heraklion, Crete, Greece: Springer: 171-184 [DOI: 10.1007/978-3-642-15549-9_13http://dx.doi.org/10.1007/978-3-642-15549-9_13]
Hacohen Y, Shechtman E and Lischinski D. 2013. Deblurring by example using dense correspondence//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 2384-2391 [DOI: 10.1109/ICCV.2013.296http://dx.doi.org/10.1109/ICCV.2013.296]
Hu X B, Ren W Q, Yang J L, Cao X C, Wipf D, Menze B, Tong X and Zha H B. 2022. Face restoration via plug-and-play 3D facial priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12): 8910-8926 [DOI: 10.1109/TPAMI.2021.3123085http://dx.doi.org/10.1109/TPAMI.2021.3123085]
Hu X B, Ren W Q, Yu K C, Zhang K H, Cao X C, Liu W and Menze B. 2021. Pyramid architecture search for real-time image deblurring//Proceedings of 2021 IEEE International Conference on Computer Vision. Montreal, Canada: IEEE: 4278-4287 [DOI: 10.1109/ICCV48922.2021.00426http://dx.doi.org/10.1109/ICCV48922.2021.00426]
Hu Z, Cho S, Wang J and Yang M H. 2014. Deblurring low-light images with light streaks//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE: 3382-3389 [DOI: 10.1109/CVPR.2014.432http://dx.doi.org/10.1109/CVPR.2014.432]
Hu Z, Yuan L, Lin S and Yang M H. 2016. Image deblurring using smartphone inertial sensors//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 1855-1864 [DOI: 10.1109/CVPR.2016.205http://dx.doi.org/10.1109/CVPR.2016.205]
Jeon H G, Lee J Y, Han Y, Kim S J and Kweon I S. 2017. Multi-image deblurring using complementary sets of fluttering patterns. IEEE Transactions on Image Processing, 26(5): 2311-2326 [DOI: 10.1109/TIP.2017.2675202http://dx.doi.org/10.1109/TIP.2017.2675202]
Jiang Z, Zhang Y, Zou D Q, Ren J, Lv J C and Liu Y B. 2020. Learning event-based motion deblurring//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3320-3329 [DOI: 10.1109/CVPR42600.2020.00338http://dx.doi.org/10.1109/CVPR42600.2020.00338]
Kaufman A and Fattal R. 2020. Deblurring using analysis-synthesis networks pair//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 5811-5820 [DOI: 10.1109/CVPR42600.2020.00585http://dx.doi.org/10.1109/CVPR42600.2020.00585]
Kim K, Lee S and Cho S. 2022. MSSNet: multi-scale-stage network for single image deblurring//Proceedings of Computer Vision — ECCV 2022 Workshops. Tel Aviv, Israel: Springer [DOI: 10.1007/978-3-031-25063-7_32http://dx.doi.org/10.1007/978-3-031-25063-7_32]
Koh J, Lee J and Yoon S. 2021. Single-image deblurring with neural networks: a comparative survey. Computer Vision and Image Understanding, 203: #103134 [DOI: 10.1016/j.cviu.2020.103134http://dx.doi.org/10.1016/j.cviu.2020.103134]
Köhler R, Hirsch M, Mohler B, Schölkopf B and Harmeling S. 2012. Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database//Proceedings of the 12th European Conference on Computer Vision on Computer Vision — ECCV 2012. Florence, Italy: Springer: 27-40 [DOI: 10.1007/978-3-642-33786-4_3http://dx.doi.org/10.1007/978-3-642-33786-4_3]
Kong L S, Dong J X, Ge J J, Li M Q and Pan J S. 2023. Efficient frequency domain-based Transformers for high-quality image deblurring//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 5886-5895 [DOI: 10.1109/CVPR52729.2023.00570http://dx.doi.org/10.1109/CVPR52729.2023.00570]
Krishnan D and Fergus R. 2009. Fast image deconvolution using hyper-Laplacian priors [EB/OL]. [2023-11-20]. https://proceedings.neurips.cc/paper_files/paper/2009/file/3dd48ab31d016ffcbf3314df2b3cb9ce-Paper.pdfhttps://proceedings.neurips.cc/paper_files/paper/2009/file/3dd48ab31d016ffcbf3314df2b3cb9ce-Paper.pdf
Kupyn O, Budzan V, Mykhailych M, Mishkin D and Matas J. 2018. Deblurgan: blind motion deblurring using conditional adversarial networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Lake City, USA: IEEE: 8183-8192 [DOI: 10.1109/CVPR.2018.00854http://dx.doi.org/10.1109/CVPR.2018.00854]
Kupyn O, Martyniuk T, Wu J R and Wang Z Y. 2019. Deblurgan-v2: deblurring (orders-of-magnitude) faster and better//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 8878-8887 [DOI: 10.1109/ICCV.2019.00897http://dx.doi.org/10.1109/ICCV.2019.00897]
Lai W S, Huang J B, Hu Z, Ahuja N and Yang M H. 2016. A comparative study for single image blind deblurring//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 1701-1709 [DOI: 10.1109/CVPR.2016.188http://dx.doi.org/10.1109/CVPR.2016.188]
Lai W S, Shih Y C, Chu L C, Wu X T, Tsai S F, Krainin M, Sun D Q and Liang C K. 2022. Face deblurring using dual camera fusion on mobile phones. ACM Transactions on Graphics, 41(4): #148 [DOI: 10.1145/3528223.3530131http://dx.doi.org/10.1145/3528223.3530131]
Levin A. 2006. Blind motion deblurring using image statistics [EB/OL]. [2023-11-20]. https://proceedings.neurips.cc/paper_files/paper/2006/file/2bb0502c80b7432eee4c5847a5fd077b-Paper.pdfhttps://proceedings.neurips.cc/paper_files/paper/2006/file/2bb0502c80b7432eee4c5847a5fd077b-Paper.pdf
Levin A, Fergus R, Durand F and Freeman W T. 2007. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 26(3): #70-es [DOI: 10.1145/1276377.1276464http://dx.doi.org/10.1145/1276377.1276464]
Levin A, Weiss Y, Durand F and Freeman W T. 2009. Understanding and evaluating blind deconvolution algorithms//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 1964-1971 [DOI: 10.1109/CVPR.2009.5206815http://dx.doi.org/10.1109/CVPR.2009.5206815]
Levin A, Weiss Y, Durand F and Freeman W T. 2011. Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12): 2354-2367 [DOI: 10.1109/TPAMI.2011.148http://dx.doi.org/10.1109/TPAMI.2011.148]
Li B Y, Liu X, Hu P, Wu Z Q, Lv J C and Peng X. 2022a. All-in-one image restoration for unknown corruption//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 17452-17462 [DOI: 10.1109/CVPR52688.2022.01693http://dx.doi.org/10.1109/CVPR52688.2022.01693]
Li D S, Zhang Y, Cheung K C, Wang X G, Qin H W and Li H S. 2022b. Learning degradation representations for image deblurring//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer: 736-753 [DOI: 10.1007/978-3-031-19797-0_42http://dx.doi.org/10.1007/978-3-031-19797-0_42]
Li L, Pan J S, Lai W S, Gao C X, Sang N and Yang M H. 2020a. Dynamic scene deblurring by depth guided model. IEEE Transactions on Image Processing, 29: 5273-5288 [DOI: 10.1109/TIP.2020.2980173http://dx.doi.org/10.1109/TIP.2020.2980173]
Li R T, Tan R T and Cheong L F. 2020b. All in one bad weather removal using architectural search//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3172-3182 [DOI: 10.1109/CVPR42600.2020.00324http://dx.doi.org/10.1109/CVPR42600.2020.00324]
Li W, Zhang J and Dai Q H. 2011. Exploring aligned complementary image pair for blind motion deblurring//Proceedings of CVPR 2011. Colorado Springs, USA: IEEE: 273-280 [DOI: 10.1109/CVPR.2011.5995351http://dx.doi.org/10.1109/CVPR.2011.5995351]
Li W, Zhang J and Dai Q H. 2013. Robust blind motion deblurring using near-infrared flash image. Journal of Visual Communication and Image Representation, 24(8): 1394-1413 [DOI: 10.1016/j.jvcir.2013.09.008http://dx.doi.org/10.1016/j.jvcir.2013.09.008]
Li X, Jin X, Lin J X, Liu S, Wu Y J, Yu T, Zhou W and Chen Z B. 2020c. Learning disentangled feature representation for hybrid-distorted image restoration//Proceedings of the 16th European Conference on Computer Vision — ECCV 2020. Glasgow, UK: Springer: 313-329 [DOI: 10.1007/978-3-030-58526-6_19http://dx.doi.org/10.1007/978-3-030-58526-6_19]
Li X, Li B C, Jin X, Lan C L and Chen Z B. 2023. Learning distortion invariant representation for image restoration from a causality perspective//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 1714-1724 [DOI: 10.1109/CVPR52729.2023.00171http://dx.doi.org/10.1109/CVPR52729.2023.00171]
Li X M, Liu M, Ye Y T, Zuo W M, Lin L and Yang R G. 2018. Learning warped guidance for blind face restoration//Proceedings of the 15th European Conference on Computer Vision — ECCV 2018. Munich, Germany: Springer: 272-289 [DOI: 10.1007/978-3-030-01261-8_17http://dx.doi.org/10.1007/978-3-030-01261-8_17]
Li Y W, Pan J S, Luo Y and Lu J W. 2022c. Deep ranking exemplar-based dynamic scene deblurring. IEEE Transactions on Image Processing, 31: 2245-2256 [DOI: 10.1109/TIP.2022.3142518http://dx.doi.org/10.1109/TIP.2022.3142518]
Liang Z W, Zhang D Y and Shao J. 2019. Jointly solving deblurring and super-resolution problems with dual supervised network///Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE: 790-795 [DOI: 10.1109/ICME.2019.00141http://dx.doi.org/10.1109/ICME.2019.00141]
Liu R S, Ma L, Zhang J A, Fan X and Luo Z X. 2021. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 10556-10565 [DOI: 10.1109/CVPR46437.2021.01042http://dx.doi.org/10.1109/CVPR46437.2021.01042]
Lu B, Chen J C and Chellappa R. 2019. Unsupervised domain-specific deblurring via disentangled representations//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Beach, USA: IEEE: 10225-10234 [DOI: 10.1109/CVPR.2019.01047http://dx.doi.org/10.1109/CVPR.2019.01047]
Nah S, Kim T H and Lee K M. 2017. Deep multi-scale convolutional neural network for dynamic scene deblurring//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 3883-3891 [DOI: 10.1109/CVPR.2017.35http://dx.doi.org/10.1109/CVPR.2017.35]
Pan J S, Hu Z, Su Z X, Lee H Y and Yang M H. 2016a. Soft-segmentation guided object motion deblurring//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 459-468 [DOI: 10.1109/CVPR.2016.56http://dx.doi.org/10.1109/CVPR.2016.56]
Pan J S, Hu Z, Su Z X and Yang M H. 2014. Deblurring text images via L0-regularized intensity and gradient prior//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 2901-2908 [DOI: 10.1109/CVPR.2014.371http://dx.doi.org/10.1109/CVPR.2014.371]
Pan J S, Ren W Q, Hu Z and Yang M H. 2019a. Learning to deblur images with exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(6): 1412-1425 [DOI: 10.1109/TPAMI.2018.2832125http://dx.doi.org/10.1109/TPAMI.2018.2832125]
Pan J S, Sun D Q, Pfister H and Yang M H. 2016b. Blind image deblurring using dark channel prior//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 1628-1636 [DOI: 10.1109/CVPR.2016.180http://dx.doi.org/10.1109/CVPR.2016.180]
Pan L Y, Scheerlinck C, Yu X, Hartley R, Liu M and Dai Y C. 2019b. Bringing a blurry frame alive at high framerate with an event camera//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 6820-6829 [DOI: 10.1109/CVPR.2019.00698http://dx.doi.org/10.1109/CVPR.2019.00698]
Park D, Kang D U, Kim J and Chun S Y. 2020. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training//Proceedings of the 16th European Conference on Computer Vision — ECCV 2020. Glasgow, UK: Springer: 327-343 [DOI: 10.1007/978-3-030-58539-6_20http://dx.doi.org/10.1007/978-3-030-58539-6_20]
Park D, Lee B H and Chun S Y. 2023. All-in-one image restoration for unknown degradations using adaptive discriminative filters for specific degradations//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 5815-5824 [DOI: 10.1109/CVPR52729.2023.00563http://dx.doi.org/10.1109/CVPR52729.2023.00563]
Qiu F, Hou F, Yuan Y and Wang W C. 2019. Blind image deblurring with reinforced use of edges. Journal of Image and Graphics, 24(6): 847-858
邱枫, 侯飞, 袁野, 王文成. 2019. 加强边缘感知的盲去模糊算法. 中国图象图形学报, 24(6): 847-858 [DOI: 10.11834/jig.180543http://dx.doi.org/10.11834/jig.180543]
Rav-Acha A and Peleg S. 2000. Restoration of multiple images with motion blur in different directions//Proceedings of the 5th IEEE Workshop on Applications of Computer Vision. Palm Springs, USA: IEEE: 22-28 [DOI: 10.1109/WACV.2000.895398http://dx.doi.org/10.1109/WACV.2000.895398]
Rav-Acha A and Peleg S. 2005. Two motion-blurred images are better than one. Pattern recognition letters, 26(3): 311-317 [DOI: 10.1016/j.patrec.2004.10.017http://dx.doi.org/10.1016/j.patrec.2004.10.017]
Ren D W, Zhang K, Wang Q L, Hu Q H and Zuo W M. 2020. Neural blind deconvolution using deep priors//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3338-3347 [DOI: 10.1109/CVPR42600.2020.00340http://dx.doi.org/10.1109/CVPR42600.2020.00340]
Ren W Q, Pan J S, Cao X C and Yang M H. 2017. Video deblurring via semantic segmentation and pixel-wise non-linear kernel//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 1077-1085 [DOI: 10.1109/ICCV.2017.123http://dx.doi.org/10.1109/ICCV.2017.123]
Richardson W H. 1972. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62(1): 55-59
Rim J, Kim G, Kim J, Lee J, Lee S and Cho S. 2022. Realistic blur synthesis for learning image deblurring//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer: 487-503 [DOI: 10.1007/978-3-031-20071-7_29http://dx.doi.org/10.1007/978-3-031-20071-7_29]
Rim J, Lee H, Won J and Cho S. 2020. Real-world blur dataset for learning and benchmarking deblurring algorithms//Proceedings of the 16th European Conference on Computer Vision — ECCV 2020. Glasgow, UK: Springer: 184-201 [DOI: 10.1007/978-3-030-58595-2_12http://dx.doi.org/10.1007/978-3-030-58595-2_12]
Schmidt U, Schelten K and Roth S. 2011. Bayesian deblurring with integrated noise estimation//Proceedings of CVPR 2011. Colorado Springs, USA: IEEE: 2625-2632 [DOI: 10.1109/CVPR.2011.5995653http://dx.doi.org/10.1109/CVPR.2011.5995653]
Shan Q, Jia J Y and Agarwala A. 2008. High-quality motion deblurring from a single image. ACM Transactions on Graphics, 27(3): 1-10 [DOI: 10.1145/1360612.1360672http://dx.doi.org/10.1145/1360612.1360672]
Shang W, Ren D W, Zou D Q, Ren J S, Luo P and Zuo W M. 2021. Bringing events into video deblurring with non-consecutively blurry frames//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE: 4531-4540 [DOI: 10.1109/ICCV48922.2021.00449http://dx.doi.org/10.1109/ICCV48922.2021.00449]
Shen Z Y, Lai W S, Xu T F, Kautz J and Yang M H. 2020. Exploiting semantics for face image deblurring. International Journal of Computer Vision, 128(7): 1829-1846 [DOI: 10.1007/s11263-019-01288-9http://dx.doi.org/10.1007/s11263-019-01288-9]
Shen Z Y, Lai W S, Xu T F, Kautz J and Yang M H. 2018. Deep semantic face deblurring//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8260-8269 [DOI: 10.1109/CVPR.2018.00862http://dx.doi.org/10.1109/CVPR.2018.00862]
Shin C J, Lee T B and Heo Y S. 2021. Dual image deblurring using deep image prior. Electronics, 10(17): #2045 [DOI: 10.3390/electronics10172045http://dx.doi.org/10.3390/electronics10172045]
Song J M, Meng C L and Ermon S. 2020. Denoising diffusion implicit models//Proceedings of 2020 International Conference on Learning Representations [EB/OL]. [2023-11-20]. http://arxiv.org/pdf/2010.02502.pdfhttp://arxiv.org/pdf/2010.02502.pdf
Sun J, Cao W F, Xu Z B and Ponce J. 2015. Learning a convolutional neural network for non-uniform motion blur removal//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 769-777 [DOI: 10.1109/CVPR.2015.7298677http://dx.doi.org/10.1109/CVPR.2015.7298677]
Sun L, Sakaridis C, Liang J Y, Jiang Q, Yang K L, Sun P, Ye Y Z, Wang K W and Van Gool L. 2022. Event-based fusion for motion deblurring with cross-modal attention//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer: 412-428 [DOI: 10.1007/978-3-031-19797-0_24http://dx.doi.org/10.1007/978-3-031-19797-0_24]
Tao X, Gao H Y, Shen X Y, Wang J and Jia J Y. 2018. Scale-recurrent network for deep image deblurring//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8174-8182 [DOI: 10.1109/CVPR.2018.00853http://dx.doi.org/10.1109/CVPR.2018.00853]
Tsai F J, Peng Y T, Lin Y Y, Tsai C C and Lin C W. 2022a. Stripformer: strip Transformer for fast image deblurring//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer: 146-162 [DOI: 10.1007/978-3-031-19800-7_9http://dx.doi.org/10.1007/978-3-031-19800-7_9]
Tsai F J., Peng Y T, Tsai C C, Lin Y Y and Lin C W. 2022b. BANet: a blur-aware attention network for dynamic scene deblurring. IEEE Transactions on Image Processing, 31: 6789-6799 [DOI: 10.1109/TIP.2022.3216216http://dx.doi.org/10.1109/TIP.2022.3216216]
Wang B S, He J W, Yu L, Xia G S and Yang W. 2020a. Event enhanced high-quality image recovery//Proceedings of the 16th European Conference on Computer Vision — ECCV 2020. Glasgow, UK: Springer: 155-171 [DOI: 10.1007/978-3-030-58601-0_10http://dx.doi.org/10.1007/978-3-030-58601-0_10]
Wang L, Li D, Zhu Y S, Tian L and Shan Y. 2020b. Dual super-resolution learning for semantic segmentation//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3774-3783 [DOI: 10.1109/CVPR42600.2020.00383http://dx.doi.org/10.1109/CVPR42600.2020.00383]
Wang L G, Wang Y Q, Dong X Y, Xu Q Y, Yang J G, An W and Guo Y L. 2021. Unsupervised degradation representation learning for blind super-resolution//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 10576-10585 [DOI: 10.1109/CVPR46437.2021.01044http://dx.doi.org/10.1109/CVPR46437.2021.01044]
Wang R X and Tao D C. 2014. Recent progress in image deblurring [EB/OL]. [2023-11-20]. https://doi.org/10.48550/arXiv.1409.6838.pdfhttps://doi.org/10.48550/arXiv.1409.6838.pdf
Wang X T, Yu K, Dong C and Loy C C. 2018. Recovering realistic texture in image super-resolution by deep spatial feature transform//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE [DOI: 10.1109/CVPR.2018.00070http://dx.doi.org/10.1109/CVPR.2018.00070]
Wang Z D, Cun X D, Bao J M, Zhou W G, Liu J Z and Li H Q. 2022. Uformer: a general U-shaped Transformer for image restoration//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 17683-17693 [DOI: 10.1109/CVPR52688.2022.01716http://dx.doi.org/10.1109/CVPR52688.2022.01716]
Whang J, Delbracio M, Talebi H, Saharia C, Dimakis A G and Milanfar P. 2022. Deblurring via stochastic refinement//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 16272-16282 [DOI: 10.1109/CVPR52688.2022.01581http://dx.doi.org/10.1109/CVPR52688.2022.01581]
Wiener N. 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: with Engineering Applications. Cambridge, USA: the MIT Press
Wu D, Zhao H T and Zheng S B. 2020. Motion deblurring method based on DenseNets. Journal of Image and Graphics, 25(5): 890-899
吴迪, 赵洪田, 郑世宝. 2020. 密集连接卷积网络图像去模糊. 中国图象图形学报, 25(5): 890-899 [DOI: 10.11834/jig.190400http://dx.doi.org/10.11834/jig.190400]
Xia B, Tian Y P, Zhang Y L, Hang Y C, Yang W M and Liao Q M. 2023. Meta-learning-based degradation representation for blind super-resolution. IEEE Transactions on Image Processing, 32: 3383-3396 [DOI: 10.1109/TIP.2023.3283922http://dx.doi.org/10.1109/TIP.2023.3283922]
Xiang X G, Wei H and Pan J S. 2020. Deep video deblurring using sharpness features from exemplars. IEEE Transactions on Image Processing, 29: 8976-8987 [DOI: 10.1109/TIP.2020.3023534http://dx.doi.org/10.1109/TIP.2020.3023534]
Xu F, Yu L, Wang B S, Yang W, Xia G S, Jia X, Qiao Z D and Liu J Z. 2021. Motion deblurring with real events//Proceedings of 2021 IEEE International Conference on Computer Vision. Montreal, Canada: IEEE: 2583-2592 [DOI: 10.1109/ICCV48922.2021.00258http://dx.doi.org/10.1109/ICCV48922.2021.00258]
Xu L and Jia J Y. 2012. Depth-aware motion deblurring//Proceedings of 2012 IEEE International Conference on Computational Photography (ICCP). Seattle, USA: IEEE: 1-8 [DOI: 10.1109/ICCPhot.2012.6215220http://dx.doi.org/10.1109/ICCPhot.2012.6215220]
Xu X Y, Sun D Q, Pan J S, Zhang Y J, Pfister H and Yang M H. 2017. Learning to super-resolve blurry face and text images//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 251-260 [DOI: 10.1109/ICCV.2017.36http://dx.doi.org/10.1109/ICCV.2017.36]
Yang X, Wang X Q, Wang N N and Gao X B. 2022. SRDN: a unified super-resolution and motion deblurring network for space image restoration. IEEE Transactions on Geoscience and Remote Sensing, 60: #5614411 [DOI: 10.1109/TGRS.2021.3131264http://dx.doi.org/10.1109/TGRS.2021.3131264]
Yuan L, Sun J, Quan L and Shum H Y. 2007. Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics, 26(3): #1-es [DOI: 10.1145/1276377.1276379http://dx.doi.org/10.1145/1276377.1276379]
Yue T, Sun M T, Zhang Z Y, Suo J L and Dai Q H. 2014. Deblur a blurred RGB image with a sharp NIR image through local linear mapping//Proceedings of 2014 IEEE International Conference on Multimedia and Expo. Chengdu, China: IEEE: 1-6 [DOI: 10.1109/ICME.2014.6890310http://dx.doi.org/10.1109/ICME.2014.6890310]
Yun J U, Jo B and Park I K. 2020. Joint face super-resolution and deblurring using generative adversarial network. IEEE Access, 8: 159661-159671 [DOI: 10.1109/ACCESS.2020.3020729http://dx.doi.org/10.1109/ACCESS.2020.3020729]
Zamir S W, Arora A, Khan S, Hayat M, Khan F S and Yang M H. 2022. Restormer: efficient Transformer for high-resolution image restoration//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 5718-5729 [DOI: 10.1109/CVPR52688.2022.00564http://dx.doi.org/10.1109/CVPR52688.2022.00564]
Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H and Shao L. 2021. Multi-stage progressive image restoration//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE: 14821-14831 [DOI: 10.1109/CVPR46437.2021.01458http://dx.doi.org/10.1109/CVPR46437.2021.01458]
Zhang D Y, Liang Z W and Shao J. 2020a. Joint image deblurring and super-resolution with attention dual supervised network. Neurocomputing, 412: 187-196 [DOI: 10.1016/j.neucom.2020.05.069http://dx.doi.org/10.1016/j.neucom.2020.05.069]
Zhang H C, Yang J C, Zhang Y N, Nasrabadi N M and Huang T S. 2011. Close the loop: joint blind image restoration and recognition with sparse representation prior//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE: 770-777 [DOI: 10.1109/ICCV.2011.6126315http://dx.doi.org/10.1109/ICCV.2011.6126315]
Zhang H C and Zhang Y N. 2009. Sparse representation based iterative incremental image deblurring//Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE: 1293-1296 [DOI: 10.1109/ICIP.2009.5413591http://dx.doi.org/10.1109/ICIP.2009.5413591]
Zhang H G, Dai Y C, Li H D and Koniusz P. 2019. Deep stacked hierarchical multi-patch network for image deblurring//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 5978-5986 [DOI: 10.1109/CVPR.2019.00613http://dx.doi.org/10.1109/CVPR.2019.00613]
Zhang J W, Pan J S, Ren J, Song Y B, Bao L C, Lau R W H and Yang M H. 2018a. Dynamic scene deblurring using spatially variant recurrent neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2521-2529 [DOI: 10.1109/CVPR.2018.00267http://dx.doi.org/10.1109/CVPR.2018.00267]
Zhang K H, Luo W H, Zhong Y R, Ma L, Stenger B, Liu W and Li H D. 2020b. Deblurring by realistic blurring//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 2737-2746 [DOI: 10.1109/CVPR42600.2020.00281http://dx.doi.org/10.1109/CVPR42600.2020.00281]
Zhang K H, Ren W Q, Luo W H, Lai W S, Stenger B, Yang M H and Li H D. 2022. Deep image deblurring: a survey. International Journal of Computer Vision, 130(9): 2103-2130 [DOI: 10.1007/s11263-022-01633-5http://dx.doi.org/10.1007/s11263-022-01633-5]
Zhang K H, Wang T, Luo W H, Ren W Q, Stenger B, Liu W, Li H D and Yang M H. 2024. MC-Blur: a comprehensive benchmark for image deblurring. IEEE Transactions on Circuits and Systems for Video Technology, 34(5): 3755-3767 [DOI: 10.1109/TCSVT.2023.3319330http://dx.doi.org/10.1109/TCSVT.2023.3319330]
Zhang X and Yu L. 2022. Unifying motion deblurring and frame interpolation with events//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE: 17765-17774 [DOI: 10.1109/CVPR52688.2022.01724http://dx.doi.org/10.1109/CVPR52688.2022.01724]
Zhang X Y, Dong H, Hu Z, Lai W S, Wang F and Yang M H. 2018b. Gated fusion network for joint image deblurring and super-resolution//Proceedings of 29th British Machine Vision Conference (BMVC). Newcastle, United Kingdom. #153
Zhang Y N, Liu Y M, Li Q, Wang J Z, Qi M, Sun H, Xu H and Kong J. 2021. A lightweight fusion distillation network for image deblurring and deraining. Sensors, 21(16): #5312 [DOI: 10.3390/s21165312http://dx.doi.org/10.3390/s21165312]
Zhao S Y, Zhang Z, Hong R C, Xu M L, Yang Y and Wang M. 2022. FCL-GAN: a lightweight and real-time baseline for unsupervised blind image deblurring//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa, Portugal: Association for Computing Machinery: 6220-6229 [DOI: 10.1145/3503161.3548113http://dx.doi.org/10.1145/3503161.3548113]
Zhou S C, Li C Y and Loy C C. 2022. LEDNet: joint low-light enhancement and deblurring in the dark//Proceedings of the 17th European Conference on Computer Vision — ECCV 2022. Tel Aviv, Israel: Springer 573-589 [DOI: 10.1007/978-3-031-20068-7_33http://dx.doi.org/10.1007/978-3-031-20068-7_33]
Zhuang K, Li Q, Yuan Y and Wang Q. 2024. Multi-domain adaptation for motion deblurring. IEEE Transactions on Multimedia, 26: 3676-3688 [DOI: 10.1109/TMM.2023.3314154http://dx.doi.org/10.1109/TMM.2023.3314154]
相关作者
相关机构