图像去模糊研究综述
Survey of image deblurring
- 2024年29卷第4期 页码:841-861
纸质出版日期: 2024-04-16
DOI: 10.11834/jig.230555
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-04-16 ,
移动端阅览
胡张颖, 周全, 陈明举, 崔景程, 吴晓富, 郑宝玉. 2024. 图像去模糊研究综述. 中国图象图形学报, 29(04):0841-0861
Hu Zhangying, Zhou Quan, Chen Mingju, Cui Jingcheng, Wu Xiaofu, Zheng Baoyu. 2024. Survey of image deblurring. Journal of Image and Graphics, 29(04):0841-0861
图像模糊是指在图像捕捉或传输过程中,由于镜头或相机运动、光照条件等因素导致图像失去清晰度和细节,从而影响图像的质量和可用性。为了消除这种影响,图像去模糊技术应运而生。其目的在于通过构建计算机数学模型来衡量图像的模糊信息,从而自动预测去模糊后的清晰图像。图像去模糊算法的研究发展不仅为计算机视觉领域的其他任务提供了便利,同时也为生活领域提供了便捷和保障,如安全监控等。1)回顾了整个图像去模糊领域的发展历程,对盲图像去模糊和非盲图像去模糊中具有影响力的算法进行论述和分析。2)讨论了图像模糊的常见原因以及去模糊图像的质量评价方法。3)全面阐述了传统方法和基于深度学习方法的基本思想,并针对图像非盲去模糊和图像盲去模糊两方面的一些文献进行了综述。其中,基于深度学习的方法包括基于卷积神经网络、基于循环神经网络、基于生成式对抗网络和基于Transformer的方法等。4)简要介绍了图像去模糊领域的常用数据集并比较分析了一些代表性图像去模糊算法的性能。5)探讨了图像去模糊领域所面临的挑战,并对未来的研究方法进行了展望。
Image blurring refers to the loss of clarity and detail in an image during its capture or transmission due to factors such as motion of the lens or camera, lighting conditions, and other environmental variables. This loss of quality and usability can significantly influence the overall visual impact of the image. The technique of image deblurring has been developed to mitigate such effects. Its purpose is to predict the clear version of an image automatically by constructing computer mathematical models that measure the blurriness of the image. The research and development of image deblurring algorithms have not only provided convenience for other tasks in the field of computer vision, such as object detection, but have also offered assurance in various aspects of life, including security monitoring. Depending on its cause, blurring can mainly be divided into motion blur, out-of-focus blur, and Gaussian blur. Out-of-focus and Gaussian blurs are less prevalent and relatively easier to handle, whereas motion blur is more likely to occur in situations such as road traffic cameras, pedestrian movement, and fast-moving vehicles, making it a more critical issue to be addressed. After an image is deblurred, evaluating the quality of the results becomes essential, which is carried out using methods for image quality assessment (IQA), categorized as either subjective or objective. Objective evaluation methods can be divided into three types: full-reference, reduced reference, and no reference. Owing to constraints in resources, objective evaluation methods make up the majority of IQA approaches. The process of image blurring can be represented as the convolution of a clear image with a blur kernel, accompanied with greater or lesser degrees of noise. Therefore, image deblurring comprises two types: non-blind image deblurring (NBID) and blind image deblurring (BID). Non-blind deblurring involves the restoration of an image with a known blur kernel, requiring prior knowledge of the blur kernel’s parameters. On the contrary, blind deblurring aims to restore images with unknown blur kernels or unknown clear images, posing a more challenging problem to solve because of the increased number of unknown factors. In light of these considerations, we systematically and critically review the recent advancements in image deblurring. A comprehensive and systematic introduction of image deblurring is presented from the following two aspects: 1) the evolution of traditional image deblurring and 2) the development of deep learning-based image deblurring. From the perspective of traditional image deblurring, the existing image deblurring methods can be divided into two categories: non-blind deblurring and blind deblurring. Specifically, traditional NBID algorithms rely on prior knowledge of the blur kernel for the restoration process. Common methods include denoising- and iteration-based methods. Traditional BID methods primarily involve estimating the blur kernel first and transforming it into an NBID problem afterward. The kernel and clear image are often estimated iteratively until satisfactory results are obtained. The emerging deep learning methods extract blur image features through training a neural network and employing logistic regression to update models. Unlike traditional methods that require prior knowledge of the degree of image blur, deep learning-based methods are capable of directly processing blurry images without the need for prior estimation of the blur degree. From the perspective of network architecture, deep learning-based image deblurring algorithms can be classified into convolutional neural network (CNN)-based, recurrent neural network (RNN)-based, generative adversarial network (GAN)-based, and Transformer-based networks. CNN-based methods can learn the mapping between blurry and clear images by training on a large number of image pairs, which enables them to perform blind deblurring. These algorithms take advantage of parameter sharing and local receptive fields, reducing the number of model parameters and improving the accuracy of image feature extraction. Image deblurring based on RNN is a type of neural network model that can handle sequential data through learning the relationship between sequential data. GAN-based deblurring approaches define image deblurring problems as an adversarial game between generators and discriminators. Transformer-based methods employ a self-attention mechanism to encode global dependencies between different spatial positions, thereby capturing the global information of an entire image. Our critical review focuses on the main concepts and discussions of the characteristics of each method for image deblurring from the perspective of network architecture. Particularly, we summarize the limitations of different deblurring algorithms. We also briefly introduce popular public datasets. Then, we review some image deblurring literature from two aspects: traditional methods and deep learning-based methods. The capability of representative algorithms is analyzed using peak signal-to-noise ratio and structural similarity evaluation indexes in terms of GoPro Labs, human-aware motion deblurring, and other datasets. Furthermore, this review critically analyzes the conclusion, highlighting the challenges in image deblurring.
图像去模糊卷积神经网络(CNN)循环神经网络(RNN)生成式对抗网络(GAN)Transformer深度学习
image deblurringconvolutional neural network(CNN)recurrent neural network(RNN)generative adversarial network(GAN)Transformerdeep learning
Bar L, Kiryati N and Sochen N. 2006. Image deblurring in the presence of impulsive noise. International Journal of Computer Vision, 70(3): 279-298 [DOI: 10.1007/s11263-006-6468-1http://dx.doi.org/10.1007/s11263-006-6468-1]
Chakrabarti A. 2016. A neural approach to blind motion deblurring//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, the Netherlands: Springer: 221-235 [DOI: 10.1007/978-3-319-46487-9_14http://dx.doi.org/10.1007/978-3-319-46487-9_14]
Chandler D M and Hemami S S. 2007. VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16(9): 2284-2298 [DOI: 10.1109/TIP.2007.901820http://dx.doi.org/10.1109/TIP.2007.901820]
Chen F, Huang X J and Chen W F. 2010. Texture-preserving image deblurring. IEEE Signal Processing Letters, 17(12): 1018-1021 [DOI: 10.1109/LSP.2010.2078807http://dx.doi.org/10.1109/LSP.2010.2078807]
Chen F and Ma J L. 2009. An empirical identification method of gaussian blur parameter for image deblurring. IEEE Transactions on Signal Processing, 57(7): 2467-2478 [DOI: 10.1109/TSP.2009.2018358http://dx.doi.org/10.1109/TSP.2009.2018358]
Chen G H, Yang C L and Xie S L. 2006. Gradient-based structural similarity for image quality assessment//Proceedings of 2006 International Conference on Image Processing. Atlanta, USA: IEEE: 2929-2932 [DOI: 10.1109/ICIP.2006.313132http://dx.doi.org/10.1109/ICIP.2006.313132]
Chen L, Fang F M, Wang T T and Zhang G X. 2019. Blind image deblurring with local maximum gradient prior//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 1742-1750 [DOI: 10.1109/CVPR.2019.00184http://dx.doi.org/10.1109/CVPR.2019.00184]
Cheng R Q, Yu Y, Shi D Z and Cai W. 2022. The critical review of image and video quality assessment methods. Journal of Image and Graphics, 27(5): 1410-1429
程茹秋, 余烨, 石岱宗, 蔡文. 2022. 图像与视频质量评价综述. 中国图象图形学报, 27(5): 1410-1429 [DOI: 10.11834/jig.210314http://dx.doi.org/10.11834/jig.210314]
Cho S and Lee S. 2009. Fast motion deblurring. ACM Transactions on Graphics, 28(5): 1-8 [DOI: 10.1145/1618452.161849http://dx.doi.org/10.1145/1618452.161849]
Cho S J, Ji S W, Hong J P, Jung S W and Ko S J. 2021. Rethinking coarse-to-fine approach in single image deblurring//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE: 4621-4630 [DOI: 10.1109/ICCV.2021.00460http://dx.doi.org/10.1109/ICCV.2021.00460]
Dabov K, Foi A, Katkovnik V and Egiazarian K. 2007. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8): 2080-2095 [DOI: 10.1109/TIP.2007.901238http://dx.doi.org/10.1109/TIP.2007.901238]
Dai S Y and Wu Y. 2008. Motion from blur//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 769-777 [DOI: 10.1109/CVPR.2008.4587582http://dx.doi.org/10.1109/CVPR.2008.4587582]
Danielyan A, Katkovnik V and Egiazarian K. 2012. BM3D frames and variational image deblurring. IEEE Transactions on Image Processing, 21(4): 1715-1728 [DOI: 10.1109/TIP.2011.2176954http://dx.doi.org/10.1109/TIP.2011.2176954]
Dong J X, Roth S and Schiele B. 2021. Learning spatially-variant MAP models for non-blind image deblurring//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 4884-4893 [DOI: 10.1109/CVPR46437.2021.00485http://dx.doi.org/10.1109/CVPR46437.2021.00485]
Dong J X, Roth S and Schiele B. 2022. DWDN: deep wiener deconvolution network for non-blind image deblurring. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12): 9960-9976 [DOI: 10.1109/TPAMI.2021.3138787http://dx.doi.org/10.1109/TPAMI.2021.3138787]
Dong W S, Wang P Y, Yin W T, Shi G M, Wu F F and Lu X T. 2019. Denoising prior driven deep neural network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(10): 2305-2318 [DOI: 10.1109/TPAMI.2018.2873610http://dx.doi.org/10.1109/TPAMI.2018.2873610]
Donoho D L. 2006. Compressed sensing. IEEE Transactions on Information Theory, 52(4): 1289-1306 [DOI: 10.1109/TIT.2006.871582http://dx.doi.org/10.1109/TIT.2006.871582]
Eboli T, Sun J and Ponce J. 2020. End-to-end interpretable learning of non-blind image deblurring//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 314-331 [DOI: 10.1007/978-3-030-58520-4_19http://dx.doi.org/10.1007/978-3-030-58520-4_19]
Fang Y M, Sui X J, Yan J B, Liu X L and Huang L P. 2021. Progress in no-reference image quality assessment. Journal of Image and Graphics, 26(2): 265-286
方玉明, 眭相杰, 鄢杰斌, 刘学林, 黄丽萍. 2021. 无参考图像质量评价研究进展. 中国图象图形学报, 26(2): 265-286 [DOI: 10.11834/jig.200274http://dx.doi.org/10.11834/jig.200274]
Fang Z X, Wu F F, Dong W S, Li X, Wu J J and Shi G M. 2023. Self-supervised non-uniform kernel estimation with flow-based motion prior for blind image deblurring//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE: 18105-18114 [DOI: 10.1109/CVPR52729.2023.01736http://dx.doi.org/10.1109/CVPR52729.2023.01736]
Fergus R, Singh B, Hertzmann A, Roweis S T and Freeman W T. 2006. Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3): 787-794 [DOI: 10.1145/1141911.1141956http://dx.doi.org/10.1145/1141911.1141956]
Gao H Y, Tao X, Shen X Y and Jia J Y. 2019. Dynamic scene deblurring with parameter selective sharing and nested skip connections//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 3843-3851 [DOI: 10.1109/CVPR.2019.00397http://dx.doi.org/10.1109/CVPR.2019.00397]
Gong D, Yang J, Liu L Q, Zhang Y N, Reid I, Shen C H, van den Hengel A and Shi Q F. 2017. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3806-3815 [DOI: 10.1109/CVPR.2017.405http://dx.doi.org/10.1109/CVPR.2017.405]
Haigh J. 1980. Introduction to the theory of nonparametric statistics. Journal of the Royal Statistical Society: Series A (General), 143(3): 376-377 [DOI: 10.2307/2982149http://dx.doi.org/10.2307/2982149]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Heng H J, Ye H B, Zhou M and Huang R. 2021. Coarse-to-fine multiscale defocus blur detection. Journal of Image and Graphics, 26(3): 581-593
衡红军, 叶何斌, 周末, 黄睿. 2021. 由粗到精的多尺度散焦模糊检测. 中国图象图形学报, 26(3): 581-593 [DOI: 10.11834/jig.200126http://dx.doi.org/10.11834/jig.200126]
Hoßfeld T, Heegaard P E, Varela M and Möller S. 2016. QoE beyond the MOS: an in-depth look at QoE via better metrics and their relation to MOS. Quality and User Experience, 1(1): # 2 [DOI: 10.1007/s41233-016-0002-1http://dx.doi.org/10.1007/s41233-016-0002-1]
Huynh-Thu Q and Ghanbari M. 2008. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13): 800-801 [DOI: 10.1049/el:20080522http://dx.doi.org/10.1049/el:20080522]
Isola P, Zhu J Y, Zhou T H and Efros A A. 2017. Image-to-image translation with conditional adversarial networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5967-5976 [DOI: 10.1109/CVPR.2017.632http://dx.doi.org/10.1109/CVPR.2017.632]
Jia J Y. 2007. Single Image motion deblurring using transparency//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE: 1-8 [DOI: 10.1109/CVPR.2007.383029http://dx.doi.org/10.1109/CVPR.2007.383029]
Jiang Z, Zhang Y, Zou D Q, Ren J, Lv J C and Liu Y B. 2020. Learning event-based motion deblurring//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3317-3326 [DOI: 10.1109/CVPR42600.2020.00338http://dx.doi.org/10.1109/CVPR42600.2020.00338]
Joshi N, Szeliski R and Kriegman D J. 2008. PSF estimation using sharp edge prediction//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8 [DOI: 10.1109/CVPR.2008.4587834http://dx.doi.org/10.1109/CVPR.2008.4587834]
Kalifa J, Mallat S and Rouge B. 2003. Deconvolution by thresholding in mirror wavelet bases. IEEE Transactions on Image Processing, 12(4): 446-457 [DOI: 10.1109/TIP.2003.810592http://dx.doi.org/10.1109/TIP.2003.810592]
Kang L, Ye P, Li Y and Doermann D. 2014. Convolutional neural networks for no-reference image quality assessment//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1733-1740 [DOI: 10.1109/CVPR.2014.224http://dx.doi.org/10.1109/CVPR.2014.224]
Kheradmand A and Milanfar P. 2014. A general framework for regularized, similarity-based image restoration. IEEE Transactions on Image Processing, 23(12): 5136-5151 [DOI: 10.1109/TIP.2014.2362059http://dx.doi.org/10.1109/TIP.2014.2362059]
Khetkeeree S and Liangrocapart S. 2019. Image restoration using optimized weiner filtering based on modified tikhonov regularization//Proceedings of the 4th IEEE International Conference on Signal and Image Processing (ICSIP). Wuxi, China: IEEE: 1015-1020 [DOI: 10.1109/SIPROCESS.2019.8868907http://dx.doi.org/10.1109/SIPROCESS.2019.8868907]
Kim I, Lim D, Seo Y, Lee J, Choi W and Song S. 2022. Image deblurring using deep multi-scale distortion prior//Proceedings of 2022 IEEE International Conference on Image Processing (ICIP). Bordeaux, France: IEEE: 446-450 [DOI: 10.1109/ICIP46576.2022.9897621http://dx.doi.org/10.1109/ICIP46576.2022.9897621]
Köhler R, Hirsch M, Mohler B, Schölkopf B and Harmeling S. 2012. Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database//Proceedings of the 12th European Conference on Computer Vision (ECCV). Florence, Italy: Springer: 27-40 [DOI: 10.1007/978-3-642-33786-4_3http://dx.doi.org/10.1007/978-3-642-33786-4_3]
Kong L S, Dong J X, Ge J J, Li M Q and Pan J S. 2023. Efficient frequency domain-based Transformers for high-quality image deblurring//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE: 5886-5895 [DOI: 10.1109/CVPR52729.2023.00570http://dx.doi.org/10.1109/CVPR52729.2023.00570]
Krishnan D and Fergus R. 2009. Fast image deconvolution using hyper-Laplacian priors//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc.: 1033-1041 [DOI: 10.5555/2984093.2984210http://dx.doi.org/10.5555/2984093.2984210]
Krishnan D, Tay T and Fergus R. 2011. Blind deconvolution using a normalized sparsity measure//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.Colorado Springs, USA: IEEE: 233-240 [DOI: 10.1109/CVPR.2011.5995521http://dx.doi.org/10.1109/CVPR.2011.5995521]
Kupyn O, Budzan V, Mykhailych M, Mishkin D and Matas J. 2018. DeblurGAN: blind motion deblurring using conditional adversarial networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8183-8192 [DOI: 10.1109/CVPR.2018.00854http://dx.doi.org/10.1109/CVPR.2018.00854]
Kupyn O, Martyniuk T, Wu J R and Wang Z Y. 2019. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8877-8886 [DOI: 10.1109/ICCV.2019.00897http://dx.doi.org/10.1109/ICCV.2019.00897]
Lai W S, Huang J B, Hu Z, Ahuja N and Yang M H. 2016. A comparative study for single image blind deblurring//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1701-1709 [DOI: 10.1109/CVPR.2016.188http://dx.doi.org/10.1109/CVPR.2016.188]
Lanza A, Morigi S and Sgallari F. 2016. Convex image denoising via non-convex regularization with parameter delection. Journal of Mathematical Imaging and Vision, 56(2): 195-220 [DOI: 10.1007/s10851-016-0655-7http://dx.doi.org/10.1007/s10851-016-0655-7]
Larson E C and Chandler D M. 2010. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1): #011006 [DOI: 10.1117/1.3267105http://dx.doi.org/10.1117/1.3267105]
Levin A, Weiss Y, Durand F and Freeman W T. 2009. Understanding and evaluating blind deconvolution algorithms//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 1964-1971 [DOI: 10.1109/CVPR.2009.5206815http://dx.doi.org/10.1109/CVPR.2009.5206815]
Levin A, Weiss Y, Durand F and Freeman W T. 2011. Efficient marginal likelihood optimization in blind deconvolution//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE: 2657-2664 [DOI: 10.1109/CVPR.2011.5995308http://dx.doi.org/10.1109/CVPR.2011.5995308]
Li H Y, Zhang Z R, Jiang T T, Luo P, Feng H J and Xu Z H. 2023. Real-world deep local motion deblurring//Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI: 1314-1322 [DOI: 10.1609/aaai.v37i1.25215http://dx.doi.org/10.1609/aaai.v37i1.25215]
Li Q and Wang Z. 2009. Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Journal of Selected Topics in Signal Processing, 3(2): 202-211 [DOI: 10.1109/JSTSP.2009.2014497http://dx.doi.org/10.1109/JSTSP.2009.2014497]
Li X L, Li G and Du Z L. 2021. High fidelity single image blind deblur via GAN. Wireless Networks, 20: #9 [DOI: 10.1007/s11276-020-02496-9http://dx.doi.org/10.1007/s11276-020-02496-9]
Li Y M, Po L M, Feng L T and Yuan F. 2016. No-reference image quality assessment with deep convolutional neural networks//Proceedings of 2016 IEEE International Conference on Digital Signal Processing. Beijing, China: IEEE: 685-689 [DOI: 10.1109/ICDSP.2016.7868646http://dx.doi.org/10.1109/ICDSP.2016.7868646]
Liu L P, Sun J and Gao S Y. 2022. Overview of blind deblurring methods for single image. Journal of Frontiers of Computer Science and Technology, 16(3): 552-564
刘利平, 孙建, 高世妍. 2022. 单图像盲去模糊方法概述. 计算机科学与探索, 16(3): 552-564 [DOI: 10.3778/j.issn.1673-9418.2019.2106100http://dx.doi.org/10.3778/j.issn.1673-9418.2019.2106100]
Liu Y T, Zhai G T, Gu K, Liu X M, Zhao D B and Gao W. 2018. Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Transactions on Multimedia, 20(2): 379-391 [DOI: 10.1109/TMM.2017.2729020http://dx.doi.org/10.1109/TMM.2017.2729020]
Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, Lin S and Guo B N. 2021. Swin Transformer: hierarchical vision Transformer using shifted windows//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 9992-10002 [DOI: 10.1109/ICCV48922.2021.00986http://dx.doi.org/10.1109/ICCV48922.2021.00986]
Lu B Y, Chen J C and Chellappa R. 2020. UID-GAN: unsupervised image deblurring via disentangled representations. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(1): 26-39 [DOI: 10.1109/TBIOM.2019.2959133http://dx.doi.org/10.1109/TBIOM.2019.2959133]
Lucy L B. 1974. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79(6): 745-754 [DOI: 10.1086/111605http://dx.doi.org/10.1086/111605]
Ma S X, Wang J X, Dai Y S, Chen J and Shao W Z. 2019. Deblurring and recognition of blurred license plates in surveillance video. Information System Engineering, (11): 111-113
马苏欣, 王家希, 戴雅淑, 陈杰, 邵文泽. 2019. 监控视频下模糊车牌的去模糊与识别探析. 信息系统工程, (11): 111-113 [DOI: 10.3969/j.issn.1001-2362.2019.11.046http://dx.doi.org/10.3969/j.issn.1001-2362.2019.11.046]
Madhusudana P C, Birkbeck N, Wang Y L, Adsumilli B and Bovik A C. 2022. Image quality assessment using contrastive learning. IEEE Transactions on Image Processing, 31: 4149-4161 [DOI: 10.1109/TIP.2022.3181496http://dx.doi.org/10.1109/TIP.2022.3181496]
Mittal A, Moorthy A K and Bovik A C. 2012. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12): 4695-4708 [DOI: 10.1109/TIP.2012.2214050http://dx.doi.org/10.1109/TIP.2012.2214050]
Moorthy A K and Bovik A C. 2011. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12): 3350-3364 [DOI: 10.1109/TIP.2011.2147325http://dx.doi.org/10.1109/TIP.2011.2147325]
Mosleh A, Sola Y E, Zargari F, Onzon E and Langlois J M P. 2018. Explicit ringing removal in image deblurring. IEEE Transactions on Image Processing, 27(2): 580-593 [DOI: 10.1109/TIP.2017.2764625http://dx.doi.org/10.1109/TIP.2017.2764625]
Nah S, Kim T H and Lee K M. 2017. Deep multi-scale convolutional neural network for dynamic scene deblurring//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 257-265 [DOI: 10.1109/CVPR.2017.35http://dx.doi.org/10.1109/CVPR.2017.35]
Nan Y S and Ji H. 2020. Deep learning for handling kernel/model uncertainty in image deconvolution//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 2385-2394 [DOI: 10.1109/CVPR42600.2020.00246http://dx.doi.org/10.1109/CVPR42600.2020.00246]
Nimisha T M, Singh A K and Rajagopalan A N. 2017. Blur-invariant deep learning for blind-deblurring//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 4762-4770 [DOI: 10.1109/ICCV.2017.509http://dx.doi.org/10.1109/ICCV.2017.509]
Pan J S and Su Z X. 2013. Fast ℓ0-regularized kernel estimation for robust motion deblurring. IEEE Signal Processing Letters, 20(9): 841-844 [DOI: 10.1109/LSP.2013.2261986http://dx.doi.org/10.1109/LSP.2013.2261986]
Pan J S, Sun D Q, Pfister H and Yang M H. 2016. Blind image deblurring using dark channel prior//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1628-1636 [DOI: 10.1109/CVPR.2016.180http://dx.doi.org/10.1109/CVPR.2016.180]
Park D, Kang D U, Kim J and Chun S Y. 2020. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 327-343 [DOI: 10.1007/978-3-030-58539-6_20http://dx.doi.org/10.1007/978-3-030-58539-6_20]
Quan Y H, Wu Z C and Ji H. 2023. Neumann network with recursive kernels for single image defocus deblurring//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE: 5754-5763 [DOI: 10.1109/CVPR52729.2023.00557http://dx.doi.org/10.1109/CVPR52729.2023.00557]
Ren D W, Zhang K, Wang Q L, Hu Q H and Zuo W M. 2020. Neural blind deconvolution using deep priors//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3338-3347 [DOI: 10.1109/CVPR.42600.2020.00340http://dx.doi.org/10.1109/CVPR.42600.2020.00340]
Rim J, Lee H, Won J and Cho S. 2020. Real-world blur dataset for learning and benchmarking deblurring algorithms//Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer: 184-201 [DOI: 10.1007/978-3-030-58595-2_12http://dx.doi.org/10.1007/978-3-030-58595-2_12]
Schmidt U and Roth S. 2014. Shrinkage fields for effective image restoration//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 2774-2781 [DOI: 10.1109/CVPR.2014.349http://dx.doi.org/10.1109/CVPR.2014.349]
Schmidt U, Rother C, Nowozin S, Jancsary J and Roth S. 2013. Discriminative non-blind deblurring//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 604-611 [DOI: 10.1109/CVPR.2013.84http://dx.doi.org/10.1109/CVPR.2013.84]
Schuler C J, Burger H C, Harmeling S and Schölkopf B. 2013. A machine learning approach for non-blind image deconvolution//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 1067-1074 [DOI: 10.1109/CVPR.2013.142http://dx.doi.org/10.1109/CVPR.2013.142]
Schuler C J, Hirsch M, Harmeling S and Schölkopf B. 2016. Learning to Deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7): 1439-1451 [DOI: 10.1109/TPAMI.2015.2481418http://dx.doi.org/10.1109/TPAMI.2015.2481418]
Shan Q, Jia J Y and Agarwala A. 2008. High-quality motion deblurring from a single image. ACM Transactions on Graphics, 27(3): 1-10 [DOI: 10.1145/1360612.1360672http://dx.doi.org/10.1145/1360612.1360672]
Sharif S M A, Naqvi R A, Mehmood Z, Hussain J, Ali A and Lee S W. 2023. MedDeblur: medical image deblurring with residual dense spatial-asymmetric attention. Mathematics, 11(1): #115 [DOI: 10.3390/math11010115http://dx.doi.org/10.3390/math11010115]
Shen C T, Hwang W L and Pei S C. 2012. Spatially-varying out-of-focus image deblurring with L1-2 optimization and a guided blur map//Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto, Japan: IEEE: 1069-1072 [DOI: 10.1109/ICASSP.2012.6288071http://dx.doi.org/10.1109/ICASSP.2012.6288071]
Shen Z Y, Wang W G, Lu X K, Shen J B, Lin H B, Xu T F and Shao L. 2019. Human-aware motion deblurring//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 5571-5580 [DOI: 10.1109/ICCV.2019.00567http://dx.doi.org/10.1109/ICCV.2019.00567]
Sun J, Cao W F, Xu Z B and Ponce J. 2015. Learning a convolutional neural network for non-uniform motion blur removal//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 769-777 [DOI: 10.1109/CVPR.2015.7298677http://dx.doi.org/10.1109/CVPR.2015.7298677]
Sun L B, Cho S, Wang J and Hays J. 2013. Edge-based blur kernel estimation using patch priors//Proceedings of 2013 IEEE International Conference on Computational Photography (ICCP). Cambridge, USA: IEEE: 1-8 [DOI: 10.1109/ICCPhot.2013.6528301http://dx.doi.org/10.1109/ICCPhot.2013.6528301]
Sun L B and Hays J. 2012. Super-resolution from internet-scale scene matching//Proceedings of 2012 IEEE International Conference on Computational Photography (ICCP). Seattle, USA: IEEE: 1-12 [DOI: 10.1109/ICCPhot.2012.6215221http://dx.doi.org/10.1109/ICCPhot.2012.6215221]
Tang H P, Zeng X J, Niu S J, Chen Q and Sun Q S. 2015. Remote sensing image multi-scale deblurring based on regularization constraint. Journal of Image and Graphics, 20(3): 386-394
谭海鹏, 曾炫杰, 牛四杰, 陈强, 孙权森. 2015. 基于正则化约束的遥感图像多尺度去模糊. 中国图象图形学报, 20(3): 386-394 [DOI: 10.11834/jig.20150310http://dx.doi.org/10.11834/jig.20150310]
Tang X L, Zhao X L, Liu J, Wang J L, Miao Y C and Zeng T Y. 2023. Uncertainty-aware unsupervised image deblurring with deep residual prior//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE: 9883-9892 [DOI: 10.1109/CVPR52729.2023.00953http://dx.doi.org/10.1109/CVPR52729.2023.00953]
Tao X, Gao H Y, Shen X Y, Wang J and Jia J Y. 2018. Scale-recurrent network for deep image deblurring//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8174-8182 [DOI: 10.1109/CVPR.2018.00853http://dx.doi.org/10.1109/CVPR.2018.00853]
Vasu S, Maligireddy V R and Rajagopalan A N. 2018. Non-blind deblurring: handling kernel uncertainty with CNNs//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3272-3281 [DOI: 10.1109/CVPR.2018.00345http://dx.doi.org/10.1109/CVPR.2018.00345]
Wan Z L, Gu K and Zhao D B. 2020. Reduced reference stereoscopic image quality assessment using sparse representation and natural scene statistics. IEEE Transactions on Multimedia, 22(8): 2024-2037 [DOI: 10.1109/TMM.2019.2950533http://dx.doi.org/10.1109/TMM.2019.2950533]
Wang L, Luo S W and Wang Z. 2010. Image deblur with regularized backward heat diffusion//Proceedings of 2010 IEEE International Conference on Image Processing (ICIP). Hong Kong, China: IEEE: 1141-1144 [DOI: 10.1109/ICIP.2010.5651365http://dx.doi.org/10.1109/ICIP.2010.5651365]
Wang S G, Deng C W, Lin W S, Huang G B and Zhao B J. 2017. NMF-based image quality assessment using extreme learning machine. IEEE Transactions on Cybernetics, 47(1): 232-243 [DOI: 10.1109/TCYB.2015.2512852http://dx.doi.org/10.1109/TCYB.2015.2512852]
Wang Z, Bovik A C, Sheikh H R and Simoncelli E P. 2004. Image quality qssessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612 [DOI: 10.1109/TIP.2003.819861http://dx.doi.org/10.1109/TIP.2003.819861]
Wang Z, Wu G X, Sheikh H R, Simoncelli E P, Yang E H and Bovik A C. 2006. Quality-aware images. IEEE Transactions on Image Processing, 15(6): 1680-1689 [DOI: 10.1109/TIP.2005.864165http://dx.doi.org/10.1109/TIP.2005.864165]
Wang Z D, Cun X, Bao J M, Zhou W G, Liu J Z and Li H Q. 2022. Uformer: a general U-shaped Transformer for image restoration//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 17662-17672 [DOI: 10.1109/CVPR52688.2022.01716http://dx.doi.org/10.1109/CVPR52688.2022.01716]
Wiener N. 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time Series: with Engineering Applications. New York: the MIT Press
Xie S P, Zheng X Y, Shao W Z, Zhang Y D, Lv T X and Li H B. 2019. Non-blind image deblurring method by the total variation deep network. IEEE Access, 7: 37536-37544 [DOI: 10.1109/ACCESS.2019.2891626http://dx.doi.org/10.1109/ACCESS.2019.2891626]
Xu L and Jia J Y. 2010. Two-phase kernel estimation for robust motion deblurring//Proceedings of the 11th European Conference on Computer Vision (ECCV). Heraklion, Greece: Springer: 157-170 [DOI: 10.1007/978-3-642-15549-9_12http://dx.doi.org/10.1007/978-3-642-15549-9_12]
Xu L, Zheng S C and Jia J Y. 2013. Unnatural L0 sparse representation for natural image deblurring//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 1107-1114 [DOI: 10.1109/CVPR.2013.147http://dx.doi.org/10.1109/CVPR.2013.147]
Xu X Y, Pan J S, Zhang Y J and Yang M H. 2018. Motion blur kernel estimation via deep learning. IEEE Transactions on Image Processing, 27(1): 194-205 [DOI: 10.1109/TIP.2017.2753658http://dx.doi.org/10.1109/TIP.2017.2753658]
Yan Q S, Gong D, Wang P, Zhang Z, Zhang Y N and Shi J Q. 2023. SharpFormer: learning local feature preserving global representations for image deblurring. IEEE Transactions on Image Processing, 32: 2857-2866 [DOI: 10.1109/TIP.2023.3251029http://dx.doi.org/10.1109/TIP.2023.3251029]
Yan Y Y, Ren W Q, Guo Y F, Wang R and Cao X C. 2017. Image deblurring via extreme channels prior//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6978-6986 [DOI: 10.1109/CVPR.2017.738http://dx.doi.org/10.1109/CVPR.2017.738]
Yang H. 2022. Survey of non-blind image restoration. Chinese Optics, 15(5): 954-972
杨航. 2022. 非盲图像复原综述. 中国光学(中英文), 15(5): 954-972 [DOI: 10.37188/CO.2022-0099http://dx.doi.org/10.37188/CO.2022-0099]
Yang L G and Ji H. 2019. A variational EM framework with adaptive edge selection for blind motion deblurring//Proceedings of 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 10159-10168 [DOI: 10.1109/CVPR.2019.01041http://dx.doi.org/10.1109/CVPR.2019.01041]
Yang T, Ren P R, Xie X S and Zhang L. 2021. GAN prior embedded network for blind face restoration in the wild//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: 672-681 [DOI: 10.1109/CVPR46437.2021.00073http://dx.doi.org/10.1109/CVPR46437.2021.00073]
Yuan L, Sun J, Quan L and Shum H Y. 2008. Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Transactions on Graphics, 27(3): 1-10 [DOI: 10.1145/1360612.1360673http://dx.doi.org/10.1145/1360612.1360673]
Zamir S W, Arora A, Khan S, Hayat M, Khan F S and Yang M H. 2022. Restormer: efficient Transformer for high-resolution image restoration//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 5718-5729 [DOI: 10.1109/CVPR52688.2022.00564http://dx.doi.org/10.1109/CVPR52688.2022.00564]
Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H and Shao L. 2021. Multi-stage progressive image restoration//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 14816-14826 [DOI: 10.1109/CVPR46437.2021.01458http://dx.doi.org/10.1109/CVPR46437.2021.01458]
Zhang H G, Dai Y C, Li H D and Koniusz P. 2019a. Deep stacked hierarchical multi-patch network for image deblurring//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5971-5979 [DOI: 10.1109/CVPR.2019.00613http://dx.doi.org/10.1109/CVPR.2019.00613]
Zhang J W, Pan J S, Ren J, Song Y B, Bao L C, Lau R W H and Yang M H. 2018. Dynamic scene deblurring using spatially variant recurrent neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2521-2529 [DOI: 10.1109/CVPR.2018.00267http://dx.doi.org/10.1109/CVPR.2018.00267]
Zhang K, Zuo W M, Gu S H and Zhang L. 2017. Learning deep CNN denoiser prior for image restoration//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2808-2817 [DOI: 10.1109/CVPR.2017.300http://dx.doi.org/10.1109/CVPR.2017.300]
Zhang K, Zuo W M and Zhang L. 2019b. Deep plug-and-play super-resolution for arbitrary blur kernels//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 1671-1681 [DOI: 10.1109/CVPR.2019.00177http://dx.doi.org/10.1109/CVPR.2019.00177]
Zhang K H, Luo W H, Zhong Y R, Ma L, Stenger B, Liu W and Li H D. 2020a. Deblurring by realistic blurring//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 2734-2743 [DOI: 10.1109/CVPR42600.2020.00281http://dx.doi.org/10.1109/CVPR42600.2020.00281]
Zhang K H, Ren W Q, Luo W H, Lai W S, Stenger B, Yang M H and Li H D. 2022. Deep image deblurring: a survey. International Journal of Computer Vision, 130(9): 2103-2130 [DOI: 10.1007/s11263-022-01633-5http://dx.doi.org/10.1007/s11263-022-01633-5]
Zhang L, Zhang L, Mou X Q and Zhang D. 2011. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8): 2378-2386 [DOI: 10.1109/TIP.2011.2109730http://dx.doi.org/10.1109/TIP.2011.2109730]
Zhang L M, Zhang H G, Chen J H and Wang L. 2020b. Hybrid deblur net: deep non-uniform deblurring with event camera. IEEE Access, 8: 148075-148083 [DOI: 10.1109/access.2020.3015759http://dx.doi.org/10.1109/access.2020.3015759]
Zhang X D, Feng X C, Wang W W and Xue W F. 2013. Edge strength similarity for image quality assessment. IEEE Signal Processing Letters, 20(4): 319-322 [DOI: 10.1109/LSP.2013.2244081http://dx.doi.org/10.1109/LSP.2013.2244081]
Zhao Q, Yang H, Zhou D M and Cao J D. 2023. Rethinking image deblurring via CNN-Transformer multiscale hybrid architecture. IEEE Transactions on Instrumentation and Measurement, 72: 1-15 [DOI: 10.1109/TIM.2022.3230482http://dx.doi.org/10.1109/TIM.2022.3230482]
Zhou Q, Ding M Y and Zhang X M. 2020. Image deblurring using multi-stream bottom-top-bottom attention network and global information-based fusion and reconstruction network. Sensors, 20(13): #3724 [DOI: 10.3390/s20133724http://dx.doi.org/10.3390/s20133724]
Zoran D and Weiss Y. 2011. From learning models of natural image patches to whole image restoration//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE: 479-486 [DOI: 10.1109/ICCV.2011.6126278http://dx.doi.org/10.1109/ICCV.2011.6126278]
相关作者
相关机构