深度学习在口腔医学影像中的应用与挑战
Applications and challenges of deep learning in dental imaging
- 2024年29卷第3期 页码:586-607
纸质出版日期: 2024-03-16
DOI: 10.11834/jig.230062
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-16 ,
移动端阅览
赵阳, 李俊诚, 成博栋, 牛娜君, 王龙光, 高广谓, 施俊. 2024. 深度学习在口腔医学影像中的应用与挑战. 中国图象图形学报, 29(03):0586-0607
Zhao Yang, Li Juncheng, Cheng Bodong, Niu Najun, Wang Longguang, Gao Guangwei, Shi Jun. 2024. Applications and challenges of deep learning in dental imaging. Journal of Image and Graphics, 29(03):0586-0607
口腔医学影像是进行临床口腔疾病检测、筛查、诊断和治疗评估的重要工具,对口腔影像进行准确分析对于后续治疗计划的制定至关重要。常规的口腔医学影像分析依赖于医师的水平和经验,存在阅片效率低、可重复性低以及定量分析欠缺的问题。深度学习可以从大样本数据中自动学习并获取优良的特征表达,提升各类机器学习任务的效率和性能,目前已广泛应用于医学影像分析处理的各类任务之中。基于深度学习的口腔医学影像处理是目前的研究热点,但由于口腔医学领域内在的特殊性和复杂性,以及口腔医学影像数据样本量通常较小的问题,给深度学习方法在相关学习任务和场景的应用带来了新的挑战。本文从口腔医学影像领域常用的二维X射线影像、三维点云/网格影像和锥形束计算机断层扫描影像3种影像出发,介绍深度学习技术在口腔医学影像处理及分析领域应用的思路和现状,分析了各算法的优缺点及该领域所面临的问题和挑战,并对未来的研究方向和可能开展的临床应用进行展望,以助力智慧口腔建设。
Dental imaging is an essential tool for the detection, screening, diagnosis, and therapeutic evaluation of clinical oral diseases, and the accurate analysis of the images is vital to the development of subsequent treatment plans. Deep learning, which is widely used in many fields, such as machine translation, speech recognition, and computer vision, can automatically learn and obtain superior feature expressions from large sample data, thereby improving the efficiency and performance of various machine learning tasks. With the integration of artificial intelligence and various fields, smart healthcare has become an important application area of deep learning, providing an effective way of solving the following clinical problems: 1) the shortage of experienced radiologists in the field of dentistry cannot meet the rapidly growing medical demand. 2) Despite sufficient medical resources, the number of experienced physicians cannot meet the rapidly growing medical demand. 3) Different physicians have different interpretations of the same oral image, which are influenced by subjectivity. Deep learning-based dental image processing is currently a popular research topic. The inherent specificity and complexity of the medical field and the problem of insufficient dental image data samples bring new challenges to the application of deep learning methods in relevant learning tasks and scenarios. This work mainly reviews the various applications of deep learning methods using three major dental imaging methods (i.e., two-dimensional oral X-ray images, three-dimensional tooth point cloud/mesh images, cone beam computed tomography (CBCT)). These applications include tooth segmentation, caries detection, and tumor detection. The reviews on two-dimensional oral X-ray images focus on bitewing, periapical, and panoramic X-rays based on deep learning methods. Bitewing X-rays usually show the contact surface from the distal end of the canine to the most distal molar and are mainly used to diagnose proximal caries, assess the extent of caries, and identify secondary caries under existing restorations. For caries detection using bitewing X-rays, we mainly review deep learning methods using convolutional neural network architectures, such as full convolutional neural networks and U-Net architectures. Periodontitis and caries detection using periapical X-rays primarily introduces methods based on convolutional neural networks and backward propagation neural network. In contrast to bitewing and periapical X-rays, panoramic X-rays show not only teeth and gums but also the jaw, the skull, the spine, and other bones. We provide a focused review of the application of deep learning methods in panoramic radiographic images from three detection categories of directions: tooth detection and numbering, tooth segmentation, and non-dental disease detection. The three-dimensional tooth point cloud/mesh image is a digital 3D oral model obtained by scanning and reconstructing the patient’s mouth in real time using an intraoral scanner. The reviews on the three-dimensional tooth point cloud/mesh image focus on tooth segmentation based on deep learning. The deep learning methods for tooth segmentation can be divided into two categories: fully supervised and non-full supervision methods. For fully supervised methods, we mainly introduce the hierarchical and end-to-end network architecture models with a large amount of labeled data and annotation. For non-full supervision methods, we primarily review self- and semi-supervised learning methods that only require partially annotated data and methods that utilize weakly annotated ideas. Currently, CBCT imaging, which is a non-invasive, low-radiation technique, is widely used in dental diagnosis and treatment. This paper summarizes the deep learning methods for CBCT images, focusing on three major areas: tooth segmentation, dental implants, and oral and maxillofacial surgery. Nevertheless, analyzing all aspects of the patient’s oral and systemic health status to develop a personalized and high-level treatment plan for oral diseases using the deep learning methods that have been proposed is still difficult. Deep learning has made some progress in the field of dental image processing but still faces some serious challenges. The small sample size has been a serious problem in the field of medical image analysis but can be effectively addressed using non-fully supervised deep learning methods, such as weakly supervised learning and self-supervised learning, with machine learning methods, including migration learning, sample less learning, and incremental learning. In addition, the annotation of dental medical images is a time-consuming and laborious task that relies heavily on the experience of the practitioner, which is one of the barriers limiting the extensive and intensive application of deep learning. Therefore, automatic data annotation must be extensively studied. The development of deep learning applications in dental imaging is still in a relatively early stage. The development of this field cannot be achieved without the cooperation of computer scientists, clinicians, and experts in imaging equipment and software development in solve the problem of deploying lightweight deep learning networks in convenient medical devices. Therefore, the combination of deep learning and dental image analysis has been a major trend, with significant results in various analysis tasks, but require further research to lead the development of dental image analysis to a new phase.
深度学习口腔医学影像牙齿检测与分割龋齿检测计算机辅助诊断(CAD)
deep learningdental imagingtooth detection and segmentationcaries detectioncomputer-aided diagnosis(CAD)
Abdolali F, Zoroofi R A, Abdolali M, Yokota F, Otake Y and Sato Y. 2017a. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching. International Journal of Computer Assisted Radiology and Surgery, 12(4): 581-593 [DOI: 10.1007/s11548-016-1484-2http://dx.doi.org/10.1007/s11548-016-1484-2]
Abdolali F, Zoroofi R A, Otake Y and Sato Y. 2017b. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and spherical harmonics. Computer Methods and Programs in Biomedicine, 139: 197-207 [DOI: 10.1016/j.cmpb.2016.10.024http://dx.doi.org/10.1016/j.cmpb.2016.10.024]
Alsheghri A, Ghadiri F, Zhang Y, Lessard O, Keren J, Cheriet F and Guibault F. 2022. Semi-supervised segmentation of tooth from 3D scanned dental arches//Proceedings of SPIE 12032, Medical Imaging 2022: Image Processing. San Diego, USA: SPIE: 711-766 [DOI: 10.1117/12.2612655http://dx.doi.org/10.1117/12.2612655]
Bayrakdar I S, Orhan K, Akarsu S, Çelik Ö, Atasoy S, Pekince A, Yasa Y, Bilgir E, Sağlam H, Aslan A F and Odabaş A. 2022. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiology, 38(4): 468-479 [DOI: 10.1007/s11282-021-00577-9http://dx.doi.org/10.1007/s11282-021-00577-9]
Bayrakdar S K, Orhan K, Bayrakdar I S, Bilgir E, Ezhov M, Gusarev M and Shumilov E. 2021. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Medical Imaging, 21(1): #86 [DOI: 10.1186/s12880-021-00618-zhttp://dx.doi.org/10.1186/s12880-021-00618-z]
Cai Z W and Vasconcelos N. 2019. Cascade R-CNN: high quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5): 1483-1498 [DOI: 10.1109/TPAMI.2019.2956516http://dx.doi.org/10.1109/TPAMI.2019.2956516]
Cantu A G, Gehrung S, Krois J, Chaurasia A, Rossi J G, Gaudin R, Elhennawy K and Schwendicke F. 2020. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry, 100: #103425 [DOI: 10.1016/j.jdent.2020.103425http://dx.doi.org/10.1016/j.jdent.2020.103425]
Cha J Y, Yoon H I, Yeo I S, Huh K H and Han J S. 2021. Panoptic segmentation on panoramic radiographs: deep learning-based segmentation of various structures including maxillary sinus and mandibular canal. Journal of Clinical Medicine, 10(2): #2577 [DOI: 10.3390/jcm10122577http://dx.doi.org/10.3390/jcm10122577]
Chai Z K, Mao L, Chen H, Sun T G, Shen X M, Liu J and Sun Z J. 2022. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence. Frontiers in Oncology, 11: #793417 [DOI: 10.3389/fonc.2021.793417http://dx.doi.org/10.3389/fonc.2021.793417]
Chang H J, Lee S J, Yong T H, Shin N Y, Jang B G, Kim J E, Huh K H, Lee S S, Heo M S, Choi S C, Kim T I and Yi W J. 2020. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis. Scientific Reports, 10(1): #7531 [DOI: 10.1038/s41598-020-64509-zhttp://dx.doi.org/10.1038/s41598-020-64509-z]
Chang Y B, Xia J J, Yuan P, Kuo T H, Xiong Z X, Gateno J and Zhou X B. 2013. 3D segmentation of maxilla in cone-beam computed tomography imaging using base invariant wavelet active shape model on customized two-manifold topology. Journal of X-Ray Science and Technology, 21(2): 251-282 [DOI: 10.3233/XST-130369http://dx.doi.org/10.3233/XST-130369]
Chen H, Li H, Zhao Y J, Zhao J J and Wang Y. 2021. Dental disease detection on periapical radiographs based on deep convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery, 16(4): 649-661 [DOI: 10.1007/s11548-021-02319-yhttp://dx.doi.org/10.1007/s11548-021-02319-y]
Chen K, Pang J M, Wang J Q, Xiong Y, Li X X, Sun S Y, Feng W S, Liu Z W, Shi J P, Ouyang W L, Loy C C and Lin D H. 2019a. Hybrid task cascade for instance segmentation//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4974-4983 [DOI: 10.1109/CVPR.2019.00511http://dx.doi.org/10.1109/CVPR.2019.00511]
Chen S H, Ma K and Zheng Y F. 2019b. Med3D: transfer learning for 3D medical image analysis [EB/OL]. [2023-02-06]. https://arxiv.org/pdf/1904.00625.pdfhttps://arxiv.org/pdf/1904.00625.pdf
Chung M, Lee J, Park S, Lee M, Lee C E, Lee J and Shin Y G. 2021. Individual tooth detection and identification from dental panoramic X-ray images via point-wise localization and distance regularization. Artificial Intelligence in Medicine, 111: #101996 [DOI: 10.1016/j.artmed.2020.101996http://dx.doi.org/10.1016/j.artmed.2020.101996]
Çiçek Ö, Abdulkadir A, Lienkamp S S, Brox T and Ronneberger O. 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece: Springer: 424-432 [DOI: 10.1007/978-3-319-46723-8_49http://dx.doi.org/10.1007/978-3-319-46723-8_49]
Cipriano M, Allegretti S, Bolelli F, Di Bartolomeo M, Pollastri F, Pellacani A, Minafra P, Anesi A and Grana C. 2022. Deep segmentation of the mandibular canal: a new 3D annotated dataset of CBCT volumes. IEEE Access, 10: 11500-11510 [DOI: 10.1109/ACCESS.2022.3144840http://dx.doi.org/10.1109/ACCESS.2022.3144840]
Codari M, Caffini M, Tartaglia G M, Sforza C and Baselli G. 2017. Computer-aided cephalometric landmark annotation for CBCT data. International Journal of Computer Assisted Radiology and Surgery, 12(1): 113-121 [DOI: 10.1007/s11548-016-1453-9http://dx.doi.org/10.1007/s11548-016-1453-9]
Cui W W, Wang Y Q, Zhang Q N, Zhou H Y, Song D, Zuo X Y, Jia G Y and Zeng L Y. 2022a. CTooth: a fully annotated 3D dataset and benchmark for tooth volume segmentation on cone beam computed tomography images//Proceedings of the 15th International Conference on Intelligent Robotics and Applications. Harbin, China: Springer [DOI: 10.1007/978-3-031-13841-6_18http://dx.doi.org/10.1007/978-3-031-13841-6_18]
Cui Z M, Fang Y, Mei L Z J, Zhang B J, Yu B, Liu J M, Jiang C M, Sun Y H, Ma L, Huang J W, Liu Y, Zhao Y, Lian C F, Ding Z X, Zhu M and Shen D G. 2022b. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nature Communications, 13(1): #2096 [DOI: 10.1038/s41467-022-29637-2http://dx.doi.org/10.1038/s41467-022-29637-2]
Cui Z M, Li C J, Chen N L, Wei G D, Chen R N, Zhou Y F, Shen D G and Wang W P. 2021. TSegNet: an efficient and accurate tooth segmentation network on 3D dental model. Medical Image Analysis, 69: #101949 [DOI: 10.1016/j.media.2020.101949http://dx.doi.org/10.1016/j.media.2020.101949]
Duan W, Chen Y F, Zhang Q, Lin X and Yang X Y. 2021. Refined tooth and pulp segmentation using U-Net in CBCT image. Dentomaxillofacial Radiology, 50(6): #20200251 [DOI: 10.1259/dmfr.20200251http://dx.doi.org/10.1259/dmfr.20200251]
El-Bakry H M and Mastorakis N. 2008. An effective method for detecting dental diseases by using fast neural networks//Proceedings of the 8th Conference on Signal, Speech and Image Processing. Santander, Spain: World Scientific and Engineering Academy and Society: 144-152
Fan R, Jin X G and Wang C C L. 2015. Multiregion segmentation based on compact shape prior. IEEE Transactions on Automation Science and Engineering, 12(3): 1047-1058 [DOI: 10.1109/TASE.2014.2317497http://dx.doi.org/10.1109/TASE.2014.2317497]
Geetha V, Aprameya K S and Hinduja D M. 2020. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Information Science and Systems, 8(1): #8 [DOI: 10.1007/s13755-019-0096-yhttp://dx.doi.org/10.1007/s13755-019-0096-y]
Gerlach N L, Meijer G J, Kroon D J, Bronkhorst E M, Bergé S J and Maal T J. 2014. Evaluation of the potential of automatic segmentation of the mandibular canal using cone-beam computed tomography. British Journal of Oral and Maxillofacial Surgery, 52(9): 838-844 [DOI: 10.1016/j.bjoms.2014.07.253http://dx.doi.org/10.1016/j.bjoms.2014.07.253]
Guerrero M E, Noriega J, Castro C and Jacobs R. 2014. Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images. Imaging Science in Dentistry, 44(2): 121-128 [DOI: 10.5624/isd.2014.44.2.121http://dx.doi.org/10.5624/isd.2014.44.2.121]
Guo C, Dai N, Tian S K, Sun Y C, Yu Q, Liu H and Cheng X S. 2020. Morphological design of missing tooth driven by high-resolution deep generation network. Journal of Image and Graphics, 25(10): 2249-2258
郭闯, 戴宁, 田素坤, 孙玉春, 俞青, 刘浩, 程筱胜. 2020. 高分辨率深度生成网络的缺失牙体形态设计. 中国图象图形学报, 25(10): 2249-2258 [DOI: 10.11834/jig.200252http://dx.doi.org/10.11834/jig.200252]
He J Z, Li Y, Cao Y P, Xue J and Zhou X D. 2015. The oral microbiome diversity and its relation to human diseases. Folia Microbiologica, 60(1): 69-80 [DOI: 10.1007/s12223-014-0342-2http://dx.doi.org/10.1007/s12223-014-0342-2]
Hsu K, Yuh D Y, Lin S C, Lyu P S, Pan G X, Zhuang Y C, Chang C C, Peng H H, Lee T Y, Juan C H, Juan C E, Liu Y J and Juan C J. 2022. Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography. Scientific Reports, 12(1): #19809 [DOI: 10.1038/s41598-022-23901-7http://dx.doi.org/10.1038/s41598-022-23901-7]
Huang Y X, Fan F X, Syben C, Roser P, Mill L and Maier A. 2021. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Medical Image Analysis, 70: #102028 [DOI: 10.1016/j.media.2021.102028http://dx.doi.org/10.1016/j.media.2021.102028]
Jader G, Fontineli J, Ruiz M, Abdalla K, Pithon M and Oliveira L. 2018. Deep instance segmentation of teeth in panoramic X-ray images//Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images. Parana, Brazil: IEEE: 400-407 [DOI: 10.1109/SIBGRAPI.2018.00058http://dx.doi.org/10.1109/SIBGRAPI.2018.00058]
Jang T J, Kim K C, Cho H C and Seo J K. 2022. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10): 6562-6568 [DOI: 10.1109/TPAMI.2021.3086072http://dx.doi.org/10.1109/TPAMI.2021.3086072]
Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, Hietanen A, Varjonen V, Mattila V and Kaski K. 2020. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Scientific Reports, 10(1): #5842 [DOI: 10.1038/s41598-020-62321-3http://dx.doi.org/10.1038/s41598-020-62321-3]
Jiang Y, Tan N, Zhang H and Peng T T. 2019. Bitewing radiography image segmentation based on conditional generative adversarial network. Computer Engineering, 45(4): 223-227
蒋芸, 谭宁, 张海, 彭婷婷. 2019. 基于条件生成对抗网络的咬翼片图像分割. 计算机工程, 45(4): 223-227 [DOI: 10.19678/j.issn.1000-3428.0050445http://dx.doi.org/10.19678/j.issn.1000-3428.0050445]
Kim J, Lee H S, Song I S and Jung K H. 2019. DeNTNet: deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Scientific Reports, 9(1): #17615 [DOI: 10.1038/s41598-019-53758-2http://dx.doi.org/10.1038/s41598-019-53758-2]
Kirthiga M, Muthu M S, Kayalvizhi G and Krithika C. 2018. Proposed classification for interproximal contacts of primary molars using CBCT: a pilot study. Wellcome Open Research, 3: #98 [DOI: 10.12688/wellcomeopenres.14713.1http://dx.doi.org/10.12688/wellcomeopenres.14713.1]
Kumar Y, Janardan R, Larson B and Moon J. 2011. Improved segmentation of teeth in dental models. Computer-Aided Design and Applications, 8(2): 211-224 [DOI: 10.3722/cadaps.2011.211-224http://dx.doi.org/10.3722/cadaps.2011.211-224]
Lecun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791]
Lee J H, Han S S, Kim Y H, Lee C and Kim I. 2020a. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surgery Oral Medicine Oral Pathology and Oral Radiology, 129(6): 635-642 [DOI: 10.1016/j.oooo.2019.11.007http://dx.doi.org/10.1016/j.oooo.2019.11.007]
Lee J H, Kim D H and Jeong S N. 2020b. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Diseases, 26(1): 152-158 [DOI: 10.1111/odi.13223http://dx.doi.org/10.1111/odi.13223]
Lee S, Oh S I, Jo J, Kang S, Shin Y and Park J W. 2021. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports, 11(1): #16807 [DOI: 10.1038/s41598-021-96368-7http://dx.doi.org/10.1038/s41598-021-96368-7]
Lee S, Woo S, Yu J, Seo J, Lee J and Lee C. 2020c. Automated CNN-based tooth segmentation in cone-beam CT for dental implant planning. IEEE Access, 8: 50507-50518 [DOI: 10.1109/ACCESS.2020.2975826http://dx.doi.org/10.1109/ACCESS.2020.2975826]
Lee S C, Hwang H S and Lee K C. 2022. Accuracy of deep learning-based integrated tooth models by merging intraoral scans and CBCT scans for 3D evaluation of root position during orthodontic treatment. Progress in Orthodontics, 23(1): #15 [DOI: 10.1186/s40510-022-00410-xhttp://dx.doi.org/10.1186/s40510-022-00410-x]
Li S H, Liu J L, Zhou Z R, Zhou Z L, Wu X Y, Li Y Z, Wang S D, Liao W, Ying S C and Zhao Z H. 2022. Artificial intelligence for caries and periapical periodontitis detection. Journal of Dentistry, 122: #104107 [DOI: 10.1016/j.jdent.2022.104107http://dx.doi.org/10.1016/j.jdent.2022.104107]
Li W Q, Wang G T, Fidon L, Ourselin S, Cardoso M J and Vercauteren T. 2017. On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task//Proceedings of the 25th International Conference on Information Processing in Medical Imaging. Boone, USA: Springer: 348-360 [DOI: 10.1007/978-3-319-59050-9_28http://dx.doi.org/10.1007/978-3-319-59050-9_28]
Li Y Y, Bu R, Sun M C, Wu W, Di X H and Chen B Q. 2018. PointCNN: convolution on X-transformed points//Proceedings of the 31st Conference on Neural Information Processing Systems. Montréal, Canada: [s.n.]: 828-838
Li Z, Wang S H, Fan R R, Cao G, Zhang Y D and Guo T. 2019. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling. International Journal of Imaging Systems and Technology, 29(4): 577-583 [DOI: 10.1002/ima.22337http://dx.doi.org/10.1002/ima.22337]
Li Z L, Sun Z H, Li H A and Liu T X. 2020. Automatic selection of tooth seed point by graph convolutional network. Journal of Image and Graphics, 25(7): 1481-1489
李占利, 孙志浩, 李洪安, 刘童鑫. 2020. 图卷积网络下牙齿种子点自动选取. 中国图象图形学报, 25(7): 1481-1489 [DOI: 10.11834/jig.190575http://dx.doi.org/10.11834/jig.190575]
Li Z Y and Wang H. 2016. Interactive tooth separation from dental model using segmentation field. PLoS One, 11(8): #0161159 [DOI: 10.1371/journal.pone.0161159http://dx.doi.org/10.1371/journal.pone.0161159]
Lian C F, Wang L, Wu T H, Wang F, Yap P T, Ko C C and Shen D G. 2020. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Transactions on Medical Imaging, 39(7): 2440-2450 [DOI: 10.1109/TMI.2020.2971730http://dx.doi.org/10.1109/TMI.2020.2971730]
Lin N H, Lin T L, Wang X Y, Kao W T, Tseng H W, Chen S L, Chiou Y S, Lin S Y, Villaverde J F and Kuo Y F. 2018. Teeth detection algorithm and teeth condition classification based on convolutional neural networks for dental panoramic radiographs. Journal of Medical Imaging and Health Informatics, 8(3): 507-515 [DOI: 10.1166/jmihi.2018.2354http://dx.doi.org/10.1166/jmihi.2018.2354]
Lin P L, Lai Y H and Huang P W. 2010. An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recognition, 43(4): 1380-1392 [DOI: 10.1016/j.patcog.2009.10.005http://dx.doi.org/10.1016/j.patcog.2009.10.005]
Lin Y D and He M. 2021. Deep learning-based three-dimensional oral conical beam computed tomography for diagnosis. Journal of Healthcare Engineering, 2021: #4676316 [DOI: 10.1155/2021/4676316http://dx.doi.org/10.1155/2021/4676316]
Liu S, Qi L, Qin H F, Shi J P and Jia J Y. 2018. Path aggregation network for instance segmentation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8759-8768 [DOI: 10.1109/CVPR.2018.00913http://dx.doi.org/10.1109/CVPR.2018.00913]
Liu Z Z, He X X, Wang H L, Xiong H M, Zhang Y, Wang G G, Hao J, Feng Y, Zhu F D and Hu H J. 2023. Hierarchical self-supervised learning for 3D tooth segmentation in intra-oral mesh scans. IEEE Transactions on Medical Imaging, 42(2): 467-480 [DOI: 10.1109/TMI.2022.3222388http://dx.doi.org/10.1109/TMI.2022.3222388]
Ma J B, Xue C R and Bai D. 2022. Progress on application of artificial intelligence technology in orthodontic diagnosis and treatment. Journal of Prevention and Treatment for Stomatological Diseases, 30(4): 278-282
马建斌, 薛超然, 白丁. 2022. 人工智能技术在口腔正畸诊疗中的应用研究进展. 口腔疾病防治, 30(4): 278-282 [DOI: 10.12016/j.issn.2096-1456.2022.04.008http://dx.doi.org/10.12016/j.issn.2096-1456.2022.04.008]
Miki Y, Muramatsu C, Hayashi T, Zhou X R, Hara T, Katsumata A and Fujita H. 2017. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification//Proceedings of SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis. Orlando, USA: SPIE [DOI: 10.1117/12.2254332http://dx.doi.org/10.1117/12.2254332]
Milletari F, Navab N and Ahmadi S A. 2016. V-Net: fully convolutional neural networks for volumetric medical image segmentation//Proceedings of the 4th International Conference on 3D Vision. Stanford, USA: IEEE [DOI: 10.1109/3DV.2016.79http://dx.doi.org/10.1109/3DV.2016.79]
Mureșanu S, Almășan O, Hedeșiu M, Diosan L, Dinu C and Jacobs R. 2023. Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiology, 39(1): 18-40 [DOI: 10.1007/s11282-022-00660-9http://dx.doi.org/10.1007/s11282-022-00660-9]
Oktay A B. 2017. Tooth detection with convolutional neural networks//Proceedings of 2017 Medical Technologies National Congress. Trabzon, Turkey: IEEE [DOI: 10.1109/TIPTEKNO.2017.8238075http://dx.doi.org/10.1109/TIPTEKNO.2017.8238075]
Park W J and Park J B. 2018. History and application of artificial neural networks in dentistry. European Journal of Dentistry, 12(4): 594-601 [DOI: 10.4103/ejd.ejd_325_18http://dx.doi.org/10.4103/ejd.ejd_325_18]
Pinheiro L, Silva B, Sobrinho B, Lima F, Cury P and Oliveira L. 2021. Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays//Proceedings of SPIE 12088, the 17th International Symposium on Medical Information Processing and Analysis. Campinas, Brazil: SPIE [DOI: 10.1117/12.2606211http://dx.doi.org/10.1117/12.2606211]
Poedjiastoeti W and Suebnukarn S. 2018. Application of convolutional neural network in the diagnosis of jaw tumors. Healthcare Informatics Research, 24(3): 236-241 [DOI: 10.4258/hir.2018.24.3.236http://dx.doi.org/10.4258/hir.2018.24.3.236]
Prajapati S A, Nagaraj R and Mitra S. 2017. Classification of dental diseases using CNN and transfer learning//Proceedings of the 5th International Symposium on Computational and Business Intelligence. Dubai, United Arab Emirates: IEEE: #8053547 [DOI: 10.1109/ISCBI.2017.8053547http://dx.doi.org/10.1109/ISCBI.2017.8053547]
Qiu B J, van der Wel H, Kraeima J, Glas H H, Guo J P, Borra R J H, Witjes M J H and van Ooijen P M. 2021. Automatic segmentation of mandible from conventional methods to deep learning-a review. Journal of Personalized Medicine, 11(7): #629 [DOI: 10.3390/jpm11070629http://dx.doi.org/10.3390/jpm11070629]
Qiu L D, Ye C J, Chen P, Liu Y B, Han X G and Cui S G. 2022. DArch: dental arch prior-assisted 3D tooth instance segmentation with weak annotations//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 20752-20761 [DOI: 10.1109/CVPR52688.2022.02009http://dx.doi.org/10.1109/CVPR52688.2022.02009]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Roongruangsilp P and Khongkhunthian P. 2021. The learning curve of artificial intelligence for dental implant treatment planning: a descriptive study. Applied Sciences, 11(21): #10159 [DOI: 10.3390/app112110159http://dx.doi.org/10.3390/app112110159]
Said E, Fahmy G F, Nassar D and Ammar H. 2004. Dental X-ray image segmentation//Proceedings of SPIE 5404, Biometric Technology for Human Identification. Orlando, USA: SPIE: 409-417 [DOI: 10.1117/12.541658http://dx.doi.org/10.1117/12.541658]
Schwendicke F, Tzschoppe M and Paris S. 2015. Radiographic caries detection: a systematic review and meta-analysis. Journal of Dentistry, 43(8): 924-933 [DOI: 10.1016/j.jdent.2015.02.009http://dx.doi.org/10.1016/j.jdent.2015.02.009]
Shaheen E, Leite A, Alqahtani K A, Smolders A, Van Gerven A, Willems H and Jacobs R. 2021. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. Journal of Dentistry, 115: #103865 [DOI: 10.1016/j.jdent.2021.103865http://dx.doi.org/10.1016/j.jdent.2021.103865]
Shi J, Wang L L, Wang S S, Chen Y X, Wang Q, Wei D M, Liang S J, Peng J L, Yi J J, Liu S F, Ni D, Wang M L, Zhang D Q and Shen D G. 2020. Applications of deep learning in medical imaging: a survey. Journal of Image and Graphics, 25(10): 1953-1981
施俊, 汪琳琳, 王珊珊, 陈艳霞, 王乾, 魏冬铭, 梁淑君, 彭佳林, 易佳锦, 刘盛锋, 倪东, 王明亮, 张道强, 沈定刚. 2020. 深度学习在医学影像中的应用综述, 中国图象图形学报, 25(10): 1953-1981 [DOI: 10.11834/jig.200255http://dx.doi.org/10.11834/jig.200255]
Silva B, Pinheiro L, OliveiranL and Pithon M. 2020. A study on tooth segmentation and numbering using end-to-end deep neural networks//Proceedings of the 33rd SIBGRAPI Conference on Graphics, Patterns and Images. Porto de Galinhas, Brazil: IEEE [DOI: 10.1109/SIBGRAPI51738.2020.00030http://dx.doi.org/10.1109/SIBGRAPI51738.2020.00030]
Silva G, Oliveira L and Pithon M. 2018. Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives. Expert Systems with Applications, 107: 15-31 [DOI: 10.1016/j.eswa.2018.04.001http://dx.doi.org/10.1016/j.eswa.2018.04.001]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s.n.]
Sorkhabi M M and Khajeh M S. 2019. Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: a 6-month clinical study. Measurement, 148: #106945 [DOI: 10.1016/j.measurement.2019.106945http://dx.doi.org/10.1016/j.measurement.2019.106945]
Srivastava M M, Kumar P, Pradhan L and Varadarajan S. 2017. Detection of tooth caries in bitewing radiographs using deep learning//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA: [s.n.]
Tekin B Y, Ozcan C, Pekince A and Yasa Y. 2022. An enhanced tooth segmentation and numbering according to FDI notation in bitewing radiographs. Computers in Biology and Medicine, 146: #105547 [DOI: 10.1016/j.compbiomed.2022.105547http://dx.doi.org/10.1016/j.compbiomed.2022.105547]
Tian S K, Dai N, Zhang B, Yuan F L, Yu Q and Cheng X S. 2019. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access, 7: 84817-84828 [DOI: 10.1109/ACCESS.2019.2924262http://dx.doi.org/10.1109/ACCESS.2019.2924262]
Tonetti M S, Jepsen S, Jin L J and Otomo-Corgel J. 2017. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. Journal of Clinical Periodontology, 44(5): 456-462 [DOI: 10.1111/jcpe.12732http://dx.doi.org/10.1111/jcpe.12732]
Tumbelaka B Y, Oscandar F, Baihaki F N, Sitam S and Rukmo M. 2014. Identification of pulpitis at dental X-ray periapical radiography based on edge detection, texture description and artificial neural networks. Saudi Endodontic Journal, 4(3): 115-121 [DOI: 10.4103/1658-5984.138139http://dx.doi.org/10.4103/1658-5984.138139]
Tuzoff D V, Tuzova L N, Bornstein M M, Krasnov A S, Kharchenko M A, Nikolenko S I, Sveshnikov M M and Bednenko G B. 2019. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiology, 48(4): #20180051 [DOI: 10.1259/dmfr.20180051http://dx.doi.org/10.1259/dmfr.20180051]
Vimalarani G and Ramachandraiah U. 2022. Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model. Microprocessors and Microsystems, 94: #104654 [DOI: 10.1016/j.micpro.2022.104654http://dx.doi.org/10.1016/j.micpro.2022.104654]
Vinayahalingam S, Xi T, Bergé S, Maal T and de Jong G. 2019. Automated detection of third molars and mandibular nerve by deep learning. Scientific Reports, 9(1): #9007 [DOI: 10.1038/s41598-019-45487-3http://dx.doi.org/10.1038/s41598-019-45487-3]
Wang C W, Huang C T, Lee J H, Li C H, Chang S W, Siao M J, Lai T M, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes T F and Lindner C. 2016. A benchmark for comparison of dental radiography analysis algorithms. Medical Image Analysis, 31: 63-76 [DOI: 10.1016/j.media.2016.02.004http://dx.doi.org/10.1016/j.media.2016.02.004]
Wang L, Chen K C, Shi F, Liao S, Li G, Gao Y Z, Shen S G F, Yan J, Lee P K M, Chow B, Liu N X, Xia J J and Shen D G. 2013. Automated segmentation of CBCT image using spiral CT atlases and convex optimization//Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nagoya, Japan: Springer: 251-258 [DOI: 10.1007/978-3-642-40760-4_32http://dx.doi.org/10.1007/978-3-642-40760-4_32]
Wirtz A, Mirashi S G and Wesarg S. 2018. Automatic teeth segmentation in panoramic X-ray images using a coupled shape model in combination with a neural network//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, Spain: Springer: 712-719 [DOI: 10.1007/978-3-030-00937-3_81http://dx.doi.org/10.1007/978-3-030-00937-3_81]
Wu T and Zhang L B. 2018. Tooth segmentation on 3D dental meshes based on path planning. Journal of Image and Graphics, 23(1): 84-94
吴婷, 张礼兵. 2018. 3维牙颌模型牙齿分割的路径规划方法. 中国图象图形学报, 23(1): 84-94 [DOI: 10.11834/jig.170337http://dx.doi.org/10.11834/jig.170337]
Wu T H, Lian C F, Lee S, Pastewait M, Piers C, Liu J, Wang F, Wang L, Chiu C Y, Wang W C, Jackson C, Chao W L, Shen D G and Ko C C. 2022. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. IEEE Transactions on Medical Imaging, 41(11): 3158-3166 [DOI: 10.1109/TMI.2022.3180343http://dx.doi.org/10.1109/TMI.2022.3180343]
Wu Z N, Hu M, Gong X and Wei X X. 2021. Application of machine learning in orthodontics. Chinese Journal of Stomatology, 56(12): 1277-1281
吴志娜, 胡敏, 宫洵, 魏晓曦. 2021. 机器学习在口腔正畸诊疗中的应用进展. 中华口腔医学杂志, 56(12): 1277-1281 [DOI: 10.3760/cma.j.cn112144-20210331-00154http://dx.doi.org/10.3760/cma.j.cn112144-20210331-00154]
Xie R C, Yang Y Y and Chen Z Y. 2023. WITS: weakly-supervised individual tooth segmentation model trained on box-level labels. Pattern Recognition, 133: #108974 [DOI: 10.1016/j.patcog.2022.108974http://dx.doi.org/10.1016/j.patcog.2022.108974]
Xu X J, Liu C and Zheng Y Y. 2019. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics, 25(7): 2336-2348 [DOI: 10.1109/TVCG.2018.2839685http://dx.doi.org/10.1109/TVCG.2018.2839685]
Yasa Y, Çelik Ö, Bayrakdar I S, Pekince A, Orhan K, Akarsu S, Atasoy S, Bilgir E, Odabaş A and Aslan A F. 2021. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontologica Scandinavica, 79(4): 275-281 [DOI: 10.1080/00016357.2020.1840624http://dx.doi.org/10.1080/00016357.2020.1840624]
Yilmaz E, Kayikcioglu T and Kayipmaz S. 2017. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Computer Methods and Programs in Biomedicine, 146: 91-100 [DOI: 10.1016/j.cmpb.2017.05.012http://dx.doi.org/10.1016/j.cmpb.2017.05.012]
Yin X X, Sun L, Fu Y H, Lu R L and Zhang Y C. 2022. U-net-based medical image segmentation. Journal of Healthcare Engineering, 2022: #4189781 [DOI: 10.1155/2022/4189781http://dx.doi.org/10.1155/2022/4189781]
Yu D, Hu J C, Feng Z L, Song M L and Zhu H Y. 2022. Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples. Scientific Reports, 12(1): #1855 [DOI: 10.1038/s41598-022-05913-5http://dx.doi.org/10.1038/s41598-022-05913-5]
Yu L Q, Cheng J Z, Dou Q, Yang X, Chen H, Qin J and Heng P A. 2017. Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City, Canada: Springer: 287-295 [DOI: 10.1007/978-3-319-66185-8_33http://dx.doi.org/10.1007/978-3-319-66185-8_33]
Yu Y, Li Y, Li Y J, Wang J M, Lin D H and Ye W P. 2006. Tooth decay diagnosis using back propagation neural network//Proceedings of 2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE: #258789 [DOI: 10.1109/ICMLC.2006.258789http://dx.doi.org/10.1109/ICMLC.2006.258789]
Zanjani F G, Pourtaherian A, Zinger S, Moin D A, Claessen F, Cherici T, Parinussa S and de With P H N. 2021. Mask-MCNet: tooth instance segmentation in 3D point clouds of intra-oral scans. Neurocomputing, 453: 286-298 [DOI: 10.1016/j.neucom.2020.06.145http://dx.doi.org/10.1016/j.neucom.2020.06.145]
Zhang H, Wu C R, Zhang Z Y, Zhu Y, Lin H B, Zhang Z, Sun Y, He T, Mueller J, Manmatha R, Li M and Smola A. 2022. ResNeSt: split-attention networks//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans, USA: IEEE: 2736-2746 [DOI: 10.1109/CVPRW56347.2022.00309http://dx.doi.org/10.1109/CVPRW56347.2022.00309]
Zhang L M, Zhao Y, Li P C, Liu Y and Gao C Q. 2022. Dental model segmentation network based on local attention mechanism. Acta Electronica Sinica, 50(3): 681-690
张凌明, 赵悦, 李鹏程, 刘洋, 高陈强. 2022. 基于局部注意力机制的三维牙齿模型分割网络. 电子学报, 50(3): 681-690 [DOI: 10.12263/DZXB.20201338http://dx.doi.org/10.12263/DZXB.20201338]
Zhao S X, Luo Q and Wang X L. 2021. Teeth recognition and segmentation based on improved Mask R-CNN. Chinese Journal of Medical Physics, 38(10): 1229-1236
赵庶旭, 罗庆, 王小龙. 2021. 基于改进Mask R-CNN的牙齿识别与分割. 中国医学物理学杂志, 38(10): 1229-1236 [DOI: 10.3969/j.issn.1005-202X.2021.10.009http://dx.doi.org/10.3969/j.issn.1005-202X.2021.10.009]
Zhao Y, Zhang L M, Yang C S, Tan Y Y, Liu Y, Li P C, Huang T H and Gao C Q. 2021. 3D Dental model segmentation with graph attentional convolution network. Pattern Recognition Letters, 152: 79-85 [DOI: 10.1016/j.patrec.2021.09.005http://dx.doi.org/10.1016/j.patrec.2021.09.005]
Zhou X R, Jin Y Y and Chai L. 2021. Dental CBCT image segmentation. Modern Computer, (12): 122-126
周秀蓉, 靳蕴瑶, 柴林. 2021. 牙齿锥形束计算机断层扫描图像分割. 现代计算机, (12): 122-126 [DOI: 10.3969/j.issn.1007-1423.2021.12.024http://dx.doi.org/10.3969/j.issn.1007-1423.2021.12.024]
相关作者
相关机构