Fusion and Intelligent Interpretation for Multi-source Remote Sensing Data | Views : 0 下载量: 367 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Bipartite adversarial autoencoder network for unsupervised detection of changes in heterogeneous remote sensing images

    • Vol. 29, Issue 8, Pages: 2188-2204(2024)   

      Received:20 July 2023

      Revised:01 October 2023

      Published:16 August 2024

    • DOI: 10.11834/jig.230497     

    移动端阅览

  • Jia Meng, Zhao Qin, Lu Xiaofeng. 2024. Bipartite adversarial autoencoder network for unsupervised detection of changes in heterogeneous remote sensing images. Journal of Image and Graphics, 29(08):2188-2204 DOI: 10.11834/jig.230497.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Hu Dewen 国防科技大学智能科学学院
Chen Xieyuanli 国防科技大学智能科学学院
Zhang Jingpu 国防科技大学智能科学学院
Niu Zhongyan 国防科技大学智能科学学院
Tan Zhen 国防科技大学智能科学学院
Jiang Xian 中国林业科学研究院资源信息研究所,国家林业和草原局林业遥感与信息技术重点实验室
Li Xinyue 北京林业大学信息学院;国家林业草原局林业智能信息处理工程技术研究中心
Cao Weiqun 北京林业大学信息学院;国家林业草原局林业智能信息处理工程技术研究中心

相关机构

College of Intelligence Science and Technology,National University of Defense Technology
Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration (NFGA)
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry
Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry
School of Information Science and Technology, Beijing Forestry University
0